Download MOLECULAR STUDY OF IDIOPATHIC NEPHROTIC SYNDROME

Document related concepts

Protein moonlighting wikipedia , lookup

Therapeutic gene modulation wikipedia , lookup

Public health genomics wikipedia , lookup

Pharmacogenomics wikipedia , lookup

Tay–Sachs disease wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Saethre–Chotzen syndrome wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Gene therapy wikipedia , lookup

RNA-Seq wikipedia , lookup

Genome (book) wikipedia , lookup

NEDD9 wikipedia , lookup

Designer baby wikipedia , lookup

Gene therapy of the human retina wikipedia , lookup

Microevolution wikipedia , lookup

Oncogenomics wikipedia , lookup

Epistasis wikipedia , lookup

Neuronal ceroid lipofuscinosis wikipedia , lookup

Epigenetics of neurodegenerative diseases wikipedia , lookup

Mutation wikipedia , lookup

Frameshift mutation wikipedia , lookup

Point mutation wikipedia , lookup

Transcript
MOLECULAR STUDY OF IDIOPATHIC NEPHROTIC SYNDROME
Gemma Bullich Vilanova
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons:
http://cat.creativecommons.org/?page_id=184
ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons:
http://es.creativecommons.org/blog/licencias/
WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license:
https://creativecommons.org/licenses/?lang=en
DOCTORALTHESIS
MOLECULARSTUDYOFIDIOPATHIC
NEPHROTICSYNDROME
GemmaBullichVilanova
April2016
Moleculaarstudyofidiiopathiicneph
hroticsyndrom
me
Thesiispresenttedby
GemmaaBullichV
Vilanova
TofulfilthePhDd
degreeat
UnivversitatA
AutònomadeBarcelona
ThessisrealizedunderthedireectionofDr.ElisabetArssCriachandDr.RoserTo
orraBalcellsaatthe
BiologyofFun
ndacióPuigvvert,Barcelona
laaboratoryofMolecularB
ThessisascribedttotheDeparrtmentofCellularBiologyy,PhysiologyyandImmun
nology,Facultyof
Medicine,UniverrsitatAutòno
omadeBarcelona
PhDinCellularBiiology
RosserTorraBalccells
DirecttorofthetheesisDr.
Dr..ElisabetArssCriach
Direectoroftheth
hesisDr.
CarmeN
NoguésSanm
miquel
Tuto
orofthethessis
Gemm
maBullichVilanova
P
PhDCandidat
te
Barccelona,April2016
AlsmeusparesialTayo,
AGRAÏMENTS
Aquestatesiéselresultatdelacontribuciódemoltagentsenselaqualnohaguésestatpossiblearribar
fins aquí. Tots els que citaré, i espero no deixarͲme ningú, heu posat el vostre granet de sorra (o un
sorralsencer)enquèaquestatesistirésendavant,moltesgràcies!
Enprimerllocvoliaagrairdetotcoralesmevesdirectoresdetesi,l’ElisabetArsilaRoserTorra,totel
quehanfetpermidurantaquestsanys.Al’Elisabet,moltíssimesgràciesperlatevaenormeimplicació
entotselsaspectes,perestarsempredisposadaadedicarͲmeunaestona,perensenyarͲmeapensaria
profunditzar,pelteuesperitcrític,pertotselsconsellsiperconfiarenmiienelmeucriteri.Detuhe
aprèsmoltíssimanivellcientíficperòtambéanivellpersonal,ésunluxetreballarambtu.AlaRoser,
moltíssimesgràciesperintentartrobarsempreunforadetenlatevaatapeïdaagenda,perresoldretots
els dubtes clínics, per aportar un punt d’optimisme als projectes, per implicarͲme en altres projectes,
pervalorarͲmetant,perhaverͲmeconsolatenelsmomentsmésestressants,peraconseguirquetingui
unsoudigneiperhaverfetpossiblequed’aquípoquetme’nvagiaHolanda.
AlaCarmeNogués,latutorad’aquestatesi,moltesgràciespertotal’ajudaburocràtica,perfacilitarͲme
almàximtotselstràmitsiperresoldreelsmeusdubtes.
Moltíssimes gràcies a lescompanyesdel laboratoride Biologia Molecular per pintardecolors els dies
grisos.APatricia,porestarsiempredispuestaaayudarme,portustoquesdehumorquemeencantany
porenseñarmeaserunapersonaordenadayorganizadadentrodellab,estoysegurísimaquedóndesea
quevayaatrabajarecharédemenosuna“labmanager”comotú.AlaLaura,“laalegríadelahuerta”,
per les teves ganes d’aprendre el que calgui i per encomanarͲnos les teves rialles. A la Luz, l’altra
“alegríadelahuerta”,perensenyarͲmequecalmoltpocperserfeliç,pertoteslesxerradesd’ànimsi
perestarsempredisposadaaajudarͲmeenl’àmbitcientíficinocientífic.AChiara,porescucharmeen
losmomentosbajosyfilosofarsobrelavidaysobresisirveparaalgoestodeldoctorado,seguroque
sí!!!Ah!yporresolvermelasmilesdedudassobreelinglés!Al’Elena,pertotal’ajudaatotselsnivells,
perpreocuparͲtesemprepercomestic,pelsbonsconsells,ipersertanoptimistaipositiva,etsunsol.A
laBea,perhaverͲmeajudattantesvegadesenmiltemes:científics,devestuari,detesi,d’allotjament...i
perensenyarͲnosquesinohihariscfísicnoenshemd’estressar,tandebòpoguésferͲho!AlaIrene,
perquè si no fos per ella no faríem ni la meitat de sopars, ets la “lab manager” de la vida fora del
laboratoriielcotxeoficialquetants“apuros”enshasolucionat,gràciesperestarsempredisposadaa
ajudar! A la Judit, pels ànims en el moments tristos i per preocuparͲte per mi. A l’Iván, el profe de
bioinformàtica,perferͲmeperdrelaporalapantallanegraipertotal’ajudaenlaNGSilanoNGS,en
laborables i festius. A Dani,por su humorandaluz. Ial Toni, la recent incorporaciódel laboratori,per
cuidarͲnosdesdeelprimerdiaambcroissantsibraçosdegitano,quinbonfitxatge!
Hi ha una sèrie de persones que ja no estan al laboratori però que sens dubte els he d’agrair la seva
ajuda. A la Sheila, la meva “profe”, ha estat un autèntic plaer seguir els teus passos i tenirͲte com a
referent en laSN, moltesgràcies per tot el que em vas ensenyar abans de marxar i per estar sempre
disposadaaresoldre’mtotselsdubtes.ADeborah,migrancompañeradeatardeceresrománticosenla
Puigvert,¡cómoteheechadodemenosestosúltimosaños!Muchasgraciasportodostusconsejosypor
compartir tantos momentos dulces y amargos. A l’Olga Sancho, la psicòloga, gràcies per ajudarͲme a
encarareldoctorat(ilavida)d’unamaneraconstructiva.APaola,¡suertedetuoptimismoduranteel
proyectodelospodocitos!Muchasgraciasportodosloshalagosyporvalorarmetanto.AAniaporser
unabuenazaytenerungrancorazón.AlaLaia,laXèniailaLluïsa,sempredisposadesaajudariala
MònicaVall,peranimarͲmeenelsmomentsdurs.
ApartdellaboratorideBiologiaMolecular,laFundaciótégranspersonesalesqualshed’agrairlaseva
contribucióenaquestatesi.AJoséBallarín,muchasgraciasportodotuapoyo,porproporcionarmeuna
situaciónlaboraldigna,porvalorartantonuestrotrabajoyporestarsiempredispuestoaresolvermis
dudas. A la Sílvia Mateu, moltes gràcies per totes les gestions, pel “papeleo” i per tots els ànims. A
MontseDíazyArturOliver,porvuestraayudaenelestudiodemembranosa.AlaSílviaylaCharo,pels
ànimsiperferͲmesentirquetoteldaltabaixemocionalquecomportaescriurelatesiésnormal.Ales
doctorandesnefròlogues,Nàdia,IaraiMónicapertoteslesparaulesdesuportielsànims,enespeciala
laNàdia,haestatunplaerajudarͲteenlesnefropatiesintersticials,nomésetquedaescalarunamica
mésdemuntanyafinsarribaralcim,moltsànims!Al’OlgaLópezpelselogisilatevamotivació.AlRicard
Pallejà,pertotselsarticlesquem’hasaconseguitambunagranrapidesa.AlaNúriaVinyolasperlaseva
disposicióaajudarͲmeenelquècalgués.Atotselsnois d’arxius,pertenirsempreapuntunaparaula
simpàticaiunsomriure.Al’IgnasiGich,pelsuportestadísticialaCarolynNeweyperlescorreccionsde
l’anglès.
AgrairtambéalXavierEstivillperacollirͲmealseulaboratoridelCRGdurantlanostracolͼlaboració.Al
DaniialJustoperensenyarͲmetotselstrucsisecretsdelaNGS.
Hihaalgunespersonesquetotinoestarpresentseneldiaadiahantingutunpapermoltdecisiuen
l’inici d’aquesta tesi. Volia agrair al Pep per fer que una simple conversa es convertís en una gran
oportunitat.AlJosepFarguesperescoltarͲme,aconsellarͲmeiajudarͲmejaabansd’emprendreaquest
camí.Duranttotsaquestsanysmen’herecordatenmoltsmomentsdelatevafrase:eldoctoratésuna
cursa de resistència. Quina gran veritat! A la Naiara, moltes gràcies per tots els bons consells i per
encomanarͲmelailͼlusióperlaciència.
Alesbioquímiques,gràciespernodefallirenorganitzarsopars!AlaGeorgina,moltíssimesgràciesper
les trucades, per cuidarͲme i preocuparͲte per mi, pel punt d’optimisme i les ganes de tirar endavant
que sempre em dónes, ets una gran amiga, hem compartit tot des de que vam entrar al món de la
ciènciainopucestarmésorgullosadel’amigaquehedescobert,esperopoderͲteajudarenlatevatesi
tantcomtuhasfetamblameva.Al’Àstrid,l’escriptoradetesiexprés(quinaenveja!)iaventurera,per
transmetreaquestamotivacióiganesdetirarͲtealapiscina,esperoqueaviatorganitzemunviatgea
París! A la Laura, la primera doctora del grup, gràcies per tots els consells i per compartir molts
momentsidubtessobreelfuturdurantelmàster.AlaMireiaperquèlasevamotivacióiganesdefer
cosesalegreneldiaaqualsevolialaHannah,quinasortcoincidiralCRGitornarͲnosaretrobar!Itambé
a la resta de colla de la uni, Guillem, David, Raquel i Gemma per compartir penes dins i fora del
doctoratiperquènoempucimaginarelsanysd’universitatsensevosaltres.
Als“runners”moltesgràciespertransmetresuperaciókmdarrerakm.AlaMayteperaguantartotesles
vivències del doctorat i de la vida en general. Al Roger, René, Raúl, Lluís, Uri i a les 2 Patris, moltes
gràciesperaguantarlesangustiesdeldoctoratitreure’mdecasadetantentant.AlDavidil’Òscarper
ajudarͲmeaenderrocartotselsmursiperpreocuparͲvospermi,maioblidaréels100km!!!
Elsamicste’lsvastrobantpelcamídelavidaperòsovinteldestíelsseparainoelspotsveuretantcom
voldries. Gemma, moltes gràcies per estar sempre disposada a ajudarͲme, per animarͲme en tot
momentiperferaquestaportadatantxula,etsgenial!!!Martí,moltesgràciesperestaralmeucostat
en els moments difícils i per acceptar les meves decisions. Marta Cuenca, gràcies per no defallir en
veure’ns encara que les respectives vides ho posin difícil i per estar sempre disposada a escoltarͲme,
espero poder veure’t més sovint a partir d’ara. A les nenes de Ganàpies Eva, Anna Palou, Anneta i
Santako, per tots els viatges que hem compartit, pels ànims que m’heu donat tots aquest anys i per
entendreels“nopuchedefertesi”.Alsamicsgranollerins,MartaiEdmon,ElisendaiJoan,peraportar
riallesibonsmomentsalscapsdesetmanadetesi,moltesgràcies!
AlafamíliaCastelluda,moltesgràciesperserlamillorsegonafamíliaquepodriatenir.APepeiImma,
peracollirͲmealavostrafamília,percuidarͲmeipreocuparͲvospermiipervalorartantelquefaig.A
Santi,Montse,José,Carol,ImmaiToni,gràciespertotelsuportquem’heudonattotsaquestsanys,per
interessarͲvos per com m’anava el doctorat i per aguantar més d’una conversa sobre articles i coses
rares.AlesxicotiuesJúliaiMireia,perarrancarͲmesempreunsomriureiferͲmepassartotselsmals.
AlaIaia,lluitadorairiallera,moltesgràciesperensenyarͲmeunsvalorsiunamanerad’enfocarlavida
quehasigutclauperfereldoctorat.Al’AvimoltesgràciesperensenyarͲmelaimportànciad’estudiar,
detreurebonesnotesipersentirͲtetantorgullósdemi.Sempreusportaréambmi.
Alsmeuspares,RosaiFrancescm’heudonatlesalesperarribarfinsaquí.Gràciespercreuresempreen
mi, per valorarͲme tant, per estar al meu costat en els bons i mals moments, per acceptar les meves
decisions,perferͲmeaixecarenelsmomentsdifícils.GràciesperensenyarͲmeelvalordelescoses,aser
humil,alluitarpelquèunvol.Souelmeureferentalavidaisihearribatfinsaquíésgràciesavosaltres.
AlTayo,perlasevaajudainfinitaduranttotsaquestsanys.Etsunapersonaincreïbleiemsentomolt
afortunadadecompartirlavidaambtu.Gràciesperestaralmeucostattotsaquestsanys,percreure
tantenmiienelquèfaig,perferͲmeenfocarelsproblemesdelamaneramésconstructivaiperajudarͲ
meaaixecarentotselsmomentstristos.Etselmeupríncepblau,laparellaqueemcuida,l’amicque
escolta, el pallasso que fa riure, l’aventurer amb qui viure experiències inoblidables, un mestre dins i
foradel’escolaiunadelespersonesquemésadmirodelmón.
Per últim voldria donar les gràcies a tots aquells pacients queens han donat la seva mostra i hanfet
possibleaquestatesi,aixícomatotselsclínicsquehancolͼlaboratenl’estudid’aquestspacientsiens
hanajudataseguiraprenent.Aquestestuditampochauriaestarpossiblesenseelfinançamentperpart
del Ministerio de Sanidad (FIS/FEDER 09/01506, FIS/FEDER 12/01523, FIS/FEDER PI13/01731 i
FIS/FEDERPI15/01824)ilaREDinREN.
TABLEOFCONTENTS
ABBREVIATIONS..................................................................................................................1
