Download 記錄 編號 3862 狀態 NC090FJU00112010 助教 查核 索書 號 學校

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Gene expression wikipedia , lookup

Zinc finger nuclease wikipedia , lookup

Promoter (genetics) wikipedia , lookup

Genetic code wikipedia , lookup

Expression vector wikipedia , lookup

DNA supercoil wikipedia , lookup

Ancestral sequence reconstruction wikipedia , lookup

SNP genotyping wikipedia , lookup

Gene wikipedia , lookup

Genetic engineering wikipedia , lookup

Multilocus sequence typing wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Transposable element wikipedia , lookup

Molecular cloning wikipedia , lookup

Transformation (genetics) wikipedia , lookup

Genomic library wikipedia , lookup

Silencer (genetics) wikipedia , lookup

Non-coding DNA wikipedia , lookup

Two-hybrid screening wikipedia , lookup

Nucleic acid analogue wikipedia , lookup

Molecular ecology wikipedia , lookup

Deoxyribozyme wikipedia , lookup

Bisulfite sequencing wikipedia , lookup

Endogenous retrovirus wikipedia , lookup

Point mutation wikipedia , lookup

Real-time polymerase chain reaction wikipedia , lookup

Molecular evolution wikipedia , lookup

Community fingerprinting wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Transcript
記錄
編號
3862
狀態
NC090FJU00112010
助教
查核
索書
號
學校
名稱
輔仁大學
系所
名稱
生命科學系
舊系
所名
稱
學號
489346213
研究
許真妮
生(中)
研究
Khor Chin Ni
生(英)
論文
名稱
(中)
論文
名稱
(英)
青枯病菌插入序列 ISRso19 之選殖、特性分析及應用
Cloning, characterization and application of a new insertion sequence, ISRso19, in
Ralstonia solanacearum
其他
題名
指導
教授
(中)
李永安
指導
教授
(英)
Yung-An Lee
校內
全文
開放
日期
校外
全文
開放
日期
全文
不開
放理
由
電子
全文
送交
國圖.
國圖
全文
開放
日期.
檔案
說明
電子
全文
學位
類別
碩士
畢業
學年
度
90
出版
年
語文
別
中文
關鍵
青枯病菌 ISRso19 插入序列
字(中)
關鍵
Ralstonia solanacearum ISRso19 Insertion sequence
字(英)
摘要
(中)
本實驗以 subtractive hybridization 的方法,獲得一個 1.0-kb SalI 的核酸片
段,以此片段做為探針進行雜合反應,只有 race 2 菌株的 DNA 有多個雜
合片段,而 race 1 的菌株則沒有雜合片段產生。我們將此片段取名為
pS1.0k,並進行核酸定序,經序列比對結果及分析結果,顯示與 Yersinia
pestis 的 IS100 有 59.6%的相似性。進一步選殖出含有此片段的 4.0-kb
BamHI 核酸片段,經定序結果,發現 4.0-kb BamHI 核酸片段內含有一個
完整的插入序列。該插入序列長度為 1,956 bp,兩端具有長度為 29 bp 的
imperfect inverted repeat,並且在兩旁有 6-bp 的標定位置重複 (target site
duplication)。此插入序列含有兩個 open reading frames,orf1 及 orf2 之間有
四個核酸彼此重疊(overlap)。orf1 的轉譯起始點可能有兩個,彼此均在同
一的讀序(reading frame)上,並且相隔七個 codon,分別可以轉譯出 338 及
331 個胺基酸的蛋白質,ORF1 具有跳躍酵素(transposase)特有的 D-57-D48-E motif 和 helix-turn-helix DNA-binding domain; orf2 可轉譯出的 262 個
胺基酸的蛋白質,ORF2 帶有高度保留的 NTP-binding domain 之 A 及 B
motifs,這些為 IS21 族群成員的特徵,不過此序列與目前已知的 IS21 族
群的插入序列,僅有 39%~58%的核酸序列相同度,因此,該插入序列為
IS21 族群的新成員,經定名為 ISRso19 (Genbank accession no. AF450275)。
當以 ISRso19 內部核酸設計 PCR 引子對,並以 PCR 反應偵測多種植物病
原細菌時,發現只有青枯病菌 race 2 能擴增出預期的 PCR 產物,而青枯
病菌 race 1 及其他植物病原菌均未擴增出 PCR 產物。本實驗室先前研究
發現青枯病菌 race 1 含有其特有插入序列 IS1405 (屬 IS5 族群) (Appl.
Environ. Microbiol. 67 (2001): 3943—3950),因此以 ISRso19 及 IS1405 合
用,可藉由 multiplex PCR 的方式,迅速區分青枯病菌 race 1 及 race 2。
除此之外,我們亦從 IS database 及 Genbank 資料庫中搜尋到青枯病菌的
其他 24 個插入序列,這些插入序列分布於七個族群中。當以 IS5 族群中
多個成員的 5’及 3’non-coding regions 核酸設計引子對,並以 PCR 反應
偵測多種青枯病菌時,各種菌株可依據不同的插入序列之引子對擴增出
預期的產物。本實驗結果進一步證實插入序列的 5’及 3’non-coding
regions 可做為該插入序列的專一性標記,並且有些特定的插入序列只存
在於特定的病原細菌內,此特性有助對病原細菌研發出專一性
(specificity)及敏感性(sensitivity)高的偵測方法。
摘要
(英)
A subtractive hybridization technique was employed to obtain DNA probe specific
for Ralstonia solanacearum race 2. One cloned fragment hybridized under
stringent conditions to DNA of race 2 strains, but not others race 1 strains. The
clone was designated pS1.0k and then sequenced, amino acid sequence deduced
from the nucleotide sequence showed homology of 59.6% to IS100 of Yersinia
