* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Slide 1 - GLISAclimate.org
Climatic Research Unit email controversy wikipedia , lookup
ExxonMobil climate change controversy wikipedia , lookup
Heaven and Earth (book) wikipedia , lookup
Soon and Baliunas controversy wikipedia , lookup
Climate resilience wikipedia , lookup
Global warming controversy wikipedia , lookup
Michael E. Mann wikipedia , lookup
Climate change denial wikipedia , lookup
Economics of global warming wikipedia , lookup
Climate change adaptation wikipedia , lookup
Climatic Research Unit documents wikipedia , lookup
Climate governance wikipedia , lookup
Politics of global warming wikipedia , lookup
Citizens' Climate Lobby wikipedia , lookup
Climate change and agriculture wikipedia , lookup
Effects of global warming on human health wikipedia , lookup
Fred Singer wikipedia , lookup
Climate engineering wikipedia , lookup
Global warming wikipedia , lookup
Climate sensitivity wikipedia , lookup
Media coverage of global warming wikipedia , lookup
Effects of global warming wikipedia , lookup
Climate change in Tuvalu wikipedia , lookup
Physical impacts of climate change wikipedia , lookup
Climate change in the United States wikipedia , lookup
Scientific opinion on climate change wikipedia , lookup
Public opinion on global warming wikipedia , lookup
Global warming hiatus wikipedia , lookup
General circulation model wikipedia , lookup
Climate change feedback wikipedia , lookup
Effects of global warming on humans wikipedia , lookup
Climate change and poverty wikipedia , lookup
Surveys of scientists' views on climate change wikipedia , lookup
Solar radiation management wikipedia , lookup
Attribution of recent climate change wikipedia , lookup
Climate change, industry and society wikipedia , lookup
Climate Change: The Move to Action (AOSS 480 // NRE 480) Richard B. Rood Cell: 301-526-8572 2525 Space Research Building (North Campus) [email protected] http://aoss.engin.umich.edu/people/rbrood Winter 2012 February 2, 2012 Class News • Ctools site: AOSS_SNRE_480_001_W12 • 2008 and 2010 Class On Line: – http://climateknowledge.org/classes/index.php /Climate_Change:_The_Move_to_Action The Current Climate (Released Monthly) • Climate Monitoring at National Climatic Data Center. – http://www.ncdc.noaa.gov/oa/ncdc.html • State of the Climate: Global • Plant Hardiness - 2012 Some Project Ideas • Education – Strategies when policy requires teaching “denial” – Incorporation into engineering curriculum – Earth science in K-12; admission to college • • • • Cities (esp Great Lakes) Adaptation Climate in the Keystone Pipeline Great Lakes Seasonal forecast information / Long-term projections / Use of information / Effectiveness of communication efforts Today • Scientific investigation of the Earth’s climate: Foundational information – Feedbacks • Incremental • Arctic / Ocean – Internal / Natural Variability The Earth System Increase greenhouse gases reduces cooling rate Warming SUN Solar variability Cloud feedback? Aerosols cool? ATMOSPHERE Water vapor feedback accelerates warming Cloud feedback? OCEAN ICE LAND Changes in land use impact absorption and reflection Ice-albedo feedback accelerates warming Abrupt Climate Change • Most scenarios of abrupt climate change are related to a phase change in some way or another. Does the albedo change quickly? Is there a change in the fresh water in the ocean? Is there a release of gas stored in something that is frozen? • It is also possible to define rapid changes in ocean (land?) ecosystems, that leads to composition changes in the atmosphere. Biology – sensitive to temperature, water, salinity, ph, etc. Lamont-Doherty: Abrupt Climate Change Let’s look at just the last 1000 years Surface temperature and CO2 data from the past 1000 years. Temperature is a northern hemisphere average. Temperature from several types of measurements are consistent in temporal behavior. { Note that on this scale, with more time resolution, that the fluctuations in temperature and the fluctuations in CO2 do not match as obviously as in the long, 350,000 year, record. This is a span of time with very “stable” climate, by historical records. Stable meaning, low variability. Also it has been warm. Sources of internal variability • This is natural variability. – Solar variability – Volcanic activity – Internal “dynamics” • • • • Atmosphere - Weather Ocean Atmosphere-ocean interactions Atmosphere-ocean-land-ice interactions • That does not mean that these modes of variability remain constant as the climate changes. Conservation equation • Could you write the conservation equation, at least symbolically, for surface temperature and atmospheric carbon dioxide. Energy doesn’t just come and go • The atmosphere and ocean are fluids. The horizontal distribution of energy, leads to making these fluids move. That is “weather” and ocean currents and the “general circulation.” • “General circulation” is the accumulated effect of individual events. Transport of heat poleward by atmosphere and oceans • This is an important part of the climate system • One could stand back far enough in space, average over time, and perhaps average this away. • This is, however, weather ... and weather is how we feel the climate day to day – It is likely to change because we are changing the distribution of average heating While Building the Radiative Balance Figure Redistribution by atmosphere, ocean, etc. RS Top of Atmosphere / Edge of Space 1) The absorbed solar energy is converted to terrestrial thermal energy. 