PRESENTATION...................................................................................................................5
INTRODUCTION............................................................................................................................. 7
1. KIDNEYANATOMYANDPHYSIOLOGY......................................................................................9
2. THEGLOMERULARFITLRATIONBARRIER..............................................................................11
2.1.
FENESTRATEDENDOTHELIUM....................................................................................11
2.2.
GLOMERULARBASEMENTMEMBRANE......................................................................13
2.3.
PODOCYTES.................................................................................................................16
3. NEPHROTICSYNDROME.........................................................................................................19
3.1.
3.2.
3.3.
3.4.
CLINICALMANIFESTATIONS........................................................................................20
3.1.1.
Proteinuria.......................................................................................................20
3.1.2.
Hypoalbuminemia...........................................................................................21
3.1.3.
Edema..............................................................................................................21
3.1.4.
Hyperlipidemia................................................................................................22
COMPLICATIONS.........................................................................................................23
3.2.1.
Thrombosis......................................................................................................23
3.2.2.
Acuterenalinsufficiency.................................................................................23
3.2.3.
Endocrinalterations........................................................................................24
3.2.4.
Infections.........................................................................................................24
ETIOLOGYOFNEPHROTICSYNDROME.......................................................................24
3.3.1.
CongenitalNephroticsyndromeofFinnishType............................................24
3.3.2.
Diffusemesangialsclerosis..............................................................................26
3.3.3.
Minimalchangedisease..................................................................................26
3.3.4.
Focalsegmentalglomerulosclerosis...............................................................27
3.3.5.
Membranousnephropathy.............................................................................29
TREATMENT.................................................................................................................30
3.4.1.
Generalmanagement......................................................................................30
3.4.2.
TreatmentinCNS............................................................................................31
3.4.3.
TreatmentinchildrenandFSGS/MCDadults.................................................31
3.4.3.1. Corticosteroidtherapy................................................................................31
3.4.3.2. Immunosuppressivetherapy......................................................................32
3.4.4.
TreatmentinMN.............................................................................................32
4. PATHOGENESISOFIDIOPATHICNEPHROTICSYNDROME.....................................................34
4.1.
IMMUNECOMPLEXESDEPOSITION:MN....................................................................35
4.2.
TCELLDEPENDENTCIRCULATINGFACTOR:SSNSANDSDNS.....................................37
4.3.
GENETICCAUSE:SRNS.................................................................................................38
5. GENETICSOFSRNS.................................................................................................................42
5.1.
AutosomalrecessiveisolatedSRNSandFSGS.............................................................42
5.1.1.
NPHS1gene.....................................................................................................43
5.1.2.
NPHS2gene.....................................................................................................45
5.1.3.
PLCE1gene......................................................................................................47
5.1.4.
CD2APgene.....................................................................................................49
5.1.5.
PTPROgene.....................................................................................................50
5.1.6.
MYO1Egene....................................................................................................50
5.1.7.
ARHGDIAgene.................................................................................................51
5.1.8.
ADCK4gene.....................................................................................................51
5.1.9.
TTC21Bgene....................................................................................................52
5.1.10. CRB2gene........................................................................................................54
5.1.11. NUP107gene...................................................................................................54
5.1.12. NUP93gene.....................................................................................................55
5.2.
5.3.
GenesimplicatedinautosomaldominantisolatedSRNSandFSGS...........................56
5.2.1.
WT1gene........................................................................................................56
5.2.2.
ACTN4gene.....................................................................................................58
5.2.3.
TRPC6gene......................................................................................................59
5.2.4.
INF2gene.........................................................................................................61
5.2.5.
LMX1Bgene.....................................................................................................63
5.2.6.
ANLNgene.......................................................................................................63
5.2.7.
PAX2gene........................................................................................................64
GenesimplicatedinsyndromicformsofSRNSandFSGS...........................................65
6. CLINICALUTILITYOFGENETICTESTING.................................................................................67
AIMS............................................................................................................................... .............71
RESULTS............................................................................................................................... ........75
STUDYI............................................................................................................................... ....77
HLAͲDQA1andPLA2R1PolymorphismsandRiskofIdiopathicMembranousNephropathy77
STUDYII............................................................................................................................... ...93
TargetednextͲgenerationsequencinginsteroidͲresistantnephroticsyndrome:mutationsin
multipleglomerulargenesmayinfluencediseaseseverity...................................................93
STUDYIII............................................................................................................................... 113
ContributionofTTC21Bgenetoglomerularandcystickidneydiseases.............................113
STUDYIV............................................................................................................................... 123
ClinicalutilityofakidneyͲdiseasegenepanelforgeneticdiagnosisofcysticandglomerular
inheritedkidneydiseases.....................................................................................................123
DISCUSSION............................................................................................................................... 151
IDIOPATHICNEPHROTICSYNDROME........................................................................................152
IDIOPATHICMEMBRANOUSNEPHROPATHY:THEIMPORTANCEOFGENETICS.......................152
THEKIDNEYͲDISEASEGENEPANEL:THEINTEGRATIVEAPPROACH..........................................155
SRNS/FSGS:FROMGENETICSTOGENOMICS............................................................................159
TTC21BGENE:CAUSATIVEANDMODIFYINGROLE...................................................................162
CONCLUSIONS........................................................................................................................... 165
BIBLIOGRAPHY........................................................................................................................... 169
ANNEXES.......................................................................................................................195
ABBREVIATIONS
A,Ala
Alanine
AIIRA
AngiotensinIIreceptorantagonists
ACEi
AngiotensinͲconvertingͲenzymeinhibitors
AD
Autosomaldominant
ADAS
Autosomaldominantalportsyndrome
ADPKD
Autosomaldominantpolycystickidneydisease
ADTKD
Autosomaldominanttubulointerstitialkidneydisease
AFP
AlphaͲfetoprotein
ANP
AtrialNatriureticPeptide
AR
Autosomalrecessive
ARAS
Autosomalrecessivealportsyndrome
ARPKD
Autosomalrecessivepolycystickidneydisease
AS
Alportsyndrome
Ca
2+
Calciumion
CAKUT
Congenitalanomaliesofkidneyandurinarytract
C,Cys
Cysteine
CD2AP
CD2ͲAssociatedProtein
CI
Confidenceinterval
CKD
Chronickidneydisease
CN
Copynumber
CNS
Congenitalnephroticsyndrome
CNF
CongenitalnephroticsyndromeofFinnishtype
CNV
Copynumbervariant
CoQ10
CoenzymeQ10
D,Asp
Asparticacid
DAD
Diaphanousregulatorydomain
DAG
Diacylglycerol
Deletion/insertion
Indel
DID
Diaphanousinhibitorydomain
DMS
Diffusemesangialsclerosis
DNA
DeoxyriboNucleicAcid
DSC
Doublingofserumcreatinine
E,Glu
Glutamicacid
1
ELISA
EnzymeͲlinkedimmunosorbentassay
ESRD
EndͲstagerenaldisease
F,Phe
Phenylalanine
FCGR3
FcgammareceptorIII
FH1,FH2
Forminhomologydomains1,2
FNIII
FibronectintypeIII
fs
Frameshift
FSGS
Focalsegmentalglomerulosclerosis
g,mg
Gram,milligram
G,Gly
Glycine
GBM
Glomerularbasementmembrane
GEC
Glomerularendothelialcell
GFB
Glomerularfiltrationbarrier
GFR
Glomerularfiltrationrate
h
Hour
h
Heterozygous
H
Homozygous
H,His
Histidine
HDL
Highdensitylipoprotein
HLAͲDQA1
HLAcomplexclassIIHLAͲDQɲͲchain1
IFA
IndirectfluorescentͲantibodytechnique
IFT139
Intraflagellartransportprotein139
Ig
Immunoglobulin
IKD
Inheritedkidneydiseases
IMN
IdiopathicMN
INF2
Invertedformin2
INS
Idiopathicnephroticsyndrome
IP3
Inositol1,4,5Ͳtriphosphate
JATD
Jeuneasphyxiatingthoracicdystrophy
K,Lys
Lysine
kDa
Kilodalton
l,dl,ml
Liter,deciliter,milliliter
L,Leu
Leucine
LG
Lamininglobular
LMX1B
LIMhomeodomainͲcontainingtranscriptionfactor1B
LMͲ521
Lamininɲ5ɴ2ɶ1
2
LN
LamininNͲterminal
M,Met
Methionine
2
m Metresquare
MAF
Minorallelefrequency
MCD
Minimalchangedisease
mDias
MouseDiaphanousͲrelatedformins
MG
Mutationgroup
min
Minutes
MLPA
MultiplexligationͲdependentprobeamplification
Mmol
Millimole
MN
Membranousnephropathy
mo
Months
MOI
Modeofinheritance
MYO1E
Myosin1E
n
Samplesize
N,Asn
Asparagine
NC1
Noncollagenousdomain
ND
Nodata
NEP
Neutralendopeptidase
NGS
NextͲgenerationsequencing
Nm
Nanometre
NPHP
Nephronophthisis
NPHPͲRC
NephronophthisisͲrelatedciliopathies
NS
Nephroticsyndrome
NSR
NonͲspontaneousremission
OR
Oddsratio
P
PValue
P,Pro
Proline
PCR
