Download AQA A Physics - Particle Physics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Canonical quantization wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Spin (physics) wikipedia , lookup

Peter Kalmus wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Electron wikipedia , lookup

Supersymmetry wikipedia , lookup

Introduction to quantum mechanics wikipedia , lookup

Large Hadron Collider wikipedia , lookup

Search for the Higgs boson wikipedia , lookup

Theory of everything wikipedia , lookup

DESY wikipedia , lookup

Higgs mechanism wikipedia , lookup

Antimatter wikipedia , lookup

History of quantum field theory wikipedia , lookup

Electric charge wikipedia , lookup

Nuclear structure wikipedia , lookup

Double-slit experiment wikipedia , lookup

Renormalization wikipedia , lookup

Nuclear force wikipedia , lookup

Technicolor (physics) wikipedia , lookup

Weakly-interacting massive particles wikipedia , lookup

ALICE experiment wikipedia , lookup

Atomic nucleus wikipedia , lookup

Minimal Supersymmetric Standard Model wikipedia , lookup

Muon wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Quark wikipedia , lookup

Future Circular Collider wikipedia , lookup

Identical particles wikipedia , lookup

Quantum chromodynamics wikipedia , lookup

Strangeness production wikipedia , lookup

ATLAS experiment wikipedia , lookup

Electron scattering wikipedia , lookup

Compact Muon Solenoid wikipedia , lookup

Mathematical formulation of the Standard Model wikipedia , lookup

Grand Unified Theory wikipedia , lookup

Lepton wikipedia , lookup

Standard Model wikipedia , lookup

Elementary particle wikipedia , lookup

Transcript
AQA A Physics - Particle Physics
PHYA1 (Unit 1) Spec 3.1.1
Particles, Antiparticles and Photons
J.J. Thompson in 1896 identified that cathode rays were fundamental negatively charged particles
rather than ionised molecules and the name ‘electron’, previously proposed by George Johnston
Stoney for the elementary charge, was adopted for this particle. Experiments performed by Ernest
Rutherford in 1917 led him to believe that the hydrogen nucleus was composed of a single particle
which he named the proton. Then he proposed the existence of the neutron in 1920 which was
discovered by James Chadwick in 1932.
Paul Dirac predicted the existence of antimatter (1928). He predicted that each particle has a
corresponding antiparticle. According to his theory: these antiparticles