pestis. Further analysis of the region flanking this fragment showed structural
features of a bacterial insertion sequence (IS) element. DNA sequence analysis
indicated that this IS is 1956bp in length and delimited by two imperfect inverted
repeats of 29bp with 8 mismatches. Besides, less conserved sequence elements,
termed multiple terminal repeats, occur at both termini. Insertion of this IS into
target site generate a direct repeat of 6bp. The G + C content of this IS is 64.37%.
It consists of two adjacent open reading frames (orf), overlapping for 4bp.
Nevertheless, two possible translational starts separated by seven codons were
found in the orf1 gene. Therefore orf1 may encode for two polypeptides of 338
and 331 amino acids respectively. Both of the deduced amino acid sequence of
ORF1 contains a conserved D-57-D-48-E motif and helix-turn-helix domain,
whereas the protein of 262 amino acids deduced from ORF2 contains the A and B
motifs of the NTP-binding site. These display characteristic features of members
of IS21 family. Result of DNA homologies search by Fasta program in GCG
showed that this element is having similarity of 39% to 58% to members of IS21
family. According to these characters and significant homology with similarly
organized ORFs present in insertion sequences belonging to the IS21 family, this
IS suggests to be a new member of IS21 family; hence, the name of ISRso19 was
assigned by IS database (Genbank accession no. AF450275). Specific
oligonucleotide primers were designed based on the internal nucleotide sequence
of ISRso19. The PCR product of 683bp only can be amplified from Ralstonia
solanacearum race 2 but neither in race 1 strains nor others phytopathogens. Since
race 2 contain ISRso19 whereas strains in Taiwan (race 1 biovar 3 & 4) have its
specific insert sequence, IS1405 which belong to IS5 family (Appl. Environ.
Microbiol. 67 (2001): 3943—3950), thus by using multiplex PCR with these two
IS specifically designed primers, race 2 can be distinguish from race 1. On the
other hand, result of the IS database and Genbank searches displays other 24 types
of Ralstonia solanacearum insertion sequence which are distribute between 7 IS
family. Further investigation using PCR amplification with primers, which were
designed based on the sequences of the 5’ and 3’non-coding regions of each
IS5 family member, demonstrated that 5’ and 3’non-coding regions of IS are
specific markers for each IS, and certain IS elements exist in certain bacteria. The
results showed that IS was very useful for development of a specific and sensitive
detection method for plant pathogenic bacteria.
論文
目次
參考
文獻
中文摘要--------------------------------------------------- I 英文摘要-------------------------------------------------- III 前言------------------------------------------------------- 1
材料與方法------------------------------------------------- 7 菌種及培養條件-------------------------------------------- 7 篩選篩選青枯病菌 race 2 專一性核酸片段---------------------- 7 雜合反應以及核酸序列定序----------------------------------- 8
插入序列的核酸與胺基酸序列分析----------------------------- 9 插入序列的命
名--------------------------------------------- 10 親緣關係樹的建立------------------------------------------ 10 ISRso19 插入位置鄰近片段之核酸分析------------------------- 10 以 ISRso19 的序列設計專一性 PCR 引子對------------------------- 11
青枯病菌基因組內插入序列分析------------------------------- 11 分生技術-------------------------------------------------- 12 實驗結果-------------------------------------------------- 22 篩選青枯病菌 race 2 專一性的核酸片段---------------- 22 插入
序列的核酸序列及胺基酸序列分析---------------- 22 ISRso19 和 IS21 family