Polymerasechainreaction
PH
Pleckstrinhomology
PKD
Polycystickidneydisease
PLA2R1
MͲtypephospholipaseA2receptor
PLCɸ1
PhospholipaseCepsilon1
PLC_X,PLC_Y
Phospholipasecatalyticdomains
Q,Gln
Glutamine
R,Arg
Arginine
3
RA1,RA2
RasGTPbindingdomainfromguaninenucleotideexchangefactors
RAAS
ReninͲangiotensinͲaldosteronesystem
RasGEF_CDC25
GuaninenucleotideexchangefactorforRasͲlikesmallGTPases
Ref
Reference
rs
RefSNP
S,Ser
Serine
sd
Syndrome
SD
Standarddeviation
SDNS
SteroidͲDependentNephroticSyndrome
SNP
Singlenucleotidepolymorphism
SOD2
Superoxidedismutase2
SRNS
SteroidͲResistantNephroticSyndrome
SSNS
SteroidͲSensitiveNephroticSyndrome
suPAR
Solubleurokinaseplasminogenactivatorreceptor
T,Thr
Threonine
THSD7A
ThrombospondintypeͲ1domainͲcontainingprotein7A
TM
Transmembrane
TRP
Tetratricopeptiderepeatdomains
TS
Tuberoussclerosis
UCV
Unclassifiedsequencevariants
uPAR
Urokinaseplasminogenactivatorreceptor
V,Val
Valine
VEGF
Vascularendothelialgrowthfactor
vs
Versus
VS
Variantscore
WAGR
Wilmstumor,aniridia,genitourinaryabnormalities,andmental
retardation
WT1
WilmsTumor1
XLAS
XͲlinkedalportsyndrome
Y,Tyr
Tyrosine
y,yr
Years
*
Stopcodon
4
PRESENTATION
Thisthesisisacontributiontotheknowledgeofthemolecularbasesofidiopathicnephrotic
syndrome.IthasbeenperformedintheMolecularBiologylaboratoryofFundacióPuigvertin
Barcelona.Thislaboratoryperformsgeneticdiagnosticofinheritedrenaldiseasessince2002
aswellasresearchonthemolecularbasesofthesediseases.
Thefirstpartofthisthesispresentstheassociationofgeneticpolymorphismswiththeriskto
developidiopathicmembranousnephropathyandwithitsclinicalcourse.Ourresultsshowed
that risk alleles within HLAͲDQA1 and PLA2R1 genes are associated with a higher risk of
idiopathicmembranousnephropathy.Inaddition,thecombinationoftheriskallelesforboth
genesresultsinanincreasedriskofidiopathicmembranous nephropathy.Forthefirsttime,
we presented evidence of the contribution of these polymorphisms to predict response to
immunosuppressivetherapyanddeclineinrenalfunction.
ThesecondpartofthesethesisfocusesonthestudyofthemolecularbasisofsteroidͲresistant
nephrotic syndrome. Our results contribute to enhance the genotypic spectrum associated
withthisdiseaseinseveralaspects:1)mutationsinanSRNS/FSGSgenetogetherwithCOL4A3
have been detected in patients with increased disease severity, 2) the homozygous p.P209L
mutation in TTC21B gene is not the only causative mutation of FSGS, and 3) heterozygous
deleterious TTC21B variants may aggravate the phenotype of patients with glomerular and
cystic kidney inherited kidney diseases. In addition our results also improved the genetic
diagnosisofinheritedkidneydiseases.WedevelopedakidneyͲdiseasegenepanelthatallowed
amorecomprehensivecharacterizationofpatientsenablingthedifferentialdiagnosisofcystic
andglomerularinheritedkidneydiseasesandtheidentificationofstructuralvariants,complex
inheritancepatternsandmosaicmutations.Thisapproachiscurrentlyusedinroutinegenetic
diagnostic of patients from all over Spain and other countries, providing a nice example of
translationalresearch.
This thesis consisted of six parts. The introduction section describes the generalities of the
glomerularfiltrationbarrier,aswellastheclinicalfeaturesandmolecularbasesofidiopathic
nephroticsyndrome.Theaimssectionreflectstheglobalandtheparticularaimsofthepresent
thesis.TheResultssectioncontainsthefourstudiesperformedinthisprojectwithasummary
of each one at the beginning. These results are discussed the Discussion section. Finally, the
conclusionsderivedfromourresultsarepresentedintheConclusionsection.
5
6
INTRODUCTION
7
8
1. KIDNEYANATOMYANDPHYSIOLOGY
Thekidney’smainfunctionistofilterwastematerialsoutofthebloodandpassthemout
of the body as urine. The kidney’s microscopic functional units that filter blood to produce
urine are nephrons. An adult human kidney is known to contain an average of one million
nephrons.Basedontheirlocation,therearetwotypesofnephrons:corticalnephrons(85%),
which are located deep in the renal cortex, and juxtamedullary nephrons (15%), which lie in
therenalcortexclosetotherenalmedulla(Figure1).
Nephrons are functionally divided into a filtration unit called the renal corpuscle and a
reabsorptionunitnamedtherenaltubule:
Ͳ
TherenalcorpuscleiscomposedoftheglomerulusandBowman’scapsule,separated
bytheurinaryspacealsonamedBowman’sspace.
o
The glomerulus is a network of tangled capillaries where the actual filtering
takesplace.Itiscomposedofthreecelltypes:glomerularendothelialcellsthat
form the intricately tortuous inner capillary tuft; podocytes or visceral
epithelialcellsthattightlywraparoundtheexteriorofglomerularcapillaries;
and mesangial cells that together with the mesangial matrix provide a
structural reinforcement for the glomerular vasculature. Glomerular
endothelial cells and podocytes share a common extracellular cell matrix
knownastheglomerularbasementmembrane(GBM).Thesethreelayersform
theglomerularfiltrationbarrier(GFB).
o
Bowman’scapsuleisacuplikeenclosurecomposedofparietalepithelialcells
thatsurroundthetuftofcapillaries.
Ͳ
Therenaltubuleisalongconvolutedstructurethatemergesfromtheglomerulus.Its
functionistoconcentrateurineandrecovernonͲwastesolutesfromtheprimaryurine.
Itisdividedintothreepartsbasedontheirfunction:theproximalconvolutedtubule,
the loop of Henle and the distal convoluted tubule, which empties its filtrate into
collectingducts.
9
Figure
e 1. Basic kidneyanatomy (adapted fro
om: “KidneySStucture.” Bou
undless Biolog
gy. and Kurts etal.,
2013)).
T
The
renal arrtery enters the kidneyy through th
he renal hilius and braanches into small
arterioles that caarry the bloo
od to the reenal cortex. In the renaal cortex, blo
ood enters to
t the
glomeruli througgh the afferrent arteriole in the vaascular pole. Inside thee glomeruluss, the
affereent arteriolee immediateely branchess into the ellaborated glomerular caapillary tuft. LowͲ
molecularͲweighttplasmawassteproductssarefilteredacrosstheG
GFBformingtheprimaryyurine
hepassageo
ofalbuminaandlargermacromolecules(>15kDaa)that
intheeurinaryspaace,whileth
are necessary
n
for maintainin
ng normal ho
omeostasis is restricted.. The filtrateed blood exitts the
glomeruli througgh the efferrent arteriolles. The effferent arterioles descen
nd into the renal
ullaandsepaarateintoth
heperitubulaarcapillariess.Theperitubularcapillaariessurroun
ndthe
medu
proximalanddisttaltubules,aaswellastheeloopofHenle,wherettheyareknow
wnasvasa.These
capilllariesconverrgeintoveinsthatendin
ntherenalve
ein.
T
Theprimary
dintheurin
naryspaceflowstothep
proximalcon
nvolutedtub
buleat
urineformed
theu
urinarypoleo
oftherenalccorpuscle.There,mucho
ofthewaterrandnutrien
ntsinitiallyfiltered
into the primaryy urine are reabsorbed
d. Then, the
e filtrate enters the loo
op of Henle
e that
desceendsdeepin
ntothemedullaofthekkidney,make
esahairpintturn,andretturnstotherenal
corteex. In the loo
op of Henle water and ions are reaabsorbed. Neext, the filtrate passes to
t the
distall convoluted
d tubule an
nd finally urrine from th
he distal co
onvoluted tu
ubules of se
everal
nephronsenters thecollectin
ngduct.Inth
hisstructureswaterand ionsarestilllreabsorbed
d.The
oncentrated urine throu
ugh the renaal medulla aand into the renal
colleccting duct caarries the co
10
pelviss. In the ren
nal pelvis, urine from many
m
collecting ducts co
ombines and flows out of
o the
kidneeysandintottheureter.
2. THEGLOM
T
MERULARFITLRATIO
ONBARRIER
T
The
GFB liess between the
t
vasculatture and th
he urinary space
s
being the only barrier
b
betw
ween the blo
oodstream and
a
the prim
mary urine. This structu
ure is a dyn
namic and highly
selectivefilterthatsieveson
nthebasiso
ofmolecular sizeandeleectricalcharggegeneratin
ngthe
primaaryurine.
T driving component
The
c
o the glomerular filtrattion is the glomerular
of
g
p
pressure, wh
hich is
highlyy controlled by the regulation of th
he vascular resistance of
o both afferent and effferent
arterioleviadiffeerentmechanisms.Otherrfactorsdetterminingtheeglomerularrfiltrationarrethe
oncottic pressure due to thee high conceentration off intracapillaary plasma p
proteins, and the
hydro
ostaticpressure,exerted
dbyafluidattrest(Leeuw
wisetal.,201
10).
T GFB is composed
The
c
of three layeers: the fene
estrated end
dothelium, tthe GBM an
nd the
podo
ocytes, visceeral epitheliaal cells with
h interdigitaating foot processes
p
th
hat form th
he slit
diaph
hragm(Figurre2).
Figure
e 2. A) Schematic represeentation of a
a glomerular capillary loop showing in
nteraction be
etween
podoccytes, mesanggial cells and the endothelium. B) Enlarrged view of the glomerulaar filtration barrier:
b
fenesttrated endoth
helium, glomerular basement membran
ne and podoccyte foot processes with the
t slit
diaphragm(Leeuwisetal.,2010).
2 FENESTTRATEDEN
2.1.
NDOTHELIU
UM
T
The
glomeru
ular capillariies are heavily perforaated with trranscellular pores know
wn as
fenesstraeandareenotsurroun
ndedbysmo
oothmusclecells.Theseffenestraeare60Ͳ100nm
mwide
11
and comprise
c
ap
pproximatelyy 20% of the endotheliaal surface, making
m
glom
merular capillaries
efficieentportalsffortherapidpassageofh
highvolumessoffluid.Basedontheffenestraesize
e,one
wouldexpectthaatalbumin(3
3.5nmofrad
dius)couldpassthrough thefenestra
ae(Levick&SSmaje
helium has a
a very low sieving
s
coeffficient of alb
bumin
1987). However, the fenestrrated endoth
umplaysanaactiverolein
nrenalfiltration(Sarin20
010).
indicaatingthattheglomerularendotheliu
T
Theglycocaly
yxisanegativeͲchargedggelͲlikesurfaacestructureethatlinestheluminalfaaceof
glomerularcapillaariesandtheefenestralsurfaces,andactsasasizzebarrierto albuminfiltration
Q
20
002). It is composed
d of proteo
oglycans with their bound
b
(Rosttgaard & Qvortrup
glyco
osaminoglycaans, glycopro
oteins and glycolipids.
g
Around
A
90% of these glyycosaminogllycans
areh
heparinsulfateandhyalu
uronanand theyactas amolecular scaffold.Plaasmaprotein
nsare
absorrbed within the glycocaalyx by bindiing multivale
ent to glyco
osaminoglycaans, thus cre
eating
stericchindrancettoproteinfiltration.Thissbarrierfunctionwillbeefurthermodifiedbythe
efluid
drag throughtheeglycocalyx whichallowsfordynam
micequilibriumwithglycocalyxͲboundand
freeccirculatingprroteins(Haraaldssonetall.,2008).
T cellͲsurfaaceͲanchoreed glycocalyxx and the broad
The
b
coat of
o >200 nm thick formed by
plasm
ma proteins absorbed within
w
the glycocalyx constitute
c
the endotheelial surface layer
(Hjalm
marsson et al., 2004). This
T
layer fo
orms the firsst barrier to
o albumin paassage acrosss the
glomerular filtrattion barrier and ensuress that the albumin is larrgely confineed to the cap
pillary
lumen(Figure3).
Figure
e 3. Schemattic representaation of the glomerular fiiltration barrier with a deetailed view of the
glycoccalyxcomponents.ESL,end
dothelialsurfaacelayer(adaptedfromHaaraldssonetall.,2008)
12
2.2. GLOMERULARBASEMENTMEMBRANE
TheGBMisa250to400nmthinmeshworkofextracellularmatrixproteins.Mostofthe
GBMissituatedbetweentheglomerularendothelialcellsandthepodocytesalthoughitisalso
foundbetweenmesangialcellsandpodocytes.
TheGBMprovidesstructuralsupportfortheglomerularcapillariesandharborsligandsfor
receptors of the adjacent endothelial cells, podocytes, and mesangial cells (Yurchenco &
Patton2009;Miner2005).Inaddition,itactsasasizeͲandchargeͲselectivefiltrationbarrier,
impeding the passage of molecules negatively charged and molecules larger than
approximately5nm(Deenetal.,2001).
The GBM is composed of laminin, type IV collagen, heparan sulfate proteoglycan and
nidogen (Figure 4). These components are synthesized by podocytes and glomerular
endothelialcellsandsecretedtotheextracellularspace(StJohn&Abrahamson2001).During
glomerulogenesis the separate podocyteͲderived and endotheliumͲderived basement
membranes fuse to form the immature GBM. After glomerular maduration both podocytes