have exactly the same rest mass as the particle
have exactly the opposite charge to the particle, if that is charged.
annihilate themselves and a corresponding particle if they meet, converting their total mass
in to photons.
Carl Anderson discovered the antiparticle to the electron, called the positron, denoted by , in
1932 whilst photographing cosmic ray trails in a cloud chamber. Particles are either denoted by
symbols with a bar above them or in the case of some charged particles, by the same symbol as for
the particle but with an opposite charge superscript. The preferred symbols for the proton and
antiproton are and respectively but
and
are sometimes seen.
Photons, being electromagnetic radiation have zero rest mass, but carry energy according to the
Planck formula
. In particle physics we mainly encounter high energy (> 0.1 MeV)
photons: gamma rays ( ), produced by unstable nuclei.
Annihilation
On annihilation, the total mass of the colliding particles is converted into radiation energy in the
form a of a pair of -rays according to Einstein’s mass-energy equivalence relation
. PET
(Positron Emission Tomography) scanners rely on electron-positron annihilation: a pair of -rays are
produced travelling in opposite directions (momentum conservation) that are then detected and
their origin computed.
Pair Production
The reverse process to annihilation can occur and for electrons and positrons is called pair
production. Again, momentum (and charge) must be conserved. For conservation of energy, the ray must have a minimum energy of 1.022MeV.
Particle physics may be exotic, but particle interactions have to obey two of the most basic
conservation laws of physics: charge and mass-energy. There was no problem with charge, all
Bill Bavington
Page 1
V1.1
www.medwayandnorthkenttutors.co.uk
observed particles and interactions involved no charge, single or multiple electron charges or their
positive equivalent and these charge units were conserved in reactions. However, with β— decay, it
was found that some mass-energy was missing. Specifically, when carbon-14 undergoes β— decay to
nitrogen-14, the surplus energy is carried off in the form of kinetic energy of the emitted electron.
The kinetic energy is found to be variable and always less than that calculated. In 1930 Wolfgang
Pauli proposed that another particle, one of low mass and no charge and so hard-to-detect is
emitted at the same time with variable partitioning of the kinetic energy between it and the
electron. He called this particle the neutrino. This particle was discovered experimentally in 1956 by
Frederick Reines and Clyde Cowan Jr.
In 1960, Ray Davis was able to show that the antineutrino (produced in β— decay) is a distinct
particle from the neutrino used in an inverse β- decay.
In 1935, Hidekei Yukawa proposed the existence of exchange particles between nucleons and gave
them the name mesons. Carl Anderson (1936) discovered a ‘heavy electron’ (has electron charge but
106 MeV mass) which he thought to be this particle and called it the μ-meson. It is now known to be
a lepton and was renamed the muon in consequence. Muons decay into electrons and antineutrinos.
Yukawa’s meson was discovered by Cecil Powell (1947) and he called it the π-meson, often
contracted to pion. Pions also decay, but into muons and antineutrinos. Less than one year later
Rochester and Butler discovered another kind of short-lived particle, now called a K meson or kaon.
Kaons decay into pions, muons and antineutrinos and antimuons and neutrinos. There are three
kinds of muon, three kinds of pion and three kinds of kaon. One kind of each particle type carries a
positive charge, a second kind of each type carries a negative charge and the third kind of each type
is neutral.
Experiments performed at Brookhaven in 1962 showed that the neutrinos produced during pion
decays into muons are different from those produced during β decays into electrons, so neutrinos
can be divided into electron-neutrinos and muon-neutrinos as well as their corresponding
antiparticles,
and .
Table 1: Some Example Particles and Their Antiparticles
Particle/Symbol/Charge
proton/ / +1
neutron/ / 0
electron/
/ -1
muon/ μ- / -1
electron neutrino/ / 0
muon neutrino/ / 0
Corresponding
Antiparticle/Symbol/Charge
antiproton/ / -1
antineutron/ / 0
positron/ / +1
antimuon/μ+/ +1
electron antineutrino/
/0
muon antineutrino/
/0
Rest Mass in MeV/c2 / kg
938 / 1.67×10-27
939 / 1.67×10-27
0.511 / 9.11×10-31
105.659 / 1.88×10-28
~1 eV / 1.8×10-36 (equiv.)
~1 eV / 1.8×10-36 (equiv.)
The proton is a stable particle with a half-life in excess of 1032 years. All other baryons are unstable
and decay into protons. A free neutron has a half-life of 10.2 minutes and decays into a proton, an
electron and an electron antineutrino (β— decay) but in stable nuclei it is stabilised as decay would
make the nucleus proton-rich so less stable and this is energetically unfavourable.
Bill Bavington
Page 2
V1.1
www.medwayandnorthkenttutors.co.uk
Particle Interactions
There are four ‘forces’ (or interactions) of
nature which, in order of apparent
increasing strength, are: gravitation;
weak interaction; electromagnetic
interaction and the strong interaction. In
classical physics forces are usually
conceived as fields, which spread over
space. In quantum theory, forces are
carried (or mediated) by exchange
particles known as gauge bosons, with
different types of gauge boson for each
force. Richard Feynman developed a
diagrammatic representation for particle
interactions by exchange particles. An example is shown here for the repulsion between two
protons.
Table 2: The Forces of Nature
Force
Gravitation
Weak force
Electromagnetism
Strong force
Intensity
~10-42
~10-5
~10-2
1
Carrier (Gauge Bosons)
Graviton
Weak Bosons: W+, W-, Z0
Virtual photon
Gluon
Example
Galaxies, star systems
β-decay
Electron shells around atoms
Nuclear binding
It is assumed that you already have some familiarity with the properties of gravitation and of the
electromagnetic force.
The strong force (or interaction)
This has the following properties:
Bill Bavington
Page 3
V1.1
www.medwayandnorthkenttutors.co.uk