2) Then it is redistributed by the atmosphere, ocean, land, ice, life. CLOUD ATMOSPHERE SURFACE Another important consideration. Latitudinal dependence of heating and cooling Top of Atmosphere / Edge of Space CLOUD ATMOSPHERE After the redistribution of energy, the emission of infrared radiation from the Earth is ~ equal from all latitudes. Because of tilt of Earth, Solar Radiation is absorbed preferentially at the Equator (low latitudes). SURFACE South Pole (Cooling) Equator (On average heating) North Pole (Cooling) Transfer of heat north and south is an important element of the climate at the Earth’s surface. Redistribution by atmosphere, ocean, etc. Top of Atmosphere / Edge of Space This predisposition for parts of the globe to be warm and parts of the globe to be cold means that measuring global warming is difficult. Some parts of the world could, in fact, get cooler because this warm and cool pattern could be changed. What is a scenario for record cold temperatures in northern Mexico? CLOUD ATMOSPHERE heat is moved to poles cool is moved towards equator cool is moved towards equator SURFACE This is a transfer. Both ocean and atmosphere are important! The Thermohaline Circulation (THC) (Global, organized circulation in the ocean) (The “conveyer belt”, “rivers” within the ocean) Blue shading, low salt Where there is localized exchange of water between the surface and the deep ocean (convection) Green shading, high salt Warm, surface currents. Cold, bottom currents. Ocean Surface Currents (From Steven Dutch, U Wisconsin, Green Bay) Good Material at National Earth Science Teachers Association Hurricanes and heat: Sea Surface Temperature Weather Moves Heat from Tropics to the Poles HURRICANES Mid-latitude cyclones & Heat Projected Global Temperature Trends: 2100 2071-2100 temperatures relative to 1961-1990. Special Report on Emissions Scenarios Storyline B2 (middle of the road warming). IPCC 2001 Wave Motion and Climate Internal Variability? • Weather – single “events” – waves, vortices • There are modes of internal variability in the climate system which cause global changes. – El Nino – La Nina • What is El Nino – North Atlantic Oscillation • Climate Prediction Center: North Atlantic Oscillation – Annular Mode – Inter-decadal Tropical Atlantic – Pacific Decadal Oscillation Atmosphere-Ocean Interaction: El-Nino Changes during El Nino Times series of El Nino (NOAA CPC) EL NINO LA NINA OCEAN TEMPERATURE EASTERN PACIFIC ATMOSPHERIC PRESSURE DIFFERENCE Some good El Nino Information • NOAA Climate Prediction: Current El Nino / La Nina • NOAA CPC: Excellent slides on El Nino – This is a hard to get to educational tour. This gets you in the middle and note navigation buttons on the bottom. GISS Temperature 2002 1997-98 El Nino January 2011 Temperature Anomalies Internal Variability? • Weather – single “events” – waves, vortices • There are modes of internal variability in the climate system which cause global changes. – El Nino – La Nina • What is El Nino – North Atlantic Oscillation • Climate Prediction Center: North Atlantic Oscillation – Annular Mode – Inter-decadal Tropical Atlantic – Pacific Decadal Oscillation North Atlantic Oscillation Positive Phase U.S. East, Mild and Wet Europe North, Warm and Wet Canada North & Greenland, Cold and Dry Negative Phase U.S. East, Cold Air Outbreaks, Snow (dry) Europe North, Cold; South, Wet Greenland, Warm North Atlantic Oscillation Phase (from Climate Prediction Center) January 2011 Temperature Anomalies Internal Variability? • Weather – single “events” – waves, vortices • There are modes of internal variability in the climate system which cause global changes. – El Nino – La Nina • What is El Nino – North Atlantic Oscillation • Climate Prediction Center: North Atlantic Oscillation – Annular Mode – Inter-decadal Tropical Atlantic – Pacific Decadal Oscillation Pacific Decadal Oscillation • Does the Pacific Decadal Oscillation operate regularly lasting 20-30 years, and does southern California experience droughts during that period? • • The Pacific Decadal Oscillation is one of several “oscillations” that are important to weather and climate. Some attributes of the Pacific Decadal Oscillation Pacific Decadal Oscillation: Basics Colors: Sea Surface Temperature difference from long term average. Arrows: Stress on the ocean surface caused by winds Warm here Better version of figure from JISAO Cool here Some information on Pacific Decadal Oscillation • Joint Institute for Study of Atmosphere and Ocean (JISAO): – Pacific Decadal Oscillation • Climate Prediction Center (CPC): – 90 Day Outlook Summary – Weather and Climate Linkage • National Climatic Data Center (NCDC): – Decadal Oscillations • Review Paper from Rood Class References – Mantua and Hare (2002) J of Oceanography Bumps and Wiggles • Rood’s Series on Bumps and Wiggles Lean and Rind, Next 20 years A Scientific Challenge GISS Temperature 2002 1997-98 El Nino An interesting time to study? A couple of papers • Bengstsson_20th_Century_Climate_JClim ate_2004 • Johannssen_Arctic_20th_Century_Tellus_ 2004 An Example at the End of Ice Age What is a stable climate? LIQUID - ICE NOAA Paleoclimate Schlumberger Younger Dryas POSSIBLE EVIDENCE OF CHANGE IN OCEAN CIRCULATION WHAT DOES THIS MEAN? Does Raise the Question of Abrupt Climate Change Abrupt climate change • The predictions and observations so far are either in the sense of: – Relatively small changes in the dynamic balance of the climate system – Incremental changes to the stable climate. • What about “abrupt” climate change? Note to professor: Force students to think and speak • What might cause something to change abruptly in the climate system? • Lamont-Doherty: Abrupt Climate Change • NAS: Abrupt Climate Change • Wunderground.com: Abrupt Climate Change Scientific investigation of Earth’s climate SUN EARTH PLACE AN INSULATING BLANKET AROUND EARTH FOCUS ON WHAT IS HAPPENING AT THE SURFACE EARTH: EMITS ENERGY TO SPACE BALANCE