中成員間的相似性-------------- 24 ISRso19 插入位置鄰近片段之核酸分析---------------- 26 ISRso19 在青枯病菌中存在情形與差異----------------- 26
ISRso19 在其他植物病原細菌中的存在情形------------- 26 以 ISRso19 及
IS1405 序列設計的 PCR 引子對檢測青枯病菌-- 27 青枯病菌基因組內插入
序列分析---------------------- 27 討論------------------------------------------------------ 31 參考文獻--------------------------------------------------- 40 表-------------------------------------------------------- 48 圖--------------------------------------------------------62
徐世典. 1977. 茄科植物青枯病菌在土壤及番茄罹病組織內之生存。植病
會刊 19:133-139. 徐世典. 1991. 台灣植物青枯病菌之生態與防治。植保會
刊 33:72-79. 陳文彥. 1978. 台灣煙草立枯病病原細菌菌系的特性研究。煙
試彙報 9:71-80. 楊宗皇、徐世典、曾國欽. 1980. 天堂鳥花青枯病菌之研
究。農林學報 29:-119-133. Adzuma, K., and Mizuuchi K. 1988. Target
immunity of Mu transposition reflects a differential distribution of MuB protein.
Cell 53: 257-266. Andrake, M. D., and Skalka, A. M. 1996. Retroviral integrase,
putting the pieces together. J. Biol. Chem. 271: 19633-19636. Arciszewska, L. K.,
Drake, D., and Craig, N. L. 1989. Transposon Tn7: cis-acting sequences in
transposition and transposition immunity. J. Mol. Biol. 207: 35-52. Berger, B., and
Haas, D. 2001. Transposase and cointegrase: specialized transpositon proteins of
the bacterial insertion sequence IS21 and related elements. Cell. Mol. Life Sci. 58:
403-419. Berthier, Y., Thierry, D., Lemattre, M., and Guesdon, J. L. 1994.
Isolation of an insertion sequence (IS1051) from Xanthomonas campetris pv.
dieffenbachiae with potential use for strain identification and characterization.
Appl. Environ. Microbiol. 60: 377-384. Boucher, C. A., Barberis, P. A., Trigalet,
A. P., and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas
solanacearum: isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol.
131 : 2449-2457. Branden, C., and Tooze, J. 1991. DNA recognition by proteins
with the Helix-turn-Helix motif. In Introduction to protein structure. pp. 85-112.
Graland publishing. Buddenhagen, I. W. 1961. Bacterial wilt of bananas: history
and known distribution. Trop. Agric. (Trinidad) 38: 107-121. Buddenhagen, I. W.
1968. Banana diseases in the Pacific area. FAO Plant Protec. Bull. 16: 17-31.
Buddenhagen, I. W. 1986. Bacterial wilt revisited. Page 126-143. in : Proc. Int.
Workshop Bact. Wilt Dis. Asia South Pac. G. J. Persley, ed. ACIAR Proc. 13.
Buddenhagen, I. W., and Kelman, A. 1964. Biological and physiological aspects
of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol.
2:203-230. Buddenhagen, I. W., Sequeira, L., and Kelman, A. 1962. Designation
of races in Pseudomonas solanacearum. Phytopathology 52:726. Capage, M., and
Hill, C. W. 1979. Preferential unequal recombination in the glyS region of the
Escherichia coli chromosome. J. Mol. Biol. 127: 73-87. Cook, D., and Sequeira,
L. 1994. Strain differentiation of Pseudomonas solanacearum by molecular genetic
methods. Pp. 77-93. In : Hayward, A. C., and Hartman. eds. Bacterial Wilt. The
Disease and Its Causative Agent, Pseudomonas solanacearum. CAB Int.,
Wallingford, Oxon, UK. Cook, D., Barlow, E., and Sequeira, L. 1989. Genetic
diversity of Pseudomonas solanacearum. Detection of restriction fragment length
polymorphisms with DNA probes that specify virulence and the hypersensitive
response. Mol. Plant-Microbe Interact. 2: 113-121. Craigie, R., Mizuuchi, M., and
Mizuuchi K. 1984. Site-specific recognition of the bacteriophage Mu ends by the
MuA protein. Cell 39: 387-394. Craig, N. L. 1996. Transposon Tn7. Curr. Topics
Microbiol. Immunol. 204: 27-48. Danilevich, V. N., and Kostiuchenko, D. A.
1985. Immunity to repeated transposition of the insertion sequence IS21.