It binds the nucleons found in atomic nuclei together against the electrostatic repulsion of
the protons. This is known as the residual strong force.
It has a range of 3 – 4 femtometres or Fermi (fm).
It is attractive from 3 – 4 fm down to 0.5 fm. If nucleons are closer than this, the force is
repulsive preventing them collapsing into each other.
Although, like gravitons and virtual photons, gluons are massless, the strong force does not
have normal inverse-square law behaviour with distance. It grows stronger as quark
separation increases constraining the quarks to a limited ‘femtouniverse’ of 10-15m.
The residual strong force behaves the same way between two protons, two neutrons or
between one of each.
Within hadrons, the force between quarks and antiquarks is mediated by gluons, but
between the baryons of an atomic nucleus, the residual strong force is mediated by πmesons (more usually called pions).
Weak Force
Unlike the exchanges particles of other three forces which are mass less, the exchange particles of
the weak force, W+, W-, Z0 are massive (80GeV/c2 for the W+ and W-, 90GeV/c2 for Z0). Since they can
only exist by virtue of the Heisenberg Uncertainty Principle, this large mass energy means they can
only exist for 10-24 second, giving them a very limited range (10-17- 10-16 m), making the force appear
weak on a scales of the size of a nucleon (10-15 m). If provided with sufficient energy, ~100GeV in a
particle accelerator, the weak force is then found to be relatively as strong as the electromagnetic
force. A major example of a weak interaction is β—decay where a neutron changes into a proton.
Feynman diagrams to illustrate beta-minus and beta-plus decays (figures 3 and 4) are as follows.
Figure 3
Figure 4
Some more examples of Feynman diagrams are those for electron capture and for neutron-neutrino
interaction. These are figures 5 and 6.
Bill Bavington
Page 4
V1.1
www.medwayandnorthkenttutors.co.uk
Figure 5
Figure 6
Classification of Particles with Definitions
Hadron – particle and antiparticles that interact through the strong interaction (force). They are
composed of quarks.
Baryon – a hadron composed of three quarks. All baryons are either protons or decay either directly
or indirectly into protons.
Antibaryon – a hadron composed of three antiquarks.
Baryons are assigned a baryon number of +1 and antibaryons a baryon number of -1. Other particle
types are assigned a baryon n umber of zero. Baryon number, like mass-energy and charge, is
conserved in all interactions.
Nucleon – a proton or neutron as contained in an atomic nucleus
Meson – a hadron composed of a quark and an antiquark.
Lepton – one of a number of particles that are not hadrons and do not interact through the strong
force, do interact through the weak force and may (electrons, positrons) interact through the
electromagnetic force. Leptons change into other leptons through the weak interaction and can be
produced or annihilated in particle-antiparticle interactions. Leptons do not break down into nonleptons and so appear to be elementary particles. Additionally to the conservation of charge and
mass-energy, lepton interactions obey conservation of lepton number. A complication is that there
are two branches of lepton number: an electron branch and a muon branch and these are separately
conserved as well. Baryons and mesons have a lepton number of zero.
Bill Bavington
Page 5
V1.1
www.medwayandnorthkenttutors.co.uk
Table 3: Lepton Numbers
Lepton Properties
e- ,
e +,
μ -,
μ +,
Electron Lepton Number
+1
-1
0
0
Muon Lepton Number
0
0
+1
-1
Examples of interactions showing the conservation laws.
Example 1: Proton-antiproton interaction – charge and baryon number conservation
Reaction:
Charge:
Baryon Number:
+
+
+
+1
+1
-1
-1
+
+
+
+1
0
-1
0
Example 2: Antimuon decay – charge, electron lepton and muon lepton number conservation
Reaction:
Charge:
Electron Lepton Number:
Muon Lepton Number
Strangeness
μ+
+1
0
-1
e+
+1
-1
0
+
+
+
0
0
-1
+
+
+
+
+
0
