* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PPT Slide - Tennessee State University
Heaven and Earth (book) wikipedia , lookup
Soon and Baliunas controversy wikipedia , lookup
Climate change mitigation wikipedia , lookup
ExxonMobil climate change controversy wikipedia , lookup
2009 United Nations Climate Change Conference wikipedia , lookup
Low-carbon economy wikipedia , lookup
Climate change denial wikipedia , lookup
Climatic Research Unit documents wikipedia , lookup
Climate change adaptation wikipedia , lookup
Climate engineering wikipedia , lookup
Economics of global warming wikipedia , lookup
Climate governance wikipedia , lookup
Climate sensitivity wikipedia , lookup
Citizens' Climate Lobby wikipedia , lookup
Fred Singer wikipedia , lookup
Climate change in Tuvalu wikipedia , lookup
Global warming controversy wikipedia , lookup
Mitigation of global warming in Australia wikipedia , lookup
Media coverage of global warming wikipedia , lookup
Carbon Pollution Reduction Scheme wikipedia , lookup
Climate change and agriculture wikipedia , lookup
United Nations Framework Convention on Climate Change wikipedia , lookup
Effects of global warming on human health wikipedia , lookup
Global warming hiatus wikipedia , lookup
General circulation model wikipedia , lookup
Scientific opinion on climate change wikipedia , lookup
Effects of global warming wikipedia , lookup
Effects of global warming on humans wikipedia , lookup
Climate change in Saskatchewan wikipedia , lookup
Climate change and poverty wikipedia , lookup
Instrumental temperature record wikipedia , lookup
Global Energy and Water Cycle Experiment wikipedia , lookup
Surveys of scientists' views on climate change wikipedia , lookup
Attribution of recent climate change wikipedia , lookup
Solar radiation management wikipedia , lookup
Climate change in the United States wikipedia , lookup
Global warming wikipedia , lookup
Physical impacts of climate change wikipedia , lookup
Politics of global warming wikipedia , lookup
Business action on climate change wikipedia , lookup
Public opinion on global warming wikipedia , lookup
Climate change, industry and society wikipedia , lookup
BIOL 4120: Principles of Ecology Lecture 21: Human Ecology (Ch. 29, Global Climate Change) Dafeng Hui Room: Harned Hall 320 Phone: 963-5777 Email: [email protected] What Controls Climate? Solar radiation input from the Sun Distribution of that energy input in the atmosphere, oceans and land Relationship between Sun and Earth Major Impact on Solar Radiation The pacemaker of the ice ages has been driven by regular changes in the Earth’s orbit and the tilt of its axis Approximate primary periods: Eccentricity 100,000 years Precession 23,000/18,000 years elliptical Tilt 41,000 years Hence a rich pattern of changing seasonality at different latitudes over time, which affects the growth and retreat of the great ice sheets (latest 20k to 18k BP). Diagram Courtesy of Windows to the Universe, http://www.windows.ucar.edu 29.1 Greenhouse gases and greenhouse effect Water Vapor – most important GH gas makes the planet habitable 29.2 Natural Climate Variability - Atmospheric CO2 Very High CO2 about 600 Million Years Ago (6000 ppm) CO2 was reduced about 400 MYA as Land Plants Used CO2 in Photosynthesis CO2 Has Fluctuated Through Time but has Remained stable for Thousands of Years Until Industrial Revolution (280 ppm) Human Industrialization Changes Climate Global Fossil Carbon Emissions Fossil fuel use has increased tremendously in 50 years Annual input of CO2 to the atmosphere from burning of fossil fuels since 1860 US 24%, per capita 6 tons C Issue of Time Scale CO2 Uptake and Release are not in Balance CO2 Taken Up Over Hundreds of Millions of Years by Plants And Stored in Soil as Fossil Fuel CO2 Released by Burning of Fossil Fuels Over Hundreds Of Years Rising Atmospheric CO2 Charles David keeling 29.3 Tracking the fate of CO2 emissions Emissions From fossil fuel: 6.3Gt Land-use change:2.2Gt Sequestrations: Oceanic uptake: 2.4Gt Atmosph. accu.: 3.2Gt Terrestrial Ecos.: 0.7Gt Missing C: 2.2 Gt Global Carbon Emissions by land use change Land use change (deforstration: clearing and burning of forest) Carbon Sink: Convergence of Estimates for Continental U.S. from Land and Atmospheric Measurements (From Pacala et al. 2001, Science) PgC/yr Land estimates based on USDA inventories and carbon models Carbon Stocks and Stock Changes Estimated from Forest Inventory Data Tree carbon