* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Powerpoint slides
Transposable element wikipedia , lookup
Gene expression wikipedia , lookup
Genomic library wikipedia , lookup
Vectors in gene therapy wikipedia , lookup
Gene desert wikipedia , lookup
Interactome wikipedia , lookup
Community fingerprinting wikipedia , lookup
Non-coding DNA wikipedia , lookup
Transcriptional regulation wikipedia , lookup
Genomic imprinting wikipedia , lookup
Promoter (genetics) wikipedia , lookup
Metabolic network modelling wikipedia , lookup
Ridge (biology) wikipedia , lookup
Silencer (genetics) wikipedia , lookup
Gene expression profiling wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Endogenous retrovirus wikipedia , lookup
Genome analysis. Genome – the sum of genes and intergenic sequences of a haploid cell. The value of genome sequences lies in their annotation • Annotation – Characterizing genomic features using computational and experimental methods • Genes: Four levels of annotation – Gene Prediction – Where are genes? – What do they look like? – What do they encode? – What proteins/pathways involved in? Koonin & Galperin Accuracy of genome annotation. • In most genomes functional predictions has been made for majority of genes 54-79%. • The source of errors in annotation: - overprediction (those hits which are statistically significant in the database search are not checked) - multidomain protein (found the similarity to only one domain, although the annotation is extended to the whole protein). The error of the genome annotation can be as big as 25%. Sample genomes Species H.sapiens Size Genes Genes/Mb 3,200Mb 35,000 11 D.melanogaster 137Mb 13.338 97 C.elegans 85.5Mb 18,266 214 A.thaliana 115Mb 25,800 224 S.cerevisiae 15Mb 6,144 410 E.coli 4.6Mb 4,300 934 So much DNA – so “few” genes … s T Genic C Intergenic T Human Genome project. Comparative genomics - comparison of gene number, gene content and gene location in genomes.. Campbell & Heyer “Genomics” Analysis of gene order (synteny). Genes with a related function are frequently clustered on the chromosome. Ex: E.coli genes responsible for synthesis of Trp are clustered and order is conserved between different bacterial species. Operon: set of genes transcribed simultaneously with the same direction of transcription Analysis of gene order (synteny). Koonin & Galperin “Sequence, Evolution, Function” Analysis of gene order (synteny). • The order of genes is not very well conserved if %identity between prokaryotic genomes is less than 50% • The gene neighborhood can be conserved so that all neighboring genes belong to the same functional class. • Functional prediction can be based on gene neighboring. Role of “junk” DNA in a cell. 1. There is almost no correlation between the number of genes and organism’s complexity. 2. There is a correlation between the amount of nonprotein-coding DNA and complexity. Species H.sapiens Size Genes Genes/Mb 3,200Mb 35,000 11 D.melanogaster 137Mb 13.338 97 C.elegans 85.5Mb 18,266 214 A.thaliana 115Mb 25,800 224 S.cerevisiae 15Mb 6,144 410 E.coli 4.6Mb 4,300 934 New interpretation of introns. 1. Modern introns envaded eukaryotes late in evolution, they are derived from self-splicing mobile genetic elements similar to group II introns. 2. Nucleus which separates transcription and translation, appears only in eukaryotes. For prokaryotes there would not be time for introns to splice themselves out. 3. Hypothesis: important regulatory role of introns. Regulatory role of non-coding regions. - “Micro-RNAs” control timing of processes in development and apoptosis. - Intron’s RNAs inform about the transcription of a particular gene. - Alternative splicing can be regulated by non-coding regions. - Non-coding regions can be very well conserved between the species and many genetic deseases have been linked to variations/mutations in non-coding regions. COGs – Clusters of Orthologous Genes. Orthologs – genes in different species that evolved from a common ancestral gene by speciation; Paralogs – paralogs are genes related by duplication within a genome. Classwork I: Comparing microbial genomes. • Go to http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi • Select Thermus thermophilus genome • View TaxTable • What gene clusters do you see which are common with Archaea? Systems biology. • Integrative approach to study the relationships and interactions between various parts of a complex