and endothelial cells are equally important for maintaining its structure and function (Suh &
Miner2013).
Ͳ
Lamininsarelargeheterotrimericglycoproteinscomposedofthreedifferentchains:ɲ,
ɴandɶ.Thesechainsassembletoformatleast15ɲͲɴͲɶdistinctlaminintrimerswith
cruciform, YͲshaped, or rodͲshaped structures. Each laminin trimer has the following
parts:
o
A long arm formed by association of ɲ, ɴ and ɶ chains via coiled coil
interactions and disulfide bonding. At the distal end, there is a large laminin
globular(LG)domainformedexclusivelybytheCͲterminaloftheɲchainthat
linklaminintrimerstothepodocytesandendothelialcellsviainteractionswith
integrinsanddystroglycansreceptors.
o
ThreeshortarmscalledlamininNͲterminal(LN)domainscorrespondingtothe
NͲterminalglobulardomainsofthethreechains,whichplaysanessentialrole
inpolymerizationoftrimerstoformanetwork.
The major laminin trimer found in the mature GBM is laminin ɲ5ɴ2ɶ1 (LMͲ521) (St
John&Abrahamson2001).Oncelamininissecretedtotheextracellularspace,laminin
trimersselfͲpolymerizebyinteractionsamongLNdomainsandformalamininnetwork
13
(Cheng et al., 1997). This polymerization step is a reversible and calciumͲdependent
processthatrequiresaminimumconcentrationoflaminintrimerstoformaninitiation
complex(Yurchenco&Cheng1993).Therefore,lamininappearstobeessentialforthe
initial formation of GBM. Then, interactions of laminin with other basement
membrane molecules (type IV collagen, nidogen, and sulfated proteoglycan) enable
theassemblyofaGBM.
Ͳ
Type IV collagens represent half the total proteins of a mature GBM. There are 6
genetically distinct collagen IV ɲ chains (ɲ1Ͳɲ6) and they assemble to form three
differentprotomers,eachcomposedofthreeɲchains:ɲ1ɲ1ɲ2,ɲ3ɲ4ɲ5andɲ5ɲ5ɲ6.
Each collagen IV ɲ chain has three domains: the NͲterminal 7S domain, a central
collagenousdomainandanoncollagenousdomain(NC1)attheCͲterminus.
The central collagenous domain consists of many GlyͲXͲY amino acid triplet repeats
(withXandYusuallybeinglysineorproline)thatallowtheassemblingofthechains
intoatriplehelix.TherearealsomultipleinterruptionsoftheGlyͲXͲYrepeatsscattered
throughout the collagenous domain that provide flexibility to the collagen IV
protomers and therefore, to the collagen IV network. Both the 7S and the NC1
domainsareinvolvedinlinkingtrimerstoeachothertopromotecollagenIVnetwork
formation. In addition, the NC1 domain is crucial for directing the composition of
collagenheterodimers.
MaturationoftheGBMinvolvesthetransitionoftheɲ1ɲ1ɲ2collagentotheɲ3ɲ4ɲ5
collagen protomers as the predominant collagen complex. This transition might be
requiredtoaccommodatetheincreasedbloodpressureafterbirth,sinceɲ3ɲ4ɲ5type
IVcollagenproducesamoreheavilycrossͲlinkedandmoreproteaseͲresistantnetwork
comparedtotheɲ1ɲ1ɲ2typeIVcollagennetwork(Miner&Sanes1994).
Ͳ
NidogenͲ1 and nidogenͲ2 are two homologous glycoproteins containing three
globularͲlike domains with two rodͲlike domains that separate the globularͲlike
domains. NidogenͲ1 binds to both, laminin ɶ1 chain short arm and type IV collagen.
NidogensaresupposedtoprovideextrastabilitytoGBMundersituationsofunusual
stress,buttheyarenotrequiredfortheinitialformationoftheGBM.
Ͳ
Heparan sulfate proteoglycans have a protein core with covalently linked sulphated
glycosaminoglycansidechains.Thesulphatedsidechainsgiveanegativechargetothe
proteoglycan, however they do not seem to play critical roles in the GFB. The most
14
common heparan sulphate proteoglycan in mature GBM is agrin, although in
glomerulogenesisthereappearstobecoͲdistributionofperlecanandagrin(Groffenet
al.,1998).TheNͲterminaldomainofagrinbindsavidlytotheLMͲ541longarm,andits
CͲterminal contains domains that can bind to cellͲsurface receptors such as
dystroglycan and integrins. These properties of agrin suggest that it could be
implicatedinmediatingchargeselectivitywithintheGFBandinlinkingtheGBMtothe
adjacentcells.Inaddition,heparansulphatesidechainsareimportantforbindingand
sequestering growth factors in some contexts, such as the passage of vascular
endothelialgrowthfactor(VEGF)frompodocytestofenestratedendothelium.
Figure4:ComponentsoftheglomerularbasementmembraneandthepodocyteͲglomerularbasement
membraneinterface(Lennonetal.,2014).
These components are distributed as a highly organized labyrinth of interconnected
polygonal fibrils of varying thickness ranging from 4 to 10 nm. The fibrils are more densely
15
packeedwithinthe corewherre theyhaveeheterogene
eousporesaaveraging10
0 nmin diam
meter.
The ɲ3ɲ4ɲ5 collagen is con
ncentrated at the core
e with the minor
m
ɲ1ɲ1
1ɲ2 closer to the
endothelialside, whereastheelamininLM
MͲ521andagrinarebiom
modallydisttributed(Figu
ure5)
(Scott&Quaggin2015).
Figure
e5.Molecularorganization
noftheglomeerularbaseme
entmembran
ne.ESL,endotthelialsurface
elayer;
FP,fo
ootprocesses;GBM,glomerularbasementmembrane
e;GEC,glomerularendotheelialcell;IR,in
ntegrin
recep
ptor(Scott&Q
Quaggin2015)).
2 PODOC
2.3.
CYTES
P
Podocytesar
rehighlyspeecialized,terminallydiffe
erentiatedep
pithelialcellssthatenwraapthe
outerr aspect of the GFB. Th
hey perform
m highly speccialized funcctions, which
h includes: a size
barrieer to proteins, a chargee barrier to proteins, maintenance
m
of the capillary loop shape,
s
countteraction of the intraglo
omerular preessure, synthesis and maintenance
m
of the GBM
M, and
produ
uction and secretion of VEGF reequired forr glomerular endothelial cells inttegrity
(Shan
nkland2006)).
M
Mature
podo
ocytes consisst of morpho
ologically an
nd functionally different components: cell
body,majorproccesses,secon
ndaryprocesssesandfoo
otprocesses..Thecellbo
odyessentiallylies
pace and it contains
c
the nucleus and
d the cell machinery.
m
Frrom the cell body
in thee urinary sp
arise long major processes that
t
brancheed into seco
ondary proceesses, which in turn spliit into
foot processes.FFootprocessesbranchan
ndinterdigittatewithneighboringfo
ootprocessess,and
mplex
adjaccent foot processes are directly linkked by the glomerular slit diaphgraam. This com
structture of the podocyte is achieved by a unique cytoskelettal architectture consistiing of
16
microtubuleͲrich major and secondary processes, and actinͲbased foot processes (Welsh &
Saleem2012)(Figure6).
Figure 6. A scanning electron micrograph of podocyte cells in a glomerulus shows the cell body (CB),
major processes (MP), secondary processes (SP) and the finely interdigitating foot processes (Dennis
KunkelMicroscopy,Inc.Welsh&Saleem2012)
Footprocessescontainthreedistinctmembranecompartments:thebasalside,theapical
side and the slit diaphgram. All three domains interact with the foot processes actin
cytoskeleton, influencing signaling pathways and motility of the podocyte. The basal side
anchorsthepodocytetotheGBMwithseveraltypesofintegrinsanddystroglycans(Kreidberg
etal.,1996;Raatsetal.,2000).Theapicalsideisnegativelychargedduetothepresenceofthe
anionicproteinspodocalyxin,podoplanin,andpodoendin(Kerjaschkietal.,1984;Matsuietal.,
1999). This negative charge contributes to limit the passage of albumin (also negatively
charged)andmaintainstheseparationamongadjacentpodocytes.
The podocyte slit diaphgram is a unique cellͲcell contact with zipperͲlike structure and a
constant width of 40 nm (Rodewald & Karnovsky 1974). The podocyte slit diaphgram
representsaseparateclassofspecializedintercellularjunctionbecauseitintegratesstructural
componentsofvariouscelljunctiontypes,includingtight,adhesion,gapandneuraljunctions
(Reiser et al., 2000; Schnabel et al., 1990). Many of the molecular constituents of the slit
diaphgrams have been identified, although their topological assembly into a functional
complex is poorly understood. The ectodomains of several adhesion receptors in the slit
diaphgram likely organize the bridge linking juxtaposed foot processes via a combination of
homophilic and heterophilic receptorͲreceptor interactions. By virtue of their large
ectodomains, nephrin and Fat1 are excellent candidates to associate in trans to connect
opposingfootprocesses(Inoueetal.,2001;Khoshnoodietal.,2003)(Figure7).
17
Theslitdiaphgramcontainsuniqueproteinsthathavetofulfillatleastfourdifferenttasks:
theyactasamacromolecularfilter,anchorthefiltertotheGBM,connecttheslitdiaphgramto
theactincytoskeletonviaadaptorproteins,andarepartofasignalingcomplexthatintegrates
andmediatesextracellularandintracellularsignalsregulatingtheplasticityoffoodprocesses
(Grahammeretal.,2013).
The first unique slit diaphgram protein identified was nephrin, a type I transmembrane
protein with a cytoplasmatic CͲterminus, a transmembrane domain, a fibronectin type III
domainandeightextracellularC2Ͳtypeimmunoglobulinsdomains.Nephrinmoleculesinteract
intransconfigurationwitheachother,andprobablyoverlapinthemiddleofthegaptoforma
dense midline, giving the slit diaphragm its zipperͲlike appearance. Therefore, nephrin is
considered the core biomechanical component of the molecular sieve (Tryggvason 1999;
Ruotsalainenetal.,1999).
TheNephͲ1,NephͲ2andNephͲ3proteinssharecertainhomologywithnephrin,butlacka
fibronectindomainandonlyhavefiveextracellularC2Ͳtypeimmunoglobulindomains(Sellinet
al.,2003).Thesemoleculesareprobablytooshorttoparticipateinhomophilicinteractionsin
transconfigurationacrossthe40nmgapoftheslitdiaphragm,butarelikelytointeractwith
nephrininbothcisandtransconfigurations(Gerkeetal.,2003;Barlettaetal.,2003).Allthree
NephproteinspossessaTHVmotifneartheirCͲterminalend,whichcanbindtoPDZdomains,
therebyenablingrecruitmentofscaffoldingmolecules,suchasZOͲ1ortheaPKC/PARͲ3/PARͲ6
polaritycomplex.Neph1andnephrinseemtobeinvolvedinsignalingeventsfromtheurinary
spacetothepodocytecytosol(Hartlebenetal.,2008).
The third unique slit diaphragm protein identified to date is podocin, a member of
stomatinfamilyofproteins.Podocinisanchoredtothemembraneviaitscentralpartandits
NͲterminal and CͲterminal both face the cytoplasm. Podocin helps in the nephrin anchoring,
seemstorecruitotherslitdiaphragmproteinstocholesterolͲrichmembranedomains,andto
increasethesignalingpropertiesofthenephrinͲNeph1complex(Huber,Simons,etal.,2003;
Gargetal.,2007).
Thescaffold proteinsZOͲ1,CD2Ͳassociated protein and MAGIͲ2, aswellasCASKand the
actinͲbinding proteins IQGAP1 and ɲͲactininͲ4, anchor nephrin (and potentially other slit
diaphragm proteins) directly or indirectly to the actin cytoskeleton, which is crucial to both
foot process spacing and stability (Huber, Hartleben, et al., 2003; Palmen 2002). These
interactionsprobablystrengthenthebiomechanicalpropertiesoftheslitdiaphragmitself,and
18
might also enable it to relay signals to the actin cytoskeleton that, in turn, induce
morphologicalchangestoprimaryandsecondaryfootprocesses(Grahammeretal.,2013).
Figure7.Theglomerularslitdiaphragm.Anultrathinslitdiaphragmspansthefiltrationslitbetweenthe
footprocesses,slightlyabovethebasementmembrane(Tryggvasonetal.,2006).
3. NEPHROTICSYNDROME
Nephroticsyndrome(NS)ischaracterizedbymassiveproteinuria,hypoalbuminemia,and
edema,althoughadditionalclinicalfeaturessuchashyperlipidemiaarealsousuallypresent.A
recently published definition of NS considers that nephrotic range proteinuria of glomerular
originandaserumalbuminconcentrationbelowthelowerlimitofnormalareessentialtoNS
definition whereas edema, hyperlipidemia and lipiduria are commonly associated but not
essential(Glassocketal.,2015).
The central abnormality in all cases of NS is the development of massive proteinuria.
Physiologically,thelivertriestocompensateforthisexcessivelosswithincreasedproteinand
lipoprotein synthesis. NS develops when the loss of protein in urine exceeds the rate of
albuminsynthesisintheliver,resultinginhypoalbuminemiaandedema.
NS represents one of the most common diagnoses in pediatric nephrology. The annual
incidence is estimated to be 2Ͳ7 per 100.000 children, with a prevalence of 16 per 100.000