[RUSSIAN]. Molekuliarnaia Biologiia 19: 1242-1250. Dozois, C. M., DhoMoulin, M., Bree, A., Fairbrother, J.M., Desautels, C., and Curtiss, R. 3rd. 2000.
Relationship between the Tsh autotransporter and pathogenicity of avian
Escherichia coli and localization and analysis of the Tsh genetic region. Infect.
Immun. 68: 4145-4154. Eckstein, T. M., Brennan, P. J., Inamine, J. M., and
Belisle, J. T. Identification of gene cluster involved in glycopeptidolipid
biosynthesis and of a gene cluster encoding daunorubicin resistance in two strains
of Mycobacterium avium serovar 2. AF125999. Eden-Green, S. J. 1994. Diversity
of Pseudomonas solanacearum and related bacteria in South East Asia: new
direction for Moko disease. pp. 25-34. In: Hayward, A. C., and G. L. Hartman.
Eds. Bacterial Wilt. The disease and Its Causative Agent, Pseudomonas
solanacearum. CAB Int., Wallingford, Oxon, UK. Fayet, O., Ramond, P., Polard,
P., Prere, M. F., and Chandler, M. 1990. Functional similarities between
retroviruses and the IS3 family of bacterial insertion sequences. Mol. Microbiol.
4: 1771-1777. French, E. R., and Sequeira, L. 1970. Strains of Pseudomonas
solanacearum from Central and South America: a comparative study.
Phytopathology 60: 506-512. Fry, D. C., Kuby, S. A., and Mildvan, A. S. 1986.
ATP-binding site of adenylate kinase: mechanistic implications of its homology
with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc.
Natl. Acad. Sci. USA 83: 907-911. Gillings, M., and Fahy, P. 1993. Genetic
diversity of Pseudomonas solanacearum biovars 2 and N2 assessed using
restriction endonuclease analysis of total genomic DNA. Plant Pathol. 42: 744753. Gorbalenya, A. E., and Koonin, E. V. 1990. Superfamily of UvrA-related
NTP-binding proteins implications for rational classification of recombination/
repair systems. J. Mol. Biol. 213: 583-591. Gottfert, M., Rothlisberger, S.,
Kundig, C., Beck, C., Marty, R., and Hennecke, H. 2001. Potential symbiosisspecific genes uncovered by sequencing a 410-kb DNA region of the
Bradyrhizobium japonicum chromosome. J. Bacteriol. 183 : 1405-1412. Hanahan,
D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol.
Biol. 166: 557-580. Hannenhalli, S. S., Hayes, W. S., Hatzigeorgiou, A. G., and
Fickett, J. W. 1999. Bacterial start site prediction. Nucleic Acids Res. 27: 35773582. Haren, L., Ton-Hoang B., and Chandler, M. 1999. Integrating DNA:
transposases and retroviral integrases. Annu. Rev. Microbiol. 53: 245-281.
Haubold, B., and Rainey, P. B. 1997. Towards an understanding of the population
genetics of plant-colonizing bacteria. Adv. Bot. Res. 24 : 335-351. Hayward, A.
C. 1986. Bacterial wilt caused by Pseudomonas solanacearum in Asia and
Australia : An overview. In Bacterial Wilt Disease in Asia and the South Pacific.
(Ed. G.J. Persley), pp. 15-24. ACIAR: Canberra. Hayward, A. C. 1991. Biology
and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu.
Rev. Phytopathol. 29:65-87. Hayward, A. C. 1994. The hosts of Pseudomonas
solanacearum, p. 9-25. In A. C. Hayward and G. L. Hartman (ed.), Bacterial wilt,
the disease and its causative agent, Pseudomonas solanacearum. CAB
International, Wallingford, United Kingdom. He, L. Y., Sequeira, L., and Kelman,
A. 1983. Characteristics of strains of Pseudomonas solanacearum from China.
Plant Dis. 67:1357-1361. Hermans, P. W. M., Van Soolingen, D., Dale, J. W.,
Schuitema, A. R. J., McAdam, R. A., Catty, D., and Van Embden, J. D. A. 1990.
Insertion element IS986 from Mycobacterium tuberculosis : a useful tool for
diagnosis and epidemiology of tuberculosis. J. Clin. Microbiol. 28: 2051-2058.