system. Goal: to develop a model of interacting components for the whole system. Basic notions of networks. Network (graph) – a set of vertices connected via edges. The degree of a vertex – the total number of connections of a vertex. Random networks – networks with a disordered arrangement of edges. Properties of networks. • Vertex degree distribution/connectivity. • Clustering coefficient. • Network diameter. Characteristics of networks: vertex degree distribution. K=2 K=2 K=3 K=1 P(k,N) – degree distribution, k - degree of the vertex, N - number of vertices. If vertices are statistically independent and connections are random, the degree distribution completely determines the statistical properties of a network. Characteristics of networks: vertex degree distribution. Characteristics of networks: clustering coefficient. The clustering coefficient characterizes the density of connections in the environment close to a given vertex. d – total number of edges connecting nearest neighbors; n – number of nearest verteces for a given vertex 2d C n(n 1) C = 2/6 Characteristics of networks: diameter, smallworld. Diameter of a network – shortest path along the existing links averaged over all pairs of verteces. Distance between two verteces = the smallest number of steps one can take to reach on vertex from another. Small-world character of the networks: any two verteces can be connected by relatively short paths. For random networks the diameter increases logarithmically with the addition of new verteces. Different network models: Erdos-Renyi model. • Start with the fixed set of vertices. • Iterate the following process: Chose randomly two vertices and connect them by an edge. • Stop at certain number of edges. ln(P(k)) Degree distribution – Poisson distribution, λ – average degree e k P(k ) k! ln( k ) Different network models: model 2. • • At each step, a new vertex is added to the graph Simultaneously, a pair of randomly chosen vertices is connected by an edge. This is a non-equilibrium model – the total number of vertices is not fixed. ln(P(k)) Degree distribution – exponential distribution. p(k ) e k / ln(k) Different network models: Barabasi-Alberts. Model of preferential attachment. • At each step, a new vertex is added to the graph • The new vertex is attached to one of old vertices with probability proportional to the degree of that old vertex. ln(P(k)) Degree distribution – power law distribution. p(k ) k ln(k) Power Law distribution p(k ) ~ k p(k ) (k ) Multiplying k by a constant, does not change the shape of the distribution – scale free distribution. p(k ) From T. Przytycka Difference between scale-free and random networks. Random networks are homogeneous, most nodes have the same number of links. Scale-free networks have a few highly connected verteces. Example 1: the large-scale organization of metabolic networks. D-Glucose Glycolysis metabolic network ATP Hexokinase2.7.1.1 ADP D-Glucose-6P Pentose phosphate cycle 5.3.1.9 Phosphoglucose isomerase D-Fructose-6P ATP Phosphofructokin 2.7.1.11 ase ADP D-Fructose-1,6P2 Aldolase4.1.2.13 5.3.1.1 Triose phosphate isomerase Glycerone-P Glyceraldehyde-3P NAD+ + 1.2.1.12 Glyceraldehyde 3-P dehydrogenase Pi NADH + H+ Glycerate-1,3P2 Glycerolipid ADP metabolism 2.7.2.3 Phoshoglycerate kinase ATP Apicoplast FA Glycerate-3P synthesis 5.4.2.1 Phosphoglycerate mutase enzymes subsbstrate Slide credit: Hagai Ginsburg Glycerate-2P Enolase4.2.1.11 H2O Phosphoenol-pyruvate ADP Pyruvate 2.7.1.40 Pyruvate kinase metabolism ATP Pyruvate NADH + H+ 1.1.1.27 Lactate dehydrogenase NAD+ Lactate Example 1: the large-scale organization of metabolic networks. Jeong et al, Nature, 2000: - Compared metabolic networks of 43 organisms. Verteces – substrates connected with each other through links/metabolic reactions. Results: - Scale-free nature of metabolic networks for all organisms, γ = 2.2 - Diameters of metabolic networks for all organisms are the same. Biological interpretations of power-law connectivity. • Few verteces dominate the overall connectivity of network. • Self-similarity of networks. • Small diameter, respond quickly to a mutation which can destroy an enzyme, activate different paths quickly. Protein-protein interaction networks. Sneppen & Maslov: • Verteces – proteins, edges connect those proteins which interact in a cell • Network: 3278 interactions,1289 proteins • Scale free network, = 2.5 +/- 0.3 Sneppen & Maslov