children in Western countries (Giglio et al., 2015). There is a male preponderance among
19
young children, at a ratio of 2:1 to females, although this gender disparity disappears by
adolescence,makingtheincidenceinadolescenceandadultsequalamongmalesandfemales.
3.1. CLINICALMANIFESTATIONS
3.1.1. Proteinuria
Proteinuria is a condition in which urine contains an abnormal amount of protein.
Nephrotic range proteinuria is defined as the proteinuria capable of producing NS and is
consideredtobesuperiorto3.5g/24h/1.73m2inadultsor40mg/h/m2inchildren.However,
theclinicalmanifestationsofNScanappearwithlowerlevelsofproteinuriaorbemissingin
patientswithhigherlevelsofproteinuria.Forthisreason,itispreferredtoconsidernephrotic
rangeproteinuria,theproteinuriaabletoproducehypoalbuminemia.
The main proteins lost in NS have a molecular weight of 40Ͳ150 kDa, including albumin
(the most abundant protein in plasma), IgG, transferrin, ceruloplasmin and ɲ1Ͳacid
glycoprotein. There is also loss of small amounts of higher molecular weight proteins (200
kDa),likethesmallformsofhighdensitylipoprotein(HDL).However,proteinshigherthan200
kDasuchasIgM,macroglobulins,fibrinogen,XIIIfactor,fibronectinandlargelipoproteinsare
notlostevenincaseofsevereproteinuria.
The amount of proteinuria can be influenced by other factors different from the
glomerular damage such as the reninͲangiotensin system activity, the hepatic capacity for
albuminsynthesis,theproteindailyintakeandtheantihypertensivedrugadministration.
Inhealthyconditions,theGFBavoidsthepassageofmoleculeswithasizesuperiorto70
kDatotheprimaryurine.Albuminhasamolecularweightof69kDaandanetchargeofͲ15
and is filtered through the GFB with a sieving coefficient of 0.0001. Interestingly, negatively
chargedproteinshaveanincreasedclearancecomparedtopositivechargedonesduetothe
negativechargesintheGBMheparansulfateproteoglycans.
ProteinuriainNScanbeduetoastructuralalteration,disruptingthesizeselectivityofthe
GFB and leading to massive nonselective proteinuria, or to an electrochemical alteration,
affectingthechargeselectivityoftheGFBandpresentingwithselectivealbuminuria.
20
3.1.2. Hypoalbuminemia
Hypoalbuminemia is a low level of albumin (inferior to 3 g/dl) in blood and it is a direct
consequenceofproteinuria.Albuministhemostabundantplasmaproteinandrepresents70Ͳ
90%oftheproteinuriadetectedinNS.Thisfiltratedalbuminisinpartcatabolizedbytherenal
tubule,whichincreasesitscatabolicrate.Tocompensatethislossofalbumininurine,theliver
increasesthealbuminsynthesisevenina300%.Whentheproteinuriaandtherenalalbumin
catabolism exceed its hepatic synthesis, hypoalbuminemia appears. The severity of the
hypoalbuminemia is well correlated with the amount of proteinuria although other factors
suchastheage,thenutritionalstateandthetypeofrenallesionalsoinfluence.
In addition to the hypoalbuminemia, there is a decrease in the serum immunoglobulins,
especially IgG, whereas high molecular weight immunoglobulins remain normal or even
elevated.
3.1.3. Edema
Edema is defined as an abnormal accumulation of fluid in the interstitial compartment.
EdemasarethemainreasonfordiagnosisinchildrenwithNS.Theyaresoft,pittingandmainly
localizedinsloperegionslikefootorsacrum,andinregionswithlowtissuepressuresuchas
periorbital region. In advanced disease, patients may develop periorbital or genital edema,
ascites,orpleuraleffusion.
ItiswidelyacceptedthatNSpatientshaveanexcessoftotalbodysodiumandwater.Two
major pathophysiological mechanisms have been proposed to explain the development of
edemainNSbasedonthestatusoftheirintravascularvolume:theunderfillinghypothesisand
theoverfillinghypothesis.
Intheunderfillinghypothesis(Figure8A),thehypoalbuminemiacausesadecreaseinthe
intravascular oncotic pressure. This in turn leads to fluid shift from intravascular to
extravascular compartment and edema formation. The homeostatic response to the
hypovolemia activates the renin angiotensin aldosterone system, the sympathetic nervous
systemandthereleaseofantidiuretichormone.Gradually,theplasmavolumenormalizesasa
resultoftheincreaseoftheextracellularspaceandtheedemaformation.
In the overfill hypothesis (Figure 8B), there is an intrinsic defect that enhances tubular
sodium and water reabsorption, independently of the hemodynamic situation. This causes
21
intravvascularvolu
umeexpansiionandincreasedintravvascularhydrrostaticpresssure,which leads
to ed
dema formattion. Several mechanism
ms to explain
n this sodium and wateer retention in NS
patientswithoveerfillingofth
heintravascu
ularcomparttmenthaveb
beenpropossed.Suchpaatients
wresistancettoAtrialNattriureticPep
ptide(ANP), apolypeptid
dethatisrelleasedinord
derto
show
reducce the bloo
od pressure by decreassing the am
mount of waater, sodium
m and fat in the
circullatory system
m. It has allso been suggested thaat intrarenal sodium rettention is due to
activaationoftheepithelialsodiumchanneelinthecolle
ectingduct.
Figure
e8.Pathophyysiologicalmeechanismsofeedemaformation.A)theunderfillinghyypothesisand B)the
overfiillinghypotheesis(adaptedffromHernand
doAvendaño2
2008).
T
Thefindingt
hatmostNSSpatientshaavenormalo
orelevatedintravascularrvolumesugggests
that the overfilling hypotheesis might prevail
p
in most
m
cases. However, iin some children
umecontractionisfound
d.Ofnote,bo
othhypothesesarenotm
mutuallyexcclusive
intravvascularvolu
andtthevolumesstatusmayd
dependonthestageof disease.Itisspossibleth
hattheunderfilled
state may be predominant in the acutee setting, in which massive proteinuria causes rapid
a abrupt drop in plasm
ma oncotic p
pressure, wh
hereas
development of hypoalbuminemia and an
overfilledstatemaybep
predominant inthechron
nicphasedu
uringwhichp
patientsmayyhave
theo
continuingsodium
mretentionduetopersistentlowͲgradehypoalb
buminemia.
3.1.4. Hyperlipide
H
emia
H
Hyperlipidem
mia is an abn
normally higgh concentraation of fats or lipids in blood. The most
frequ
uent lipid abnormality
a
is hypercholesterolemia appearin
ng in 85% of patients. The
22
hypertriglyceridemiaislessfrequentandonlyappearswhentheserumalbuminisbelow1Ͳ2
g/dl.Lipiduria,theexcretionoffattycastsinurine,isalsocharacteristic.
The pathogenesis of hyperlipidemia is multifactorial. Hypercholesterolemia seems to be
the consequence of the decrease in the intravascular oncotic pressure that results in an
increase in the hepatic synthesis of lipids and apolipoproteins. In addition, lipoproteins
clearance is decreased due to the low level of tissue low density lipoproteins receptors.
Hypertriglyceridemia is not due to the increase in triglycerides synthesis but a decrease in
triglyceridescatabolism.Itiscorrelatedwiththealbuminclearancebutnotwiththedecrease
intheintravascularoncoticpressure.
The clinical significance of hyperlipidemia in NS is uncertain. Patients with NS and
hyperlipidemiahaveanincreasedcardiovascularmortality,althoughthesepatientsalsohave
othercardiovascularriskfactors.Inanimalmodels,hyperlipidemiaacceleratestheglomerular
damage,promotingtheinflammatoryinfiltrateandrenalfibrosis.
3.2. COMPLICATIONS
3.2.1. Thrombosis
RenalͲveinthrombosisandthromboemboliceventsingeneralconstituteoneofthemost
severe complications in NS. Its incidence is estimated to be 5Ͳ60% of patients being more
frequent at the beginning of the disease. In addition, only 10% of patients with renalͲvein
thrombosispresentwithsymptoms:flankpain,grosshematuria,increasedrenalsize,andloss
of renal function. In children, thromboses are more severe and in half of cases affect the
arterialtree.Inadults,arterialthrombosisislesscommonthanvenousthrombosis,butitisa
seriouscomplicationcausingimportantmorbidity.
Severe hypoalbuminemia (less than 25 g/l), high proteinuria (more than 10 g/24h), high
fibrinogenlevels,lowantithrombinIIIlevels(less than75%ofnormal),and hypovolemia are
significantlyassociatedwithanexcessiveriskofthromboticcomplication.
3.2.2. Acuterenalinsufficiency
Acute renal insufficiency appears in patients treated with diuretics with severe
hypoalbuminemia.Itsmaincauseisintravascularvolumedepletion.
23
3.2.3. Endocrinalterations
NSalterstheregulationofseveralendocrinesystemsduetotheurinarylossofhormones
orduetothechangeintheirintravascularandextravasculardistribution.
3.2.4. Infections
The risk of infections is increased in children. The most common and serious type of
infectionisprimarybacterialperitonitis,whichisestimatedtohaveanincidenceof5%inNS
children. Risk factors include low serum IgG levels due to urinary loss of IgG, abnormal T
lymphocytefunction,anddecreasedlevelsoffactorsBandD,resultinginadecreasedability
to opsonize encapsulated bacteria. In addition, the administration of steroids and
immunosuppressivedrugsduringrelapsesfurtherincreasestheriskofinfection.
3.3. ETIOLOGYOFNEPHROTICSYNDROME
NSmaybecausedbyavarietyofglomerularandsystemicdiseases.Approximately90%of
thepediatriccasesareprimaryoridiopathicbutasmallproportionofthemaresecondaryto
infectious agents and other glomerular and systemic diseases. Separation of these two
categoriesisnoalwayseasybutitisimportanttodecidethetherapeuticapproach.Thisthesis
isonlyfocusedontheidiopathicnephroticsyndrome(INS).
INS can be associated with a variety of distinct clinic and pathological conditions largely
dependentontheageatdiseaseonset.Theidentificationofthehistologicallesionmayhelpto
elucidatethepathogenesisofthedisease.
3.3.1. CongenitalNephroticsyndromeofFinnishType
Congenital nephrotic syndrome (CNS) appears within the first 3 months of life. CNS of
Finnish type (CNF) represents the most severe form of NS. It was first described in Finland,
whereithasanincidenceof1/8200birthsbutithasbeenreportedworldwide.
CNFisanautosomalrecessive(AR)inheriteddisordercharacterizedbymassiveproteinuria
even in utero, a large placenta, and characteristic microcystic dilatation of the proximal
tubules.MutationsinNPHS1genearethemajorcauseofCNF,(explainedinthenextsection)
(Kestiläetal.,1998).
24
AprenataldiagnosisofCNFissuspectedasearlyas16to18weeksofgestationifelevated
ɲͲfetoproteinlevelsaredetectedinthematernalserumortheamnioticfluid,reflectingfetal
proteinuria. The abnormally large placenta (placental/weight ratio over 0.25) constricts the
fetus likely causing premature delivery of the fetus with postural deformities. The child is
typically small for the gestational age, with widened cranial fontanelles, a small lowͲbridged
nose, and edema in approximately 25% of cases. Proteinuria is detectable at birth and it is
extremely high ranging from 1 to 6 g/day. Initially, proteinuria is highly selective but it
becomespoorlyselectiveasthediseaseprogresses.Heavyandconstantproteinuriainevitably
leadsfullͲblownNSsoonafterbirthwithlifeͲthreateningedema,malnutrition,failuretothrive,
andsecondarycomplications.Microhematuriaorsignsoftubulardysfunction(aminoaciduria
and glycosuria) may also be present. Renal function is usually normal at birth but it
progressivelydeclinesreachingendͲstagerenaldisease(ESRD)withinthefirst2to3yearsof
life.ThereisahighmortalitywithinthefirstyearduetothecomplicationsofNS,particularly
infectionsandsepsis.
Thehistologicallesionsaredetectedmorefrequentlyafter3monthsofage.Theearliest
manifestation is focal cystic dilatation of proximal tubules (Figure 10), although it is not
presentinallthecases,and/oranincreaseinmesangialcellularityandmatrix,producingslight
glomerular enlargement. As disease progresses, the characteristic lesions of CNF appear
consistingofradialdilatationsoftheproximaltubules,mesangialproliferationandglomerular
lesions of focal segmental sclerosis. Immunofluorescence does not detect immune deposits
although as the disease progresses, IgM and complement C3 can be found. Effacement of
podocytes foot processes and disappearance of the slit diaphragm are seen in electronic
microscopy.
Figure 10. Histological lesions of congenital nephrotic syndrome of Finnish type at light microscopy.