per hectare by U.S. county 29.4 Absorption of CO2 by ocean is limited by slow movement of ocean Currents Given the volume, oceans have the potential to absorb most of the carbon that is being transferred to the atmosphere by fossil fuel combustion and land clearing This is not realized because the oceans do not act as a homogeneous sponge, absorbing CO2 equally into the entire volume of water Two layers Thin warm layer 18oC Deep cold layer 3oC Ocean Water Currents are Determined by Salinity and Temperature Cold and High Saline Water Sinks and Warm Water Rises Rising and Sinking of Water Generates Ocean Currents Ocean Currents Have Huge Impacts on Temperature & Rainfall on Land This process occurs over hundreds of years Amount of CO2 absorbed by oceans in Short-term is limited 29.5 Plants respond to increased atmospheric CO2 CO2 experiments •Treatment levels: Ambient CO2, elevated CO2 •Facilities: growth chamber, Open-topchamber, FACE Some results at leaf and plant levels Ecosystem results Growth chamber Potted plants can be grown in this growth chamber Greenhouses at a Mars Base: 2025+ EcoCELLs DRI, Reno, NV Air temperature and humidity, trace gas concentrations, and incoming air flow rate are strictly controlled as well as being accurately and precisely measured. Open-top chamber FACE (Free air CO2 enrichment) Aspen FACE, WI, deciduous forest Oak Ridge, deciduous forest Duke, coniferous forest Nevada, desert shrub CO2 effects on plants Enhance photosynthesis (CO2 fertilization effect) Produce fewer stomata on the leaf surface Reduce water use (stomata closure) and increase water use efficiency Increase more biomass (NPP) in normal and dry year, but not in wet year (Owensby et al. grassland) Initial increase in productivity, but primary productivity returned to original levels after 3 yrs exposure (Oechel et al. Arctic) More carbon allocated to root than shoot Poison ivy at Duke Face ring. Poison ivy plants grow faster at elevated CO2 10 350 ul/l 9 550 ul/l 8 7 6 5 4 3 2 1 0 1999 2000 2001 2002 2003 2004 Mohan et al. 2006 PNAS Plants respond to increased atmospheric CO2 BER (biomass enhancement ratio) Hendrik Poorter et al. Meta-data, 600 experimental studies Ecosystem response to CO2 Luo et al. 2006 Ecology Ecosystem responses to CO2 29.6 Greenhouse gases are changing the global climate Methane CH4 and nitrous oxide N2O show similar trends as CO2 CH4 is much more effective at trapping heat than CO2 How to study greenhouse gases effects on global climate change? General circulation models General circulation models (GCMs): Computer models of Earth’s climate system Many GCMs, based on same basic physical descriptions of climate processes, but differ in spatial resolution and in how they describe certain features of Earth’s surface and atmosphere. Can be used to predict how increasing of greenhouse gases influence large scale patterns of climate change. What is a GCM? GCMs prediction of global temperature and precipitation change Changes are relative to average value for period from 1961 to 1990. Despite differences, all models predict increase in T and PPT. T will increase by 1.4 to 5.8oC by the year 2100. Changes in annual temperature and precipitation for a double CO2 concentration Temperature and PPT changes are not evenly distributed over Earth’s surface For T, increase in all places For PPT, increase in east coastal areas, decrease in midwest region (<1). 1 means no change to current. Another issue is increased variability (extreme events). Global temperature has increased dramatically during past 100 years IPCC, 2007. 29.7 Changes in climate will affect ecosystems at many levels Climate influences all aspects of ecosystem Physiological and behavioral response of organisms (ch. 6-8) Birth, death and growth of population (ch. 912) Relative competitive abilities of species (ch.13) Community structure (Ch. 16-18) Biogeographical ecology (biome distribution, extinction, migration) (Ch. 23) Productivity and nutrient cycling (Ch. 20,21) Example of climate changes on relative abundance of three widely distributed tree species Distribution (biomass) of tree species as a function of mean annual temperature (T) and precipitation (P) Distribution and abundance will change as T and P change Anantha Prasad and Louis Iverson, US Forest Service Used FIA data, tree species distribution model and GCM model (GFDL) predicted climate changes with double [CO2] Predicted distribution of 80 tree species in eastern