+1
0
K-mesons or kaons have some unusual characteristics, a relatively long life and frequent decay into
pion-antipion pairs. So kaons came to be known as strange particles. When other particles (e.g.
lambda particle , 1950 Hopper and Biswas) were found with similar properties, the concept of a
new particle property called strangeness was introduced in 1953 by Murray Gell-Mann and Nishijima
to account for which reactions are observed and which are unobserved. Strangeness is always
conserved in strong interactions but is not conserved in weak interactions.
Table 4: Strangeness of some baryons and mesons (N.B. is for sigma and
Particle
Strangeness
,
0
,
+1
0
,
,
-1
for lambda particles)
,
-1
,
-2
-1
Example 3: Pion-neutron interaction – conservation of baryon number and strangeness
Reaction:
Baryon Number:
Strangeness:
0
0
+
+
+
+1
0
0
+1
+
+
+
+1
-1
Quarks and Antiquarks
The discoveries of many subatomic particles in the mid-twentieth century created a problem in
classification. Various diagrammatic schemes to arrange and organise them were devised, involving
octets and decuplets.
Bill Bavington
Page 6
V1.1
www.medwayandnorthkenttutors.co.uk
Figure 7: Baryon Decuplet (the axes are
charge and strangeness)
Figure 8: Meson Octet (the axes are charge and
strangeness)
In 1964 Murray Gell-Mann and George Zweig independently proposed the existence of quarks as the
fundamental building blocks of hadrons. The model was a development of Gell-Mann’s particle
classification system which he called The Eight-fold Way. In this scheme, the quark arrangements are
elements of special unity group SU(3). This is a mathematical group of unitary matrices and the
octets and other diagrams may be seen as different representations of this group. Note that an
introduction to group theory is beyond the scope of this document.
In 1968 at the Stanford Linear Accelerator Centre, deep inelastic scattering experiments
demonstrated that the proton contains much smaller ‘point-like’ objects so is not an elementary
particle itself. It was some time before these objects, originally called ‘partons’ were identified by
further scattering experiments as quarks. According to current understanding, quarks are
elementary particles. Quarks have mass, charge, colour charge, spin and flavour properties and can
be either particles or antiparticles (given generic symbols and . Considering these attributes in
turn:
Quark masses are considerably less than the nucleons which contain them; the difference being
made up of kinetic energy.
Quarks have fractional amounts of the elementary charge, combining to give either electrically
neutral particles or particles carrying an integer charge.
Colour charge can take one of three values: red, blue or green in a quark and one of antired, antiblue
or antigreen in an antiquark. It is the colour charge which is acted upon by the strong force. The
exchange particles between quarks (gluons) carry a colour-anticolour charge combination,
permitting strong interaction between quarks by exchanges of colour charge.
Flavour is involved with the weak force and for ‘normal’ nucleons (found in the atomic nucleus) can
be either ‘up’ or ‘down’. The colour charge is independent of the flavour of quark, but the electric
charge is linked to the flavour. Antiquarks have the corresponding antiflavour: antiup and antidown.
Unstable higher mass particles contain other flavours of quark. The only one of these required for
AQA ‘A’ Physics is the strange quark which is a heavier version of the down quark. It is this particle
which gives kaons and other particles such sigma and lambda particles their non-zero strangeness.
Bill Bavington
Page 7
V1.1
www.medwayandnorthkenttutors.co.uk
Spin is not required for AQA ‘A’ Physics, but for completeness , all elementary particles, that is
quarks, leptons and the bosons are considered to have an intrinsic quantized angular momentum,
called ‘spin’. Although it bears some resemblance to classical spinning objects, there are significant