Hematoxylineosinstaining(Duicuetal.,2009).
25
3.3.2. Diffusemesangialsclerosis
Diffuse mesangial sclerosis (DMS) accounts for approximately 10% of CNS cases and one
thirdofinfantileNScases(from3to12months)(Gbadegesinetal.,2008).
DMSischaracterizedbyonsetofNSinthefirstyearoflifeandrapidprogressiontoESRD,
oftenwithin1to3months.Thisentityhasbeendescribedasanisolateddisorderoraspartof
syndromeswithrenalandextrarenalabnormalitiessuchasDenysͲDrashorPiersonSyndrome.
DMS is pathologically defined by mesangial expansion and sclerosis that evolves towards
obliteration of the capillary lumen and contraction of the glomerular tuft (Figure 11).
Immunofluorescenceshowsnoglomerularimmunedepositsalthough nonspecificstainingof
the glomerular mesangium for IgM, C3, and C1q may be identified in some glomeruli. The
majorfindinginelectronicmicroscopyisextensiveeffacementoffootprocesses.
Figure 11. Histological lesions of diffuse mesangial sclerosis at light microscopy masson trichrome
staining(fromD’Agatietal.,2005).
3.3.3. Minimalchangedisease
Minimalchangedisease(MCD)isthemajorhistologicalfindinginINSchildrenaccounting
for more than 80%. The most frequent age at onset is 2Ͳ6 years (median 2.5) and is more
commoninmalesthanfemales(Bansal2014).Inadults,MCDisresponsibleforaround15Ͳ20%
ofINScases,thereisahigherincidenceinelderlythanmiddleͲagedadultsandtheincidenceis
equalbetweenbothgenders(Cameron1996;Korbetetal.,1988;Haasetal.,1997).
MCD virtually always manifests as NS at the onset, thus, the predominant findings are
heavy proteinuria, hypoalbuminemia, edema and elevated serum cholesterol. Proteinuria in
MCDisusuallyhighlyselective,consistingpredominantlyofalbumin.MostchildrenwithMCD
26
do not have evidence of renal insufficiency, hematuria, or hypertension. This entity is highly
steroidresponsivebutinsomecasesmayfollowaremittingandrelapsingcourse.Progression
toESRDisnotpartofthenaturalhistoryofMCD.
MCD is pathologically characterized by minimal or no glomerular alterations on light
microscopy(Figure12).The“minimal”findingsincludepodocyteswellingandmildmesangial
expansion. Immunofluorescence does not detect glomerular immune deposits although in a
minority of cases, there may be weak mesangial positivity for immunoglobulin IgM, with or
without C3. Electronic microscopy shows extensive effacement of foot processes in the
absenceofotherabnormalitiesoftheperipheralcapillarywalls.
Figure12.Histologicallesionsofminimalchangediseaseatlightmicroscopy.Massontrichromestaining
(fromkidneypathologywebsite).
3.3.4. Focalsegmentalglomerulosclerosis
Focal segmental glomerulosclerosis (FSGS) is one of the most frequent patterns of injury
foundinINSaccountingforapproximately10%ofchildren,20Ͳ50%ofadolescentsandaround
20Ͳ30% of adults (Hogg et al., 2007; Cameron 1996; Korbet et al., 1988; Haas et al., 1997).
FSGS lesions can occur as a result of many causes, including circulating factors, mutations in
podocytegenesorbesecondarytodrugs,infectionsormaladaptiveresponsestonephronloss
(Bose&Cattran2014).
Ethnicity plays important roles in the incidence of FSGS being 3Ͳ7 times higher in young
black men as compared with whites (Freedman et al., 2009). The reported annual incidence
ratesforFSGSis5casespermillionpopulationinwhites,comparedwith24casespermillion
population in African Americans. This increased incidence is partly explained by genetic risk
factors in 2 important podocyte function proteins: nonmuscle myosin heavy chainͲ9 (MYH9)
andapolipoproteinL1(APOL1).ThreepolymorphismsinMYH9genewerereportedtoconfer
27
riskforidiopathicFSGSandhypertensiveESRDamongblacksinARmodel(Koppetal.,2008).
Further investigation revealed two variants, called G1 and G2, in the last exon of the
neighboring gene APOL1 that had stronger association with FSGS and were under strong
selectiononlyinAfrica(Genoveseetal.,2010).
Proteinuria is a defining feature of FSGS, typically accompanied by hypoalbuminemia,
hypercholesterolemia, and edema. Approximately 75Ͳ90% of children and 50Ͳ60% of adults
with FSGS have NS at presentation (D’Agati et al., 2011). FSGS is associated with a poor
response to corticosteroid treatment (only about 50% of patients respond to therapy). It is
usually a progressive disorder with <5% spontaneous remission and a 50% ESRD rate over a
periodof5Ͳ8yearsfromthetimeoftherenalbiopsyinpatientsthatareeitherunresponsive
to treatment or not treated (Bose & Cattran 2014). Black race, increased degrees of
proteinuria,andrenalinsufficiencyareassociatedwithaworseoutcome.Approximately40%
of patients who undergo kidney transplantation develop recurrence of the disease in the
allograft(D’Agatietal.,2011).
FSGSispathologicallydefinedasglomerularsclerosisinvolvingasubsetofglomeruli(focal)
andaportionoftheglomerulartuft(segmental)(Figure13).Becausejuxtamedullarynephrons
are often affected first, adequate glomerular sampling is needed to identify the diagnostic
lesions.Asthediseaseprogresses,amorediffuseandglobalpatternofsclerosisevolvesand
tubularatrophyandinterstitialfibrosisdevelop.Immunofluorescencetypicallyrevealscoarse
segmentalstainingforIgMandC3entrappedinareasofhyalinosis.Onelectronicmicroscopy,
themajorfindingisextensiveeffacementofthefootprocesseswithoutotherabnormalitiesin
theGBM.ThereareseveralFSGSvariantsbasedonthepathologicfindings,frombesttoworst
prognosis:tip,FSGSnototherwisespecified,cellular,collapsing,andperihilar,beingthemost
common FSGS not otherwise specified. Also, increased severity of interstitial fibrosis and
tubularatrophyinbiopsyspecimensareassociatedwithworseoutcome.
28
Figure13:Histologicallesionsoffocalsegmentalglomerulosclerosisatlightmicroscopy.400x,masson
trichromestaining(fromkidneypathologywebsite).
3.3.5. Membranousnephropathy
Membranous nephropathy (MN) is one of the most common forms of NS in adults,
accountingforabout20%ofcases(Glassock2010).Itcompriseslessthan2%ofallidiopathic
NScasesinchildrenundertheageof5years,butitsincidenceincreasesprogressivelythrough
adolescence and into adulthood with a peak incidence in individuals aged 30Ͳ50 years. The
disease incidence is also influenced by sex being more common in males than females (sex
ratio 2:1). This condition is idiopathic in approximately 70Ͳ80% of cases, whereas the
remaining are secondary to a variety of autoimmune, infectious, neoplastic, and other
systemicdiseases,orfollowingexposuretocertainmedications(Glassock2010).
The predominant clinical presentation of patients with MN is NS, occurring in 60Ͳ80% of
them.Theremainingpatientspresentwithsubnephroticproteinuria,oftenasymptomaticthat
maybedetectedasanincidentalfindingduringaroutinemedicalexamination,andabout60%
ofthemwillprogresstofullNS(Fervenzaetal.,2008;Hladunewichetal.,2009).Microscopic
hematuriaoccursinupto50%ofpatientswithMN,butredbloodcellscastsandmacroscopic
hematuria are rare (Wasserstein 1997). About 80% of patients with MN have normal blood
pressure and glomerular filtration rate at presentation. Acute renal failure is uncommon
(Ronco&Debiec2015).
IMNnaturalhistoryfollowsthreemajorclinicalcourses:spontaneousremission,stablebut
persistentproteinuria,orprogressiontoESRD.Spontaneousremissionoccursinapproximately
onethirdofpatients,usuallywithinthefirsttwoyearsafterpresentation(Polancoetal.,2010;
Polancoetal.,2012).Theothertwothirdsofpatientscanbedividedequallyintothosewith
persistent proteinuria who will maintain normal renal function long term and those patients
whowillprogresstorenalfailuredespiteimmunosuppressivetherapy(Glassock2003).MNis
thesecondorthirdleadingcauseofESRDinpatientswithprimaryglomerulonephritisandthe
glomerulopathy that recurs most frequently after kidney transplantation (in about 40% of
cases)andthreatensgraftfunction(Ronco&Debiec2015).
MNispathologicallydefinedasacapillarywallthickening,normalcellularity,positiveIgG
and C3 staining along capillary walls on immunofluorescence, and accumulation of immune
depositsontheouteraspectoftheGBMonelectronmicroscopycalledspikes(Figure14).
29
Figure
e 14: Histolo
ogical lesions of membran
nous nephrop
pathy. A) Hem
matoxilin eossin staining at light
micro
oscopy: capillaary loops aree thickened and
a
prominent but cellulaarity is not iincreased. B) Silver
staining at light microscopy:
m
t
there
are chaaracteristic “spikes” of gllomerular basement mem
mbrane
unedeposits.C
C)Immunoflu
uorescencemiicrograph:sub
bepithelialdepositsofmain
nlyIgG
betweeentheimmu
and complement
c
appear in a diffuse granu
ular pattern in the glomeerular basement membrane. D)
Electrron microscopy: electron dense immune depositss are seen scattered
s
witthin the thicckened
glomeerularbasemeentmembranee(renalpatho
ologywebsite).
3 TREATM
3.4.
MENT
IN
NStreatmen
ntrequiresaglobaltheraapeuticapprroachtocou
unteractthe glomerular lesion
butalsothederivvedsystemicccomplicatio
ons.Generalmeasuresto
otreatproteeinuriaande
edema
mostpatientss,whereasspecifictreatmentdependsontheaggeatonsetaand/or
arecommoninm
thehistologicalleesion.
R
Renalbiopsy
mongthediffferent
isconsidereedmandatorryinadultpaatientstodistinguisham
renallesionsbecausethetreeatmentapproachdifferssamongtheedifferenten
ntities.Inchildren
r
biopsy is only perfformed when the NS is steroid resisstant as most of patients are
the renal
respo
ondent.
3.4.1. Generalma
G
anagement
P
Proteinuriais
streatedwithreninͲangiotensinͲaldo
osteronesysttem(RAAS)blockersinclluding
both,,angiotensin
nͲconvertingͲenzymeinh
hibitors(ACEEi)andangio
otensinIIrecceptorantagonists
(AIIRA
A) as they have a syn
nergic effectt. These dru
ugs avoid the formatio
on and action of
angio
otensinII,ah
hormonethaathasavaso
oconstrictive
eactionand increasesblo
oodpressure
e.The
vasod
dilationofth
heglomerulaarefferentaarterioledescreasesthe intraglomerrularpressurreand
thereeforedecreassesproteinleakage.
30
General measures to control edema include salt restriction, lying in supine position, and
use of diuretics drugs. Moderate exercise, a low cholesterol diet, hydroximetilglutarilͲCoA
reductase inhibitors, and weight lost in obese patients are recommended to reduce
hiperlipidemia.Hygienic,dieteticandpharmacologicalmeasuresareneededtocounteractthe
highmorbidityandmortalityassociatedwithNSanditscomplications.
3.4.2. TreatmentinCNS
The goals of therapy during the first months are to control edema and possible uremia,
prevent and treat complications such as infections and thromboses, and provide optimal
nutritionsothatthechildgrowsanddevelopsasnormallyaspossible.
CNS patients are resistant to corticosteroids and immunosuppressive therapy, therefore
theonlycurativeapproachisrenaltransplantation.Bilateralnephrectomyanddialysismaybe
necessarytoavoidthecomplicationsofNS.
3.4.3. TreatmentinchildrenandFSGS/MCDadults
3.4.3.1. Corticosteroidtherapy
CorticosteroidsarethefirstͲlinetreatmentformostINS.ChildrenpresentingwithINSare
treated empirically with corticosteroids because there is a high incidence of MCD, which is
associated with a high rate of steroid responsive. A complete remission is considered if
proteinuria < 100mg/m2/day or < 1+ on urine dipstick for 3 consecutive days, and urine
protein/creatinine ratio < 20 mg/mmol. Partial remission consists of a proteinuria of 0.1Ͳ1
g/m2/day and absolute urine protein/creatinine ratio between 20 and 200 mg/mmol
(Trautmannetal.,2015).
Adults with FSGS or MCD as renal lesion are also initially treated with corticosteroids. A
completeremissionisdefinedbyproteinuria<0.3g/dayandnormalizationofserumalbumin
toatleast3.5g/dl.Partialremissionisconsideredifproteinuria0.3Ͳ3.5g/daywithareduction
inproteinuriabyatleast50%fromthebaseline.
Basedonpatients’responsetosteroidtherapy,INScanbedividedinto:
31
Ͳ
SteroidͲSensitive Nephrotic Syndrome (SSNS): patients who achieve remission in
response to corticosteroid treatment alone. Approximately 80Ͳ90% of these patients