Hill, C. W., Sandt, C. H., and Vlazny, D. A. 1994. Rhs elements of Escherichia
coli : a family of genetic composites each encoding a large mosaic protein. Mol.
Microbiol. 12: 865-871. Hong, W. F., Hsu, S. T., and Tzeng, K. C. 1990. Bacterial
wilt of perilla caused by Pseudomonas solanacearum. Plant Prot. Bull. 32:327328. (Abstr.) Hsu, S. T., and Chen, J. Y. 1977. Physiological variation among
isolates of Pseudomonas solanacearum from Taiwan. Plant Prot. Bull. 19:124-132.
Jaunet, T. X., and Wang, J. F. 1999. Variation in genotype and aggressiveness of
Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology
89: 320-327. Jenkins, T. M., Esposito, D., Engelman, A., and Craigie, R. 1997.
Critical contacts between HIV-1 integrase and viral DNA identified by structurebased analysis and photo-crosslinking. EMBO J. 16: 6849-6859. Jeong, E. L., and
Timmis, J. N. 2000. Novel Insertion Sequence Elements Associated with Genetic
Heterogeneity and Phenotype Conversion in Ralstonia solanacearum. J. Bacteriol.
182: 4673-4676. Kelman, A. 1953. The bacterial wilt caused by Pseudomonas
solanacearum. NC Agric. Exp. Sta. Tech. Bull. 99. 194 pp. Khan, E., Mack, J. P.
G., Katz, R. A., Kulkowsky, J., and Skalka, A. M. 1991. Retroviral integrase
domains: DNA binding and the recognition of LTR sequence. Nucleic Acids Res.
19: 851-860. Koonin, E. V. 1992. DnaC protein contains a modified ATP-binding
motif and belongs to a novel family of ATPases including also DnaA. Nucleic
Acids Res. 20: 1997. Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P., and
Skalka, A. M. 1992. Residues critical for retroviral/retrotransposon integrases and
bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331-2338. Lapage,
S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H., et al., eds.
1975. International Code of Nomenclature of Bacteria. Washington, DC: Am. Soc.
Microbiol. 180 pp. Lee, Y. A., Fan, S. C., Chiu, Y. L., and Hsia, K. C. 2001.
Isolation of an insertion sequence from Ralstonia solanacearum race 1 and its
potential use for strain characterization and detection. Appl. Environ. Microbiol.
67: 3943-3950. Lin, R. J. Capage, M., and Hill, C. W. 1984. A repetitive DNA
sequence, rhs, responsible for duplications within the Escherichia coli K-12
Chromosome. J. Mol. Biol. 177: 1-18. Louws, F. J., Fullbright, D. W., Stephens,
E. R., and deBruijin, F. J. 1994. Specific genomic fingerprints of
phytopathogenetic Xanthomonas and Pseudomonas pathovars and strains
generated with repetitive sequences and PCR. Appl. Environ. Microbiol. 60: 22862295. Mahillon, J., and Chandler, M. 1998. Insertion sequences. Microbiol. Mol.
Biol. Rev. 62: 725-774. Mahillon, J., Leonard, C., and Chandler, M. 1999. IS
elements as constituents of bacterial genomes. Microbiol. Res. Microbiol. 150:
675-687. Martyn, E. B. 1934. A note on plantain and banana disease in British
Guiana with special references to wilt. Agric. J. Brit. Guiana 5: 120-183.
Matsutani, S., Ohtsubo, H., Maeda, Y., and Ohtsubo, E. 1987. Isolation and
characterization of IS elements repeated in the bacterial chromosome. J. Mol.
Biol. 196: 445-455. McLafferty, M. A., Harcus, D. R., and Hewlett, E. L. 1988.
Nucleotide sequence and characterization of a repetitive DNA element from the
genome of Bordetella pertussis with characteristics of an insertion sequence. J.
Gen. Microbiol. 134: 2297-2306. Mew, T. W., and Ho, W. C. 1977. Effect of soil
temperature on resistance of tomato cultivars to bacterial wilt. Phytopathology 67:
909-911. Meyer, T. F., Mlawer, N., and So, M. 1982. Pilus expression in
Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 30: 45-52.
Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor
Laboratory, Cold Spring Harbor, N. Y. Mizuuchi, K. 1992. Transpositional
recombination: mechanistic insights from studies of Mu and other elements. Annu.
Rev. Biochem. 61: 1011-1051. Pabo, C. O., and Sauer, R. T. 1984. Protein DNA
recognition. Annu. Rev. Biochem. 53: 293-321. Palleroni, N. J., and Doudoroff,
M. 1971. Phenotypic characterization and deoxyribonucleic acid homologies in
the genus Pseudomonas. Int. J. Syst. Bacteriol. 23: 333-339. Pegg, K., and
Moffett, M. 1971. Host range of the ginger strain of Pseudomonas solanacearum
in Queensland. Aust. J. Exp. Agric. Anim. Husb. 11: 696-698. Ploetz, R. C.,
Zentmyer, G. A., Nishijima, W. T., Rohrbach, K. G., and Ohr, H. D. eds. 1994.
Compendium of Tropical Fruit Diseases. American Phytopathological Society, St.
Paul, MN. Podladchikova, O. N., Dikhanov, G. G., Rakin, A. V., and Heesemann,
J. 1994. Nucleotide sequence and structural organization of Yersinia pestis
insertion sequence IS100. FEMS Microbiol. Lett. 121: 269-274. Polard, P., and
Chandler, M. 1995. Bacterial transposases and retroviral integrases. Mol.
Microbiol. 15: 13-23. Poussier, S., Vandewalle, P., and Luisetti, J. 1999. Genetic
diversity of African and worldwide strains of Ralstonia solanacearum as
determined by PCR-restriction fragment length polymorphism analysis of the hrp
gene region. Appl. Environ. Microbiol. 65: 2184-2194. Reimmann, C., and Haas,
D. 1987. Mode of replicon fusion mediated by the duplicated insertion sequence
IS21 in Escherichia coli. Genetics 115: 619-625. Reimmann, C., and Haas, D.
1990. The istA gene of insertion sequence IS21 is essential for cleavage at the
inner 3’ ends of tandemly repeated IS21 elements in vitro. EMBO J. 9: 40554063. Reimmann, C., Moore, R., Little, S., Savioz, A., Willetts, N. S., and Haas,
D. 1989. Genetic structure, function and regulation of the transposable element
IS21. Mol. Gen. Genet. 215: 416-424. Rogers, M. B., Bennett, T. K., Payne, C.
M., and Smith, C. J. 1994. Insertional activation of cepA leads to high-level betalactamase expression in Bacteroides fragilis clinical isolates. J. Bacteriol. 176:
4376-4384. Rorer, J. B. 1911. A bacterial disease of bananas and plantains.
Phytopathology 1: 45-49. Rowland, S. J., Sherratt, D. J., Stark, W. M., and
Boocock, M. R. 1995. Tn552 transposase purification and in vitro activities.
EMBO J. 14: 196-205. Sadosky, A. B., Davidson, A., Lin, R. -J., and Hill, C. W.
1989. rhs gene family of Escherichia coli K-12. J. Bacteriol. 171: 636-642.
Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M.,
Billault, A., Brottier, P., Camus, J. C., Cattolico, L., Chandler, M., Choisne, N.,
Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A.,
Robert, C., Saurin, W., Schiex, T., Siguier, P., Thebault, P., Whalen, M., Wincker,
P., Levy, M., Weissenbach, J., and Boucher, C. A. 2002. Genome sequence of the
plant pathogen Ralstonia solanacearum. Nature 415: 497-502. Sambrook, J.,
Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning. A. Laboratory Manual,
2nd ed. Cold Spring Habor, New York. Sancar, A., and Hearst, J. E. 1993.
Molecular matchmakers. Science 259: 1415-1420. Schmid, S., Berger, B., and
Haas, D. 1999. Target joining of duplication insertion sequence IS21 is assisted by
IstB protein in vitro. J. Bacteriol. 181: 2286-2289. Schmid, S., Seitz, T., and Haas,
D. 1998. Cointegrase, a naturally occurring, truncated form of IS21 transposase,
catalyzes replicon fusion rather than simple insertion of IS21. J. Mol. Biol. 282:
571-583. Seal, S. E., Jackson, L. A., and Daniels, M. J. 1992. Isolation of a
Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and
construction of species-specific oligonucleotide primers for sensitive detection by
the polymerase chain reaction. Appl. Environ. Microbiol. 58: 3751-3758.
Sequeira, L. 1958. Bacterial wilt of bananas: Dissemination of the pathogen and
control of the disease. Phytopathology 48: 64-69. Sequeira, L. 1992. Bacterial
wilt: past. Present, and future. Pp. 12-24. In : Hartman, G. L., and A. C. Hayward.
Eds. Bacterial wilt. ACIAR, Canberra, Australia. Sequeira, L., and Averre III, C.
W. 1961. Distribution and pathogenicity of strains of Pseudomonas solanacearum
from virgin soils in Costa Rica. Plant Dis. Reptr. 45: 435-440. Smith, J. J., Offord,
L. C., Holderness, M., and Saddler, G. S. 1995. Pulsed-field gel electrophoresis
analysis of Pseudomonas solanacearum. EPPO Bull. 25: 163-167. Soguilon, C. E.,
Magnaye, L. V., and M.P. Natural. 1994. Bugtok disease of cooking bananas in
the Philippines. Bacterial Wilt Newsletter 10: 5-7. Solinas, F., Marconi, A. M.,
Ruzzi, M., and Zennaro, E. 1995. Characterization and sequence of a new
insertion sequence, IS1162, from Pseudomonas fluorescens. Gene 155: 77-82.
Stover, R. H. 1972. Banana Diseases. Commonw. Mycol. Inst., Kew, Surrey,
England. Taghavi, M., Hayward, C., Sly, L. I., and Fegan, M. 1996. Analysis of
the phylogenetic relationships of strain of Burkholderia solanacearum,
Pseudomonas syzygii, and the Blood Disease Bacterium of banana based on 16S
rRNA gene sequences. Int. J. Syst. Bacteriol. 46: 10-15. Venkatesan, M. M.,
Goldberg, M. B., Rose, D. J., Grotbeck, E. J., Burland, V., and lattner, F. R. 2001.
Complete DNA sequence and analysis of the large virulence plasmid of Shigella
flexneri. Infect. Immun.69: 3271-3285. Walker, J. E., Saraste, M. Runswick, M.
J., and Gay, N. J. 1982. Distantly related sequences in the a- and b-subunits of
ATP synthase, myosin, kinase and other ATP-requiring enzymes and a common
nucleotide binding fold. EMBO J. 1: 945-951. Wang, Y-D., Zhao, S., and Hill, C.
W. 1998. Rhs elements comprise three subfamilies which diverged prior to
acquisition by Escherichia coli. J. Bacteriol. 180: 4102-4110. Wilson, K. 1987.
Preparation of genomic DNA from bacteria. In Current protocols in molecular
biology (Ausubel et al., ed.), vol. 1 pp.2.4.1-2.4.5. Wiley Interscience, Cambridge,
Massachusetts. Xu, K., He, Z. Q., Mao, Y. M., Sheng, R. Q., and Sheng, Z. J.
1993. On two transposable elements from Bacillus stearothermophilus. Plasmid
29: 1-9. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hasimoto, Y.,
Ezaki, T., and Arakawa, M. 1992. Proposal of Burkholdria gene nov and transfer
of seven species for the genus Pseudomonas homology group II to the new genus,
with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb
nov. Microbiol. Immunobiol. 36: 1251-1275. Yabuchi, E., Kosako, Y., Yano, I.,
Hotta, H., and Nishiuchi, Y. 1995. Transfer of two Burkholderia and an
Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii
(Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum
(Smith 1896) comb. Microbiol Immunol 39 : 897-904. Zehr, E. I. 1970. Isolation
of Pseudomonas solanacearum from abaca and banana in the Philippines. Plant
Dis. Reptr. 54: 516-520. Zhao, S., and Hill, C. W. 1995. Reshuffling of the Rhs
components to create a new element. J. Bacteriol. 177: 1393-1398. Zieg, J.,
Silverman, M., Hilmen, M., and Simon, M. 1977. Recombinational switch for
gene expression. Science 196: 170-2. 9
論文
頁數
96
附註
全文
點閱
次數
資料
建置
時間
轉檔
日期
全文
檔存
取記
錄
異動
記錄
M admin Y2008.M7.D3 23:17 61.59.161.35