differences and it is best thought of as another quantum mechanical property. It is defined by a spin
quantum number that takes positive half-integer values. Spin has a magnitude and direction, similar
to a normal vector and is of half integer multiples of the ‘reduced Planck’s constant’, which is
equal to
. Particles having half-integer spin, the leptons, quarks, neutrons and protons are
classed as fermions and obey Fermi-Dirac statistics and so obey the Pauli Exclusion Principle,
whereby identical fermions cannot simultaneously occupy the same quantum state. Particles having
integer spin (including zero) are bosons and obey Bose-Einstein statistics, where an unlimited
number of such particles can condense into the same quantum state. This difference between
bosons and fermions is a product of the spin-statistics theorem which concerns how the wave
functions which define a system of identical spin particles behaves when two particles are swapped.
Bosons have symmetric wave functions and fermions antisymmetric wave functions under such
particle pair swaps.
The first three rows of the following table contain the quarks required for AQA ‘A’ Physics, but for
completeness, the other possible quarks are given in the remaining three rows. Note that the
corresponding antiquarks have the same mass but the other properties are all sign reversed. The
symbols are given a bar to denote the antiparticle, just as for composite particles. Note that, due an
accident of history, the strange particle has ended up with a negative value for strangeness.
Table 5: Properties of Quarks
Type
name
up
Type
symbol
u
Mass/
MeV/c2
~4
Charge/ e
Baryon
number
down
d
~5
0
strange
s
~150
-1
charm
c
~1500
0
bottom
b
~4500
0
top
t
~180GeV
0
and a baryon number of
) giving a charge of
. The neutron is likewise composed of one
) giving a charge of
. The antiproton has quark structure
the antineutron
Spin/
0
The proton is composed of two up and one down quark (
up and two down quarks (
Strangeness
and a baryon number of
(so charge -1 and baryon number -1) and
(so charge 0 and baryon number -1).
The various particle decuplets and octets can now be reinterpreted as different quark combinations.
For example, the baryon and meson octets:
Bill Bavington
Page 8
V1.1
www.medwayandnorthkenttutors.co.uk
Figure 9: A Baryon Octet Showing
Quark Combinations
Figure 10: A Meson Octet Showing
Quark Combinations
The weak interaction changes the flavour of quark, so for example, a beta-minus decay can be
thought of as a change of a down quark to an up quark instead of the change of a neutron to a
proton. So, the corresponding Feynman diagram for a beta-minus decay showing the quark flavour
changes is shown here in below.
Figure 11: Beta-minus Decay showing
change of quark flavour
The following topics are not required for A-level but are included as more background.
Standard Model
Developed by a number of particle physicists during the latter part of the half of the twentieth
century, the standard model envisions three generations of particles. Shelden Glashow discovered
how to combine the electromagnetic and weak interactions into the electroweak theory in 1961.
Stephen Weinberg and Abdus Salam incorporated the Higgs mechanism into this theory, giving the
standard model its modern form. The standard model does not include a full theory of gravitation,
does not account for particle masses or coupling constants (strengths of forces interactions) or the
asymmetry between the presence of matter and antimatter in the universe.
Bill Bavington
Page 9
V1.1
www.medwayandnorthkenttutors.co.uk
The standard model gives three generations of fermions, both quarks and leptons but one (or in the
case of the weak force, a single set of) gauge bosons for each force interaction. Experimental data on
precision electroweak measurements suggests that there are no further generations of such
particles. The standard model cannot account for why there are exactly three generations of matter.