US Here shows three species Red maple, Virginia pine, and White oak Species richness declines in southeastern US under climate change conditions predicted by GFDL Distribution of Eastern phoebe along current -4oC average minimum January T isotherm as well as predicted isotherm under a changed climate David Currie (University of Ottawa) Use relationship between climate (mean Jan July T and PPT) and species richness Predict a northward shift in the regions of highest diversity, with species richness declining in the southern US while increasing in New England, the Pacific Northwest, and in the Rocky Mountains and the Sierra Nevada. Global warming research Passive warming (OTC) at International Tundra Experiment (ITEX) site at Atqasuk, Alaska Warming and CO2 experiment in ORNL, TN Global warming experiment at Norman, Oklahoma Multiple factor experiment (CO2, T, PPT, N) at Jasper Ridge Biological Reserve, CA Global warming experiment in Inner Mongolia, China Global warming experiments Facility • • • • Passive warming (open-top chamber) Active warming (warm air) Electronic heater Buried heating cables Changes in species composition (Shrub increases in heated plots, grass decreases) Decomposition proceeds faster under warmer wetter conditions Soil respiration increases under global warming more CO2 will released back to atmosphere 29.8 Changing climate will shift the global distribution of ecosystems Model prediction of distribution of ecosystems changes in the tropical zone A: current B: predicted 29.9 Global warming would raise sea level and affect coast environments During last glacial maximum (~18,000 years ago), sea level was 100 m lower than today. Sea level has risen at a rate of 1.8 mm per year Large portion of human population lives in coastal areas 13 of world 20 largest cities are located on coasts. Bangladesh, 120 million inhabitants 1 m by 2050, 2m by 2100 China east coast, 0.5m influence 30 million people India: 1m 7.1 million people, 5.8 million ha of land loss. Mumbai, economic impact is estimated to go as high as US $48 billion. 29.10 Climate change will affect agricultural production Complex: CO2, area, and other factors Crops will benefit from a rise in CO2 Temperature will influence the optimal growth range of crops, and associated economic and social costs. a: “corn belt” shifts to north b: shift of irrigated rice in Japan Changes in regional crop production by year 2060 for US under a climate change as predicted by GCM (assuming 3oC increase in T, 7% increase in PPT, 530 ppm: Adams et al. 1995) Reduce production of cereal crops by up to 5%. 29.11 Climate change will both directly and indirectly affect human health Direct effects • Increased heat stress, asthma, and other cardiovascular and respiratory diseases Indirect effects • Increased incidence of communicable disease Insects, virus, bacteria as vector • Increased mortality and injury due to increased natural disasters Floods, hurricanes, fires • Changes in diet and nutrition due to change in agricultural production. More hot days (>35oC) Nearly 15,000 people died in the European hot wave in 2003 Average annual excess weather-related mortality for 1993, 2020, and 2050 (Kalkstan and Green 1997 29.12 Understanding global change requires the study of ecology at a global scale Global scale question, require global scale study Link atmosphere, hydrosphere, biosphere and lithosphere (soil) together as a single, integrated system Feedback from population, community, ecosystem, regional scale (tropical forest, Arctic) Global network of study Modeling is an important approach To slow down CO2 increase and global warming, we need to act now! The end Climate Interactions – Water Cycle Heat from Sun Increases Rainfall & Snow Heat from Sun Determines Ice Melt and Water Runoff Change in Ocean Temperature Determines Ocean Circulation Natural Climate Variability - Temperature Earth Gradually Cooled Over Time (160o F to 58o F) Billion Years Alternating Warm And Cool Periods Thousand Years Natural Climate Events Can Not Completely Explain Recent Global Warming Increased Solar Activity and Decreased Volcanic Activity Can Explain up to 40% of Climate Warming Natural Climate Events Can Not Completely Explain Recent Global Warming Increased Solar Activity and Decreased Volcanic Activity Can Explain up to 40% of Climate Warming Carbon balance in China (Piao et al. 2009, Nature) PgC/yr Each line represents an experiment using different tree species