have one or more relapses, but they mostly continue to respond to corticosteroids
throughout their subsequent course and the longͲterm prognosis, including the
maintenanceofnormalkidneyfunction,isgood.Themostfrequentrenalhistological
lesionofSSNSisMCD.
Ͳ
SteroidͲDependent Nephrotic Syndrome (SDNS): patients that initially respond to
corticosteroidtreatmentbyachievingcompleteremissionbutdeveloparelapseeither
while still receiving steroids at lower doses or within 2 weeks of discontinuation of
treatmentfollowingasteroidtaper.SuchpatientstypicallyrequirecontinuedlowͲdose
treatmentwithsteroidstopreventdevelopmentofrelapse.
Ͳ
SteroidͲResistant Nephrotic Syndrome (SRNS): Patients who fail to achieve remission
after8weeks(children)or>4 months (adults)ofcorticosteroid treatment.Themost
frequent renal histological lesions of SRNS are FSGS or DMS. Steroid resistant MCD
adultsshouldbereͲevaluatedforothercausesofNS.
Itisestimatedthatabout80%ofchildrenand60%ofadultswithINSrespondtosteroid
therapy with complete resolution of proteinuria and edema. Among this steroid sensitive
group, the clinical course is variable, with up to 60% having frequent relapses or becoming
dependentonsteroidtherapytomaintaintheminremission.Theremaining20%ofchildren
and 40% of adults with INS do not achieve a sustained remission after standardized
corticosteroidtherapy(ArbeitsgemeinschaftfurPadiatrische1988;Antignac2002;Troyanovet
al.,2005).
3.4.3.2. Immunosuppressivetherapy
Immunosuppressive therapy is considered in patients with SRNS, frequent relapses or
steroiddependency.Therearedifferentimmunosuppressivetherapiesavailableanddifferent
therapeuticschemesdependingontheageatonsetand/orthehistologicallesion(reviewedin
KDIGOguidelines(GlomerulonephritisWorkGroup2012)).
3.4.4. TreatmentinMN
Spontaneous remission is a wellͲknown characteristic of MN occurring in approximately
onethirdofpatients,butitmaybedelayedforaslongas18Ͳ24months(Polancoetal.,2010).
32
Thus,theinitialapproachinMNpatientsconsistsofa6Ͳmonthobservationalperiod,inwhich
onlyantiproteinuricagentsaregiven.Patientswithpersistentproteinuriaandnodeclineafter
6 months are treated with immunosuppressors accoding to KDIGO guidelines
(GlomerulonephritisWorkGroup2012).
IMN patients presenting with nonͲnephrotic proteinuria typically only receive ACEi and
AIIRAandtheyhaveaveryfavorablelongͲtermprognosis(Hladunewichetal.,2009;Ponticelli
& Glassock 2014). However, a delay in immunosuppressive treatment in patients presenting
withNSwouldexposethemtothecomplicationsofNS(vandenBrandetal.,2012).Inthese
patients, controversy exists regarding the proper timing of immunosuppression and the best
therapeuticregimen,duetothelowtherapeuticindexofimmunosuppressivedrugsandtheir
side effects (Remuzzi et al., 2002; Perna et al., 2004; Glassock 2004; du BufͲVereijken et al.,
2005).Anumberofcliniciansproposetorestrictimmunosuppressivetherapytopatientswith
sustainedheavyproteinuriaorinthefaceofworseningrenalfunction(Cattran2005).
Severalmarkersofdiseaseprogressionhelpclinicianstopredicttheclinicaloutcomeofthe
disease. Predictors of spontaneous remission are baseline proteinuria less than 8 g/day,
female sex, age younger than 50 years old and preserved renal function at presentation
(Cattran2005).However,eveninpatientswithlargeproteinuria,spontaneousremissioncan
occurinupto20Ͳ25%ofthem(Polancoetal.,2010).
The Toronto Risk Score is calculated by a validated algorithm that correctly identifies
patientsatriskofdiseaseprogressionwith85Ͳ90%accuracy.Thisscoreisbasedonthelevelof
proteinuriaduringa6Ͳmonthperiodofmaximumproteinuria,creatinineclearanceatthestart
of that period, and the change in creatinine clearance over the course of those 6 months.
According to the score obtained, patients are grouped into lowͲ, middleͲ, and highͲrisk for
progression and a different treatment approach is indicated (Figure 15) (Pei et al., 1992;
Cattranetal.,1997).Themaindisadvantageofthismodelisthatanobservationalperiodofat
least6months(ormoreiftheperiodofmaximumproteinuriadoesnotcorrespondwiththe
onsetofthedisease)isneededtocalculatethescore,whichprolongspatientexposuretorisks
associatedwithNS.
33
Figure
e 15. A treaatment algorrithm that combines the
e predictive factors and best evidencce for
conseervativeandth
henimmunossuppressivetreatment(Catttran2005).
M
Measuremen
nt of the urinary excretion of ɴ2Ͳmicroglobulin and ɲ1Ͳmicrroglobulin in
n spot
urinee samples was
w also sho
own to accurately pred
dict progresssive loss off kidney fun
nction
(Bran
ntenetal.,20
005;Hofstraetal.,2008).VandenBrandetal.co
omparedtheeprognosticvalue
of the Toronto Risk
R score with
w the urinary lowͲmolecular weight proteins (ɴ2Ͳmicroglo
obulin
ɲ
bulin) and showed
s
thatt both prognostic meth
hods had higgh sensitivity and
and ɲ1Ͳmicroglo
specificity with no
n significantt differencess between th
hem. Howevver, urinary markers havve the
ntagethatth
heprognosisscanbeestaablishedwith
hasinglemeeasurement (vandenBraandet
advan
al., 2012).
2
The clinical comp
plexity of thee disease su
uggests that a combinattion of prognostic
markkerswouldbeethebestop
ptionforpreedictionofcliinicaloutcom
me.
4. PATHOGEN
P
NESISOFIDIOPATH
HICNEPHR
ROTICSYN
NDROME
IN
NSisdueto thedevelop
pmentofstructuraland functionaldefectsintheeGFB,resulttingin
its in
nability to restrict
r
urinaary loss of protein. Po
odocyte foott process eeffacement is
i the
invariable feature observed not only in
n NS patientts but also in all proteeinuric glomerular
diseaases, and it can result from seveeral triggers including immune
i
cau
uses and ge
enetic
abnormalities (Deegens et al.,
a 2008). Briefly, idiopaathic MN (IM
MN) is conssidered an organͲ
o
withMCDorrFSGS
specificautoimmunedisease.SSNSandSSDNSpatientts,generallypresentingw
usedbyaTͲcelldependen
ntcirculatinggfactor.Finaally,in
onreenalbiospy,aareconsidereedtobecau
CNSaandSRNSpaatients,thelaatterusuallyshowingFSG
GSorDMSaashistologicaallesion,age
enetic
defecctisconsiderredtoberessponsibleforrthedisease.
34
4 IMMUN
4.1.
NECOMPLLEXESDEPO
OSITION:M
MN
M is an immunologically mediated disease chaaracterized by
MN
b the depo
osition of immune
comp
plexes in thee subepithellial space, which
w
causess a thickenin
ng of the GBM. The immune
deposits consist of several components
c
, including IgG,
I
antigens, and the m
membrane attack
a
comp
plex. IgG4 iss usually th
he most pro
ominent IgG
G subclass deposited
d
in
n idiopathic IMN,
altho
ough variablee amounts of
o IgG1 are also associaated with im
mmune depo
osits; by con
ntrast,
deposition of IgG
G1, IgG2 and
d IgG3 exceeeds depositio
on of IgG4 in
i secondaryy MN (Imai et al.,
1997;Kurokietal.,2002;Ohttanietal.,20
004;Segawaetal.,2010)).
nthepast10
0years,greaatprogressh
hasbeenmaadeintheun
nderstandinggofthemole
ecular
In
patho
omechanism
ms of human
n MN inspirred by studies of experimental mo
odels. Studies on
Heym
mannnephrittisratsledtotheconceptthatapodocyteantiggen,megalin
n,couldserveasa
targeetofcirculatingantibodiesleadingto
otheinsitu
uformationo
ofimmuneccomplexes(FFigure
16) (Heymann
(
e al., 1959
et
9; Kerjaschki & Farquhar 1982). However,
H
m
megalin is neither
expreessedinhum
manpodocyttesnordetecctedinthessubepithelialdepositsin patientswitthMN
(Herrrmannetal.,2012).
Figure
e16.InͲsitufo
ormationofim
mmunedeposstis.Circulatin
ngantibodiesbindtoanendogenouspod
docyte
antigeen(adaptedfrromRonco&Debiec2015).
In
n humans, a
a number off podocyte antigens
a
havve been iden
ntified (Figurre 16). Antib
bodies
that target podocyte antigeens accumu
ulate as immune depo
osits leadingg to comple
ement
onalimpairm
mentoftheG
GFBandprotteinuria(Ron
nco&Debiecc2012).
activaation,functio
C
Circulatingan
ntibodiesagainstneutralendopeptid
dase(NEP)w
wereidentifiiedinachild
dwith
neonatal MN (D
Debiec et all., 2002). NEP is a me
embraneͲbou
und enzymee that can digest
biologically activve peptides (Turner et al., 2001). The mother was NEP deficient due to
MEgene,wh
hichcodifies foramembranemetallo
oͲendopeptid
dase.Shebe
ecame
mutaationsonMM
alloim
mmunized to
o the paterrnally inherited NEP an
ntigen expreessed in thee placenta during
d
pregn
nancyandtrransplacentaallytransferrredNEPantiibodiestoth
hechildcaussing MN. Thefact
35
thatrabbitsinjectedwiththeIgGfractionfromthemotheralsodevelopedMNandproteinuria
wasanadditionalproofthatthediseasewasrelatedtocirculatingantiͲNEPantibodies(Debiec
et al., 2002). In the five cases with alloimmune neonatal MN identified so far, the mothers
were NEP deficient due to homozygous truncating deletion in exon 7 or compound
heterozygoteforthismutationandasecondmutationinexon15oftheMMEgene(Debiecet
al., 2004; Vivarelli et al., 2015). This finding provided the proof of concept that a podocyte
antigen could be responsible for human MN, as is the case for megalin in rats, and laid the
foundationfortheidentificationofpodocyteautoantigensinadultswithIMN.
The identification of antibodies to the MͲtype phospholipase A2 receptor (PLA2R1) in
about 70% of patients with IMN indicated that PLA2R1 is the major target antigen in this
disease (Beck et al., 2009). Recently, Tomas et al. detected circulating antibodies to
thrombospondintypeͲ1domainͲcontainingprotein7A(THSD7A)in8Ͳ14%ofpatientsnegative
forantiͲPLA2R1,indentifyingTHSD7AasthesecondmajorautoantigeninIMN(Tomasetal.,
2014). PLA2R1 and THSD7A proteins are detected in normal human podocytes, and both
antigens colocalize with IgG4 in subepithelial deposits. Both proteins have quite similar
structural and biochemical properties consisting of a large extracellular region with multiple
and repeated disulfideͲbonded and NͲglycosylated domains. IgG4 antibodies against these
antigenswerepresentinserafrompatientswithIMNbutnotintheserumofhealthycontrols,
or patients with secondary MN. Furthermore, IgG eluted from biopsy samples reacted with
recombinant PLA2R or THSD7A. Autoantibodies to both proteins recognize their target
antigens only under nonͲreducting conditions. Interestingly, patients with IMN have an
autoimmune response against either PLA2R or THSD7A, but not both. This finding suggests
PLA2RͲassociated and THSD7AͲassociated MN are two separate entities (Beck et al., 2009;
Tomasetal.,2014).
Antibodiesagainstthecytosolicproteinssuperoxidedismutase2(SOD2),aldosereductase,
andɲͲenolasewereidentifiedinboth,serumandglomeruliofpatientswithIMN(Prunottoet
al., 2010; Bruschi et al., 2011). These proteins are not present or minimally expressed on
normal podocyte membranes but are “neoͲexpressed” in glomeruli of patients with IMN.
Mechanisms of translocation of these intracellular molecules have been proposed to explain
the development of these autoantiboides. In vitro studies have shown that SOD2 can be
inducedbyoxidativestresssuchasexposuretohydrogenperoxide.AntiͲɲͲenolaseantibodies
arenotspecificforMNastheyhavebeendetectedinawiderangeofautoimmunediseases
36
without glomerular involvement and in healthy individuals. The pathogenic role of these
antibodiesremainsuncertain.
There are still 15Ͳ25% of IMN cases in which no target antigen has been identified
indicating that there may be asͲyet unidentified antigens or that these patients have been
wronglyclassifiedasidiopathicowingtoanundetectedsecondarycauseofthedisease(Tomas
etal.,2014).
IthaslongbeenknownthatIMNisassociatedwithcertainHLAclassIIimmuneresponse
genes (Klouda et al., 1979; Le Petit et al., 1982; Vaughan et al., 1989; Ogahara et al., 1992;
Chevrieretal.,1997).ThesingleͲnucleotidepolymorphism(SNP)rs35771982inPLA2R1gene
wasassociatedwithIMNinKoreanandTaiwanesecohorts(Liuetal.,2010;Kimetal.,2011).
GenomeͲwideassociationstudieshavereportedhighlysignificantassociationofanHLAͲDQA1
allele on chromosome 6p21 and a PLA2R1 allele on chromosome 2q24 with IMN in white
Europeanpatients.Interestingly,carryingtheriskallelesofbothgeneshadanadditiveeffect,