Figure 12: Standard Model of Elementary Particles
Higgs Force and Particle
In 1964, Peter Higgs proposed, along with Robert
Brout, Francois Englert, Gerald Guralnik, C.R. Hagen and Tom Kibble, the existence of the Higgs field
permeating all space which is able to give rise to the masses of those elementary particles which
have mass. The theory was able to account for both the high mass of the weak bosons and the lack
of mass of photons and gluons. This field is mediated by a particle, known as the Higgs particle which
was predicted to be a massive scalar (spin-zero) boson, although it is not classed as a gauge boson.
In July 2012, at the Large Hadron Collider, two experiments identified a 125GeV/c2 particle,
consistent with the Higgs predictions. After further work, in March 2013, this was tentatively
identified to be the Higgs boson.
Supersymmetry
The theories of supersymmetry (SUSY) arise partly out of the theories of mathematical symmetries
which underpin all of the particle models at a deeper level and partly to stabilize the quantum
theories of behaviour at high energies of the existing standard model particles and the Higgs boson.
In SUSY, each fermion is partnered by a high mass boson (superpartner) with a spin differing from it
by a half-integer and similarly, each boson has a superpartner that is a fermion. The superpartner
bosons are denoted by the name of their fermion partner, but prefixed by ‘s’. Thus, for example the
superpartner of the electron is the ‘selectron’. The fermion superpartners of the bosons are denoted
by the boson name (truncated for euphony, if required) suffixed by ‘ino’. Thus the superpartner of
the gluon is the ‘gluino’. Due to these ‘gauginos’ sharing the same quantum numbers, they can
combine in different ways to form ‘neutralinos’ which are candidates for Dark Matter. So far, no
experimental evidence for supersymmetry exists, all evidence is indirect.
References and Sources for Diagrams
Breithaupt, J. (2008) AQA Physics A AS. Cheltenham: Nelson Thornes
Bill Bavington
Page 10
V1.1
www.medwayandnorthkenttutors.co.uk
Close, F. (2004) Particle Physics: A Very Short Introduction. Oxford: Oxford University Press
Energy Without Carbon Radioactive Decay. [Online] Available from: http://www.energy-withoutcarbon.org/RadioactiveDecay [Accessed: 11th October 2014]
Pierce, R., 1.1a Particles & Radiation Matter & Radiation Breithaupt pages 4 to 15 April 8 th, 2010.
[Online] Available from: http://slideplayer.us/slide/274428/ [Accessed: 2nd October 2014]
Roberts, W., Department of Physics, Florida State University (2006) The Quark Model [Online]
Available from: http://www.physics.fsu.edu/users/roberts/roberts_quark_model.html [Accessed:
11th October 2014]
The Particle Data Group, Lawrence Berkeley National Laboratory (2014) The Particle Adventure The
Fundamentals of Matter and Force. [Online] Available from: http://www.particleadventure.org
[Accessed: 30th September 2014]
The T2K Collaboration 2013 A Brief History of Neutrinos [Online] Available from: http://t2kexperiment.org/neutrinos/a-brief-history/ [Accessed: 30th September 2014]
Wikimedia Commons, Beta Negative Decay [Online] Available from:
http://commons.wikimedia.org/wiki/File:Beta_Negative_Decay.svg
Wikipedia, Gauge Boson [Online] Available from: http://en.wikipedia.org/wiki/Gauge_boson
Wikipedia, Generation (particle physics) [Online] Available from:
http://en.wikipedia.org/wiki/Generation_(particle_physics)
Wikipedia, Quark [Online] Available from: http://en.wikipedia.org/wiki/Quark
Wikipedia, Spin [Online] Available from: http://en.wikipedia.org/wiki/Spin
Wikipedia, Spin Statistics Theorem [Online] Available from: http://en.wikipedia.org/wiki/Spin–
statistics_theorem
Wikipedia, Standard Model [Online] Available from: http://en.wikipedia.org/wiki/Standard_Model
Wikipedia, Supersymmetry [Online] Available from: http://en.wikipedia.org/wiki/Supersymmetry
Bill Bavington
Page 11
V1.1
www.medwayandnorthkenttutors.co.uk