Download S0735109712013162_mmc1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Genetic engineering wikipedia , lookup

SNP genotyping wikipedia , lookup

Epigenetics of diabetes Type 2 wikipedia , lookup

RNA-Seq wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Genome (book) wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Behavioural genetics wikipedia , lookup

Medical genetics wikipedia , lookup

NEDD9 wikipedia , lookup

Gene therapy of the human retina wikipedia , lookup

Neuronal ceroid lipofuscinosis wikipedia , lookup

Human genetic variation wikipedia , lookup

Population genetics wikipedia , lookup

Genetic drift wikipedia , lookup

Gene therapy wikipedia , lookup

Polymorphism (biology) wikipedia , lookup

Dominance (genetics) wikipedia , lookup

Designer baby wikipedia , lookup

Public health genomics wikipedia , lookup

Microevolution wikipedia , lookup

Warfarin wikipedia , lookup

A30-Cw5-B18-DR3-DQ2 (HLA Haplotype) wikipedia , lookup

Tag SNP wikipedia , lookup

Pharmacogenomics wikipedia , lookup

Transcript
Online Appendix for the following JACC article
TITLE: Clinical Application of Cardiovascular Pharmacogenetics
AUTHORS: Deepak Voora, MD, Geoffrey S. Ginsburg, MD, PHD
APPENDIX
Additional Loci for Statins
ABCB1
The ATP-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1) gene encodes
an apical membrane protein in enterocytes and hepatocytes and serves to reduce
bioavailability. All statins appear to be handled by this transporter and three SNPs—
C1236T (rs1128503), G2677T (rs2032582), C3435T (rs1045642)—capture the common
genetic variation at this locus. Individuals who carry a T allele at each SNPs (i.e., the TT-T haplotype) have higher systemic exposure to simvastatin and atorvastatin (1). In the
two largest studies each numbering over 1500 individuals, the T-T-T haplotype was
associated with reduced LDLc lowering, (2) (3) while smaller studies found an enhanced
LDLc lowering in carriers haplotype.(4 ) This conflicting evidence makes firm
conclusions difficult, however, the magnitude of the associations is likely small (i.e.,
<10% difference in LDLc lowering).
ABCG2
The ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2), is similar to
ABCA1 in location and function and a common variant (rs2231142) reduces its transport
capacity (5). Carriers of the A allele experience higher systemic exposure to
rosuvastatin{Keskitalo, 2009 #1376} or atorvastatin(6), but not pravastatin(7) or
simvastatin acid (simvastatin’s active metabolite)(7). Carriers of the A allele experience
a 5-7% greater reduction in LDLc with rosuvastatin compared to noncarriers{Bailey,
2010 #1820}. Although a recent GWAS did not identify this variant as a determinant of
atorvastatin reduction(8), whether this is due to a failure to replicate or statin-specific
effects is unknown.
Additional loci for clopidogrel
P2YR12
Using a candidate-gene approach, carriers of a common P2YR12 haplotype (rs6798347,
rs6787801, rs9859552, rs6801273, rs9848789, and rs2046934) experienced improved
platelet inhibition(9), though this has not been validated. Unlike the variants at
CYP2C19, those in P2RY12 have not been consistently linked to clinical outcomes(10,11)
(12).
CYP2C9
Despite initial reports of an association with decreased active metabolite production and
reduced platelet inhibition in carriers of CYP2C9*3 (rs1057910) (13), this initial
observation has not been validated (14,15) and only may relevant at the 300mg dose (16).
PON1
A common reduced function allele in PON1 (rs662), may be involved in clopidogrel
bioactivation (17), though this observation has not been validated by others(15,18-20).
Carriers of the minor allele of the rs662 variant in PON1 are overrepresented in one
series of ST cases on clopidogrel (17) though not in two others (18,19). Finally, carriers
of the minor allele of the rs662 variant in PON1 are overrepresented in one series of ST
cases on clopidogrel (17) though not in two others (18,19). Variants in PON1 have not
yet been assessed for their clinical or platelet function response to newer agents such as
prasugrel and ticagrelor.
Additional loci for warfarin
Most studies of warfarin pharmacogenetics were performed in Caucasians, however,
because of the lower allele frequencies of CYP2C9, VKORC1, and CYP4F2 variants in
individuals of African descent, these variants are not as informative in this population
(21). By resequencing CALU, which was originally identified in warfarin resistant rats,
VKORC1, and CYP2C9 several novel SNPs: rs2290228 in CALU, rs61162043 in
VKORC1, and rs7089580 in CYP2C9 (each prevalent in 15-40%% of African-
Americans) were each associated warfarin dose requirements in African-Americans
(22,23) Similarly, resequencing GGCX (the enzyme responsible for gamma
carboxylation of vitamin K dependent coagulation factors), identified rs11676382 as a
predictor of modest reductions in warfarin dose in several studies (24,25) though not all
(26).
References
1.
Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M. ABCB1 haplotypes
differentially affect the pharmacokinetics of the acid and lactone forms of
simvastatin and atorvastatin. Clin Pharmacol Ther 2008;84:457-61.
2.
Thompson JF, Man M, Johnson KJ, et al. An association study of 43 SNPs in 16
candidate genes with atorvastatin response. Pharmacogenomics J 2005;5:352-8.
3.
Mega JL, Morrow DA, Brown A, Cannon CP, Sabatine MS. Identification of
genetic variants associated with response to statin therapy. Arterioscler Thromb
Vasc Biol 2009;29:1310-5.
4.
Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. Polymorphisms in the
multidrug resistance-1 (MDR1) gene influence the response to atorvastatin
treatment in a gender-specific manner. Am J Cardiol 2004;93:1046-50.
5.
Kondo C, Suzuki H, Itoda M, et al. Functional analysis of SNPs variants of
BCRP/ABCG2. Pharm Res 2004;21:1895-903.
6.
Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2
polymorphism markedly affects the pharmacokinetics of atorvastatin and
rosuvastatin. Clin Pharmacol Ther 2009;86:197-203.
7.
Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the
ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and
simvastatin. Pharmacogenomics 2009;10:1617-24.
8.
Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and
candidate gene analysis for response to statin therapy in the Treating to New
Targets (TNT) Cohort. Circ Cardiovasc Genet 2009;2:173-81.
9.
Rudez G, Bouman HJ, van Werkum JW, et al. Common variation in the platelet
receptor P2RY12 gene is associated with residual on-clopidogrel platelet
reactivity in patients undergoing elective PCI. Circ Cardiovasc Genet
2009:CIRCGENETICS.109.861799.
10.
Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to
clopidogrel and cardiovascular events. N Engl J Med 2009;360:363-75.
11.
Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. Lack of association between
the P2Y12 receptor gene polymorphism and platelet response to clopidogrel in
patients with coronary artery disease. Thromb Res 2005;116:491-7.
12.
Rudez G, Pons D, Leebeek F, et al. Platelet receptor P2RY12 haplotypes predict
restenosis after percutaneous coronary interventions. Human Mutation
2008;29:375-80.
13.
Brandt JT, Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and
CYP2C9 affect the pharmacokinetic and pharmacodynamic response to
clopidogrel but not prasugrel. J Thromb Haemost 2007;5:2429-36.
14.
Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and
response to clopidogrel. N Engl J Med 2009;360:354-62.
15.
Shuldiner AR, O'Connell JR, Bliden KP, et al. Association of cytochrome P450
2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel
therapy. JAMA 2009;302:849-57.
16.
Harmsze A, van Werkum JW, Bouman HJ, et al. Besides CYP2C19*2, the variant
allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in
patients on dual antiplatelet therapy undergoing elective coronary stent
implantation. Pharmacogenet Genomics 2010;20:18-25.
17.
Bouman HJ, Schomig E, van Werkum JW, et al. Paraoxonase-1 is a major
determinant of clopidogrel efficacy. Nat Med 2010;17:110-6.
18.
Sibbing D, Koch W, Massberg S, et al. No association of paraoxonase-1 Q192R
genotypes with platelet response to clopidogrel and risk of stent thrombosis after
coronary stenting. Eur Heart J 2011;32:1605-13.
19.
Trenk D, Hochholzer W, Fromm MF, et al. Paraoxonase-1 Q192R polymorphism
and antiplatelet effects of clopidogrel in patients undergoing elective coronary
stent placement: clinical perspective. Circ Cardiovasc Genetics 2011;4:429-36.
20.
Lewis JP, Fisch AS, Ryan K, et al. Paraoxonase 1 (PON1) gene variants are not
associated with clopidogrel response. Clin Pharmacol Ther 2011;90:568-74.
21.
Gage B, Eby C, Johnson J, et al. Use of pharmacogenetic and clinical factors to
predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008;84:326-31.
22.
Voora D, Koboldt DC, King CR, et al. A polymorphism in the VKORC1
regulator calumenin predicts higher warfarin dose requirements in African
Americans. Clin Pharmacol Ther 2010;87:445-51.
23.
Perera MA, Gamazon E, Cavallari LH, et al. The missing association:
sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect
warfarin dose in African Americans. Clin Pharmacol Ther 2011;89:408-15.
24.
Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tag
SNPs have limited utility for predicting warfarin maintenance dose. J Thromb
Haemost 2007;5:2227-34.
25.
King CR, Deych E, Milligan P, et al. Gamma-glutamyl carboxylase and its
influence on warfarin dose. Thromb Haemost 2010;104:750-4.
26.
Lubitz SA, Scott SA, Rothlauf EB, et al. Comparative performance of gene-based
warfarin dosing algorithms in a multiethnic population. J Thromb Haemost
2010;8:1018-26.