thus,forapersonwhoishomozygousforbothriskallelestheoddsratiofordevelopingIMNis
close to 80, compared to individuals homozygous for the protective alleles. These findings
suggest that genetic background plays a significant role in the predisposition of the primary
MN(Stanescuetal.,2011).
4.2. TCELLDEPENDENTCIRCULATINGFACTOR:SSNSANDSDNS
An underlying immune defect is supposed to cause SSNS, SDNS and the subset of SRNS
thatrespondtoimmunosuppressiveagentsand/orrelapseafterkidneytransplantation.These
patientsgenerallypresentwithMCDorFSGSonrenalbiopsy.
In1954,Gentilietal.hypothesizedthatINSwascausedbyacirculatingfactor,basedon
daringexperimentsinwhichtheyadministeredplasmafrominfantswithINStononͲnephrotic
children and observed a minimal increase in proteinuria (Gentili et al., 1954). In 1974,
ShalhoubsuggestedthatINSwasmediatedbyaTͲcellͲdependentcirculatingfactorthatwould
affectglomerularpermeability(Shalhoub1974).
Clinical evidence for the existence of a circulating permeability factor in idiopathic MCD
wasbasedontheresponsivenessofmostformsofprimaryMCDtocorticosteroids,alkylating
agents,calcineurininhibitors,andmycophenolatemofetil,allofwhichareknowninhibitorsof
T lymphocyte function (Gbadegesin & Smoyer 2008). Regarding FSGS, the best evidence for
37
theexistenceofcirculatingpermeabilityfactorcamefromclinicalobservationsofproteinuria
and FSGS recurrence after kidney transplantation (Hoyer et al., 1972). Additional evidence
came from studies reporting remission of proteinuria by plasma exchange or
immunoadsorption,especiallyifinstitutedearlyin thecourseof recurrentdisease(Dantal et
al.,1994;Arteroetal.,1994;Deegensetal.,2004).Moreover,serumorplasmafrompatients
withrecurrentFSGSinducedproteinuriainratsandincreasedalbuminpermeabilityinisolated
glomeruli.Inthepastfourdecades,manyinvestigatorshavesearchedtheresponsiblefactors,
thusfarwithlittlesuccess(Maasetal.,2014).
In2011,solubleurokinaseplasminogenactivatorreceptor(suPAR)wasproposedtobethe
permeabilityfactorcausingFSGS.suPARisa20Ͳ50kDproteinwiththreehomologousdomains
produced by cleavage and release of membrane bound urokinase plasminogen activator
receptor(uPAR)(Behrendtetal.,1990).Inculturedpodocytesandinanimalmodels,increased
podocyte uPAR expression resulted in foot process effacement and actin cytoskeleton
rearrangement due to the activation of integrin ɴ3, one of the main proteins anchoring
podocytestotheGBM(Weietal.,2011).
Inhumans,asignificantly increasedserumsuPAR levelswasfoundin patientswithFSGS
comparedtohealthyanddiseasecontrolsbuttheserelationshipsdisappearedwhenadjusting
forrenalfunction.Ofnote,theELISAtestusedinthesestudiesdidnotdiscernbetweenfullͲ
length glycosylated suPAR from fragments. In addition, both shortͲterm and prolonged
administration of recombinant suPAR in mice did induce neither albuminuria, nor foot
processes effacement. Based on these findings, fullͲlength suPAR is not the cause of FSGS.
However, the specific pathologic type of suPAR could be unglycosylated and/or suPAR
fragments, likely explaining the negative results in ELISA experiments and with recombinant
suPAR(Deegens&Wetzels2014;Reiseretal.,2014).
4.3. GENETICCAUSE:SRNS
InheritedstructuraldefectsofGFBareresponsibleofaproportionofSRNSpatients.These
patientsaremostlyresistanttoimmunosuppressiveagents,almostinvariablyprogresstoESRD
anddonorelapseafterrenaltransplantation(Machuca,Benoit,etal.,2009).
Mutationsinmorethan30geneshavebeenassociatedwithSRNStodate.Mostofthese
mutationsareinpodocytegenesanddisruptpodocytefunctioneitherthroughslitdiaphragm
disassembly, damaging cell architecture or metabolism, disturbing cellͲmatrix interactions,
38
and/orimpedingsignalingpathways.SyndromicformsofNSarecausedbyinheriteddefectsin
structuresnonspecifictothekidney,suchasmitochondrialandlysosomalorganellesthatmay
alsoleadtopodocytedysfunction.MutationsinafewgenesencodingGBMproteinshavealso
beenassociatedwithNS(Figure17)(Vivante&Hildebrandt2016).
Figure 17. Genetic causes of SRNS. Most of the mutated proteins reside in the podocyte (MalagaͲ
Dieguez&Susztak2013).
Inherited genetic defects in all these genes only explained approximately 30% of SRNS
casesconsistingof70%offamilialand15Ͳ25%ofsporadicSRNScases(Santín,Bullich,etal.,
2011;McCarthyetal.,2013).Thepercentageofpatientswithmutationsdecreasesastheage
at onset increases (Figure 18). Mutation screening of the largest cohort of SRNS patients
studiedsofar,consistingof2016patients(1783families),identifiedageneticdiseasecausein
29.5%ofcases.Specifically,mutationswereidentifiedin69.4%ofcongenitalcases(onsetfrom
0Ͳ3 months), 49.7% of infantile cases (from 4 to 12 months), 25.3% of young children cases
(from 13 months to 6 years), 17.8% of older children cases (from 7 to 12 years), 10.8% of
adolescents(from13Ͳ18years)and21.4%ofyoungadults(from19to25years).Inthisstudy
the most frequent mutated gene was NPHS2 accounting for 49.8% of patients, followed by
WT1 in 17.3% of patients and NPHS1 in 14.8% of patients. Most of the remaining genes
identifiedareraremutationsinvolvingafewfamilies(Sadowskietal.,2014).
39
Figure
e 18. Percentage of patieents with cau
usative mutattion detected
d in one of tthe 21ͲSRNS genes
analyzzedinrelation
ntoageofon
nsetofprotein
nuria(Sadowskietal.,2014
4).
M
Mutationscr
eeningofth
hemostfreq
quently mutaatedgenesinlargecoho
ortsrevealed
dthat
the distribution
d
of the caussative gene depends on
n the age att onset, the familial/spo
oradic
status, and the mode
m
of inheritance. Baased on thesse criteria, our
o group prroposed a ge
enetic
testin
ng approach
h in children
n and adultts with SRN
NS (Figure 19). Mutations in NPHSS1 are
respo
onsibleform
mostoftheC
CNFpatientssbutCNSis geneticallyh
heterogeneo
ousinnonͲFinnish
populations.Mosstpatientsin
nwhomthe diseasebegganinthefirrstweekoflifehadmutaations
in the NPHS1 geene, whereaas mutationss in NPHS2 were the main
m
genetic cause of CNS
C
in
m
than 1
1 month afte
er birth (Macchuca et al.,, 2010). The most
patient in whom NS began more
uentcauseofinfantilean
ndchildhood
donsetSRNSS(from13m
monthsto12 years)areN
NPHS2
frequ
mutaationsalthou
ughNPHS1m
mutationsareealsofound
d.WT1ͲrelateedSRNSism
mostlydetectedin
sporaadicpatientsswithanonssetrangingfrromcongeniitaltochildhood.Inadoleescenceand
dadult
onsettpatientsthep.R229Qvvariantincom
mpoundhete
erozygosityw
withapatho
ogenicmutattionin
NPHSS2geneand INF2mutationsarethemostfrequentcauseso
ofthediseasse(Santín,Bullich,
etal.,,2011).
M
Mostoftheg
genesinvolveedinpediatrricSRNSfollo
owanARinh
heritance,includingmutaations
inNP
PHS1,NPHS2
2,andPLCE1amongotheers.Theexce
eptionisWTT1ͲrelatedSR
RNSwhichfo
ollows
andaautosomaldo
ominant(AD
D)pattern.TheADformssofSRNS(IN
NF2,TRPC6aamongotherrs)are
generally charactterized by a milder diseease course with typically adolescen
nt (from 13 to 18
o
variable degrees of proteinu
uria, and slo
ow progressiion to
yearss) or adult (>18 years) onset,
ESRD
D(Conlonet al.,1995;Raanaetal.,20
003).Sincem
mostpatientsdonoexhiibitfullͲblow
wnNS,
theseeformsareu
usuallyreferrredtoasADFSGS(Boyerretal.,2015
5).
40
Figure19.GeneticapproachinchildrenandadultswithSRNS(Santín,Bullich,etal.,2011).
Of note, the renal histological lesion is not considered in our genetic testing algorithm
because in most children renal biopsy is not performed. In addition, the renal histological
lesionisnotspecificasmostcasespresentwithFSGSindependentlyofthemutatedgene.The
exceptionisDMSlesion,whichissuggestiveofWT1orPLCE1mutations.
The high genetic heterogeneity and phenotypic variability of SRNS hampers the genetic
diagnosis of the disease. The advent of nextͲgeneration sequencing technologies has
revolutionized the genetics field facilitating the identification of new genes associated with
SRNSandprovidingthetoolstodealwiththehighgeneticheterogeneityofSRNS.However,
there are still a large proportion of SRNS patients with no underlying genetic defect found;
therefore,numerousfurthergenesareexpectedtobeidentifiedascausativeofSRNS.
41
5. GENETICSOFSRNS
5.1. AutosomalrecessiveisolatedSRNSandFSGS
Table1.GenescausativeofautosomalrecessiveisolatedSRNSandFSGS.
Gene
Reference
MOI
Typicalageat
diagnosisof
proteinuria/NS
Tyical
histology
Ageat
ESRD
Numberoffamilies
(patients)
published
NPHS1
KestilaMetal.,1998
AR
0Ͳ10years
CNF,MCD,
FSGS
7months–
15years
>270(>300)
NPHS2
BouteNetal.,2000
AR
0Ͳ40years
MCD,FSGS
2Ͳ50years
>600(>850)
PLCE1
HinkesBetal.,2006
AR
0Ͳ8years
DMS,FSGS
5months–
12years
50(71)
CD2AP
LowikMMetal.,2007
ARͲ
(AD)
10months
FSGS
3years
1(1)*
CUBN
Ovuncetal.,2011
AR
4Ͳ5years
ND
ND
1(2)
PTPRO
OzaltinFetal.,2011
AR
5Ͳ14years
MCD,FSGS
18years
2(5)
MYO1E
SannaͲCherchiSetal.,2011
AR
2monthsͲ9years
FSGS
6Ͳ>15
years
10(14)
CFH
Sethietal.,2012
AR
childhood
FSGS
ND
1(1)
ARHGDIA
GuptaIRetal.,2013
AR
2Ͳ3weeks
DMS
3months
3(6)
ADCK4
AshrafSetal.,2013
AR
<1Ͳ21years
FSGS
7Ͳ23years
20(41)
TTC21B
CongEHetal.,2014
AR
9Ͳ30years
FSGS
12Ͳ35years
7(13)
EMP2
Geeetal.,2014
AR
3years
MCD
ND
1(1)**
CRB2
EbarasiLetal.,2015
AR
9monthsͲ6years
FSGS
NA
5(4)
NUP107
Miyakeetal.,2015
AR
2Ͳ11years
FSGS
4Ͳ12years
5(9)
NUP93
Braunetal.,2016
AR
1Ͳ6years
FSGS
1Ͳ11years
6(7)
Abbreviations:AD,autosomaldominant;AR,autosomalrecessive,CNF,congenitalnephroticsyndrome
ofFinnishtype;DMS,diffusemesangialsclerosis;ESRD,endͲstagerenaldisease;FSGS,focalsegmental
glomerulosclerosis; MCD, minimal change disease; MOI, mode of inheritance; ND, no data; NS,
nephroticsyndrome
*onlytheARpatientisconsidered
**Mutationsinthisgenein3families(4patients)withsteroidͲsensitiveNShavebeenreported.
42
5.1.1. NPHS1gen
N
e
T
TheNPHS1g
enespans26kbonchro
omosome19
9q13andcon
ntains29exons(Kestila etal.,
1994). NPHS1 encodes nep
phrin, the major
m
structtural protein
n of the GFB. Nephrin
n is a
transsmembrane adhesion protein of 1241 amino acids and approximateely 135 kDaa that
belon
ngs to the im
mmunoglobu
ulin superfam
mily. This prrotein contains 8 C2Ͳtyp
pe IgͲlike domains
andaafibronectin
ntypeIIIrep
peatintheextracellular regions,asingletransmembranedo
omain,
and a
a cytosolic CͲterminal
C
end. The extrracellular do
omain of nep
phrin forms homodimerrs and
heterrodimers witth NEPH1. NephrinͲNEP
N
H1 interactio
ons control nephrin sign
naling, glomerular
perm
meability and
d podocyte cell polarityy (Figure 20
0) (Garg et al., 2007; Liu et al., 2003;
Hartlebenetal.,2
2008).
Figure
e20.Structurreandlocation
nofthenephrinproteinintheslitdiaph
hragm.FP,foo
otprocesses;SSD,slit
diaphragm(adapteedfromMachuca,Benoit,eetal.,2009).
M
Mutations
in NPHS1 aree the major cause of CN
NS includingg CNF, the m
most severe form
(Kestilä et al., 19
998). In Finland, two fo
ounder mutaations accou
unt for moree than 94% of all
8%ofpatien
ntsandconsistsofatwo
oͲbase
mutaations.TheFinͲmajor(p.L41fs*91)acccountfor78
paird
deletioninexxon2thatreesultsinatru
uncatedprotteinofonly9
90aminoacids.TheFinͲminor
(p.R1
1109*)accou
untsfor16%ofpatientsaandisanonssensemutatiioninexon2
26thatresulttsina
prem
maturestopccodonleadingtoaproteiinof1108am
minoacids.Thesetwomu
utationsboth
hlead
totheabsenceofnephrinin thepodocyyteslitdiaphragm(Kestiläetal.,199
98).InnonͲFinnish
or mutations are rare an
nd most patients have private
p
populations, the FinͲmajor and FinͲmino
nͲFinnishpatientsislow
werthaninFinnish
mutaations.Thefrrequencyof NPHS1mutaationsinnon
43
patients,accountingfor39%to58%ofcongenitalNScases(Hinkesetal.,2007;Heeringaetal.,
2008;Schoebetal.,2010).
To date, more than 250 different mutations have been described, including nonsense,
missense, frameshift insertions/deletions, and splicing mutations spanning over the whole
gene. In vitro functional assays have shown that most NPHS1 missense mutations lead to
protein retention in the endoplasmic reticulum, possibly as a result of protein misfolding,
resultingindefectiveintracellularnephrintraffickingouttothecellsurface(Liuetal.,2