Download Carbon Budget and Trends

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Surveys of scientists' views on climate change wikipedia , lookup

Climate change and poverty wikipedia , lookup

Public opinion on global warming wikipedia , lookup

Kyoto Protocol wikipedia , lookup

Solar radiation management wikipedia , lookup

German Climate Action Plan 2050 wikipedia , lookup

Iron fertilization wikipedia , lookup

Emissions trading wikipedia , lookup

Climate governance wikipedia , lookup

Global warming wikipedia , lookup

Economics of global warming wikipedia , lookup

Climate-friendly gardening wikipedia , lookup

Years of Living Dangerously wikipedia , lookup

2009 United Nations Climate Change Conference wikipedia , lookup

Views on the Kyoto Protocol wikipedia , lookup

Climate change mitigation wikipedia , lookup

Citizens' Climate Lobby wikipedia , lookup

Economics of climate change mitigation wikipedia , lookup

Carbon pricing in Australia wikipedia , lookup

Climate change in New Zealand wikipedia , lookup

Decarbonisation measures in proposed UK electricity market reform wikipedia , lookup

Climate change feedback wikipedia , lookup

Mitigation of global warming in Australia wikipedia , lookup

IPCC Fourth Assessment Report wikipedia , lookup

Climate change in Canada wikipedia , lookup

Low-carbon economy wikipedia , lookup

Politics of global warming wikipedia , lookup

Carbon Pollution Reduction Scheme wikipedia , lookup

Carbon emission trading wikipedia , lookup

Biosequestration wikipedia , lookup

Business action on climate change wikipedia , lookup

Transcript
Recent Carbon Trends and the
Global Carbon Budget
updated to 2006
GCP-Global Carbon Budget team:
Pep Canadell, Philippe Ciais, Thomas Conway, Chris Field, Corinne Le Quéré, Skee Houghton,
Gregg Marland, Mike Raupach, Erik Buitenhuis, Nathan Gillett
Last update: 13 June 2008
Outline
1. Recent global carbon trends (2000-2006)
2. The perturbation of the global carbon budget (1850-2006)
3. The declining efficiency of natural CO2 sinks
4. Attribution of the recent acceleration of atmospheric CO2
5. Conclusions and implications for climate change
1.
Recent global carbon trends
Anthropogenic C Emissions: Land Use Change
Borneo, Courtesy: Viktor Boehm
Tropical deforestation
13 Million hectares each year
2000-2005
Tropical Americas 0.6 Pg C y-1
Tropical Asia
0.6 Pg C y-1
Tropical Africa
0.3 Pg C y-1
1.5 Pg C y-1
FAO-Global Resources Assessment 2005; Canadell et al. 2007, PNAS
Anthropogenic C Emissions: Land Use Change
Carbon Emissions from Tropical Deforestation
2000-2006
1.5 Pg C y-1
1.60
Africa
1.40
Latin America
1.20
S. & SE Asia
1.00
SUM
(16% total emissions)
0.80
0.60
0.40
0.20
Houghton, unpublished
2000
1990
1980
1970
1960
1950
1940
1930
1920
1910
1900
1890
1880
1870
1860
0.00
1850
Pg C yr-1
1.80
Anthropogenic C Emissions: Fossil Fuel
2006 Fossil Fuel: 8.4 Pg C
Atmoapheric [CO2] (ppmv)
Fossil Fuel Emission (GtC/y)
[2006-Total Anthrop. Emissions:8.4+1.5 = 9.9 Pg]
9
Emissions
8
7
6
5
4
3
2
1
0
1850
4001850
380
360
340
320
1870
1870
1890
1890
1910
1910
1930
1930
1950
1950
1970
1970
1990
1990
2010
2010
[CO2]
1990 - 1999: 1.3% y-1
2000 - 2006: 3.3% y-1
300
Raupach et al. 2007, PNAS; Canadell et al 2007, PNAS
280
2 ppm/year
Trajectory of Global Fossil Fuel Emissions
SRES (2000)
growth rates in
% y -1 for
2000-2010:
A1B: 2.42
A1FI: 2.71
A1T: 1.63
A2: 2.13
B1: 1.79
B2: 1.61
Raupach et al. 2007, PNAS
Trajectory of Global Fossil Fuel Emissions
SRES (2000)
growth rates in
% y -1 for
2000-2010:
A1B: 2.42
A1FI: 2.71
A1T: 1.63
A2: 2.13
B1: 1.79
B2: 1.61
Observed
2000-2006
3.3%
Raupach et al. 2007, PNAS
Carbon Intensity of the Global Economy
Carbon intensity
(KgC/US$)
Photo: CSIRO
Kg Carbon Emitted
to Produce 1 $ of Wealth
1960
1970
Canadell et al. 2007, PNAS
1980
1990
2000
2006
Drivers of Anthropogenic Emissions
1.5
Factor (relative to 1990)
1.4
1.5
World
1.4
1.3
1.3
1.2
1.2
1.1
1.1
1
1
0.9
0.9
FEmissions
(emissions)
PPopulation
(population)
gWealth
= G/P= per capita GDP
hCarbon
= F/Gintensity of GDP
0.8
0.7
0.6
0.5
1980
1985
1990
Raupach et al 2007, PNAS
1995
2000
0.8
0.7
0.6
0.5
2005
1980
Regional Pathways (Kaya identity)
C emissions
Wealth pc
Population
C Intensity
Developed Countries (-)
Developing Countries
Raupach et al 2007, PNAS
Least Developed Countries
Anthropogenic C Emissions: Regional Contributions
100%
D3-Least Developed Countries
80%
D2-Developing Countries
60%
India
40%
China
FSU
20%
0%
Cumulative
Flux
Emissions in 2004
[1751-2004]
Flux
Growth
in 2004
Raupach et al. 2007, PNAS
Japan
EU
Population USA
in 2004
D1-Developed Countries
Fossil Fuel Emiss
6
5
4
Year 2007
Atmospheric CO2
concentration:
382.6 ppm
35% above pre-industrial
Atmoapheric [CO2] (ppmv)
Atmospheric CO2 Concentration
3
2
1
0
4001850
380
1890
1910
1930
1950
1970
1990
2010
[CO2]
[CO2]
360
340
320
2 ppm/year
300
280
1850
0.81850
Temperature (deg C)
1870
0.6
1870
1870
1890
1890
1910
1910
1930
1930
1950
1950
1970
1970
1990
1990
2010
2010
Temperature
0.2 C/decade
y-1
1970 – 1979: 1.3 ppm
1980 – 1989: 1.6 ppm y1
1990 – 1999: 1.5 ppm y-1
0.4
0.2
0
-0.2
-0.4
-0.6
1850
2000 - 2006: 1.9 ppm y-1
1870
NOAA 2007; Canadell et al. 2007, PNAS
1890
1910
1930
1950
1970
1990
2010
2.
The perturbation of the global
carbon cycle (1850-2006)
Perturbation of Global Carbon Budget (1850-2006)
Source
deforestation
tropics
extra-tropics
1.5
Sink
CO2 flux (Pg C y-1)
2000-2006
Time (y)
Le Quéré, unpublished; Canadell et al. 2007, PNAS
Perturbation of Global Carbon Budget (1850-2006)
Source
7.6
deforestation
Sink
CO2 flux (Pg C y-1)
fossil fuel emissions
2000-2006
Time (y)
Le Quéré, unpublished; Canadell et al. 2007, PNAS
1.5
Perturbation of Global Carbon Budget (1850-2006)
Source
7.6
deforestation
Sink
CO2 flux (Pg C y-1)
fossil fuel emissions
2000-2006
Time (y)
Le Quéré, unpublished; Canadell et al. 2007, PNAS
1.5
Perturbation of Global Carbon Budget (1850-2006)
Source
7.6
deforestation
atmospheric CO2
Sink
CO2 flux (Pg C y-1)
fossil fuel emissions
2000-2006
Time (y)
Le Quéré, unpublished; Canadell et al. 2007, PNAS
1.5
4.1
Perturbation of Global Carbon Budget (1850-2006)
Source
7.6
deforestation
atmospheric CO2
Sink
CO2 flux (Pg C y-1)
fossil fuel emissions
2000-2006
ocean
Time (y)
Le Quéré, unpublished; Canadell et al. 2007, PNAS
1.5
4.1
2.2
Perturbation of Global Carbon Budget (1850-2006)
2000-2006
Source
7.6
deforestation
atmospheric CO2
Sink
CO2 flux (Pg C y-1)
fossil fuel emissions
land
ocean
Time (y)
Le Quéré, unpublished; Canadell et al. 2007, PNAS
1.5
4.1
2.8
2.2
CO2 flux (Pg CO2 y-1)
Source
Sink
Carbon flux (Pg C y-1)
Carbon intensity
(KgC/US$)
Perturbation of the Global Carbon Budget (1959-2006)
Time (y)
Canadell et al. 2007, PNAS
3.
The declining efficiency of
natural sinks
Fate of Anthropogenic CO2 Emissions (2000-2006)
1.5 Pg C y-1
4.1 Pg y-1
Atmosphere
45%
2.8 Pg y-1
Land
30%
+
7.6 Pg C y-1
2.2 Pg y-1
Oceans
25%
Canadell et al. 2007, PNAS
Climate Change at 55% Discount
Natural sinks absorb 5
billions tons of CO2
globally every year, or
55% of all
anthropogenic carbon
emissions.
Canadell et al. 2007, PNAS
Natural Sinks: Large Economic Subsidy
Natural sinks are a huge subsidy to our global
economy worth half a trillion Euros annually
if an equivalent sink had to be created using
other climate mitigation options (based on the cost
of carbon in the EU-ETS).
Canadell & Raupach 2008, Science
Factors that Influence the Airborne Fraction
1. The rate of CO2 emissions.
2. The rate of CO2 uptake and ultimately the
total amount of C that can be stored by land
and oceans:
–
–
Land: CO2 fertilization effect, soil respiration, N deposition
fertilization, forest regrowth, woody encroachment, …
Oceans: CO2 solubility (temperature, salinity),, ocean
currents, stratification, winds, biological activity,
acidification, …
Canadell et al. 2007, Springer; Gruber et al. 2004, Island Press
Decline in the Efficiency of CO2 Natural Sinks
% CO2 Emissions
in Atmosphere
Fraction of anthropogenic emissions that stay in the atmosphere
Emissions
1 tCO2
400Kg stay
Emissions
1 tCO2
1960
1970
1980
Canadell et al. 2007, PNAS
1990
2000
2006
450Kg stay
Efficiency of Natural Sinks
Land Fraction
Ocean Fraction
Canadell et al. 2007, PNAS
Causes of the Declined in the Efficiency of the Ocean Sink
• Part of the decline is attributed to up
to a 30% decrease in the efficiency
of the Southern Ocean sink over the
last 20 years.
Credit: N.Metzl, August 2000, oceanographic cruise OISO-5
• This sink removes annually 0.7 Pg of
anthropogenic carbon.
• The decline is attributed to the
strengthening of the winds around
Antarctica which enhances
ventilation of natural carbon-rich
deep waters.
• The strengthening of the winds is
attributed to global warming and the
ozone hole.
Le Quéré et al. 2007, Science
Drought Effects on the Mid-Latitude Carbon Sinks
A number of major droughts in mid-latitudes have contributed to the weakening
of the growth rate of terrestrial carbon sinks in these regions.
Summer 1982-1991
Summer 1994-2002/04
Angert et al. 2005, PNAS; Buermann et al. 2007, PNAS; Ciais et al. 2005, Science
NDVI Anomaly 1982-2004
[Normalized Difference Vegetation Index]
4.
Attribution of the recent
acceleration of atmospheric
CO2
Attribution of Recent Acceleration of Atmospheric CO2
1970 – 1979: 1.3 ppm y-1
1980 – 1989: 1.6 ppm y1
1990 – 1999: 1.5 ppm y-1
2000 - 2006: 1.9 ppm y-1
To:
• Economic growth
• Carbon intensity
• Efficiency of natural sinks
65% - Increased activity of the global economy
17% - Deterioration of the carbon intensity of the global economy
18% - Decreased efficiency of natural sinks
Canadell et al. 2007, PNAS
5.
Conclusions and implications for
climate change
Conclusions (i)
Since 2000:
• The growth of carbon emissions from fossil fuels has tripled
compared to the 1990s and is exceeding the predictions of
the highest IPCC emission scenarios.
• Atmospheric CO2 has grown at 1.9 ppm per year
(compared to about 1.5 ppm during the previous 30 years)
• The carbon intensity of the world’s economy has stopped
decreasing (after 100 years of doing so).
Conclusions (ii)
• The efficiency of natural sinks has decreased by 10% over
the last 50 years (and will continue to do so in the future),
implying that the longer we wait to reduce emissions, the
larger the cuts needed to stabilize atmospheric CO2.
• All of these changes characterize a carbon cycle that is
generating stronger climate forcing and sooner than
expected.
References
•
•
•
•
•
•
•
•
•
Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I
(2005) PNAS 102:10823-10827.
Breshears DD, Cobb NS, Richd PM, Price KP, Allen CD (2005) PNAS 42:15144-15148.
Canadell JG, Corinne Le Quéré, Michael R. Raupach, Christopher B. Field, Erik T. Buitehuis,
Philippe Ciais, Thomas J. Conway, NP Gillett, RA Houghton, Gregg Marland (2007) PNAS.
Canadell JG, Pataki D, Gifford R, Houghton RA, Lou Y, Raupach MR, Smith P, Steffen W
(2007) in Terrestrial Ecosystems in a Changing World, eds Canadell JG, Pataki D, Pitelka L
(IGBP Series. Springer-Verlag, Berlin Heidelberg), pp 59-78.
Ciais P, Reichstein M, Viovy N, Granier A, Ogée, J, V. Allard V, Aubinet M, Buchmann N,
Bernhofer Ch, Carrara A, et al. (2005) Nature 437:529-533. Raupach MR, Marland G, Ciais
P, Le Quéré C, Canadell JG, Klepper G, Field CB, PNAS (2007) 104: 10288-10293.
Global Forest Resource Assessment (2005) FAO Forestry Paper 147.
Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JF, Romero P, Schulze
E-D, Chen A (2004) in Global Carbon Cycle, integrating human, climate, and the natural
world, Field CB, Raupach M (eds). Island Press, Washington, DC., pp 45-76
Le Quéré C, Rödenbeck C, Buitenhuis ET, Thomas J, Conway TJ, Langenfelds R, Gomez
A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, et al. (2007) Science 316:1735-1738.
Canadell JG, Raupach MR (2008) Forest management for climate change mitigation.
Science 320, 1456-1457, doi: 10.1126/science.1155458.
www.globalcarbonproject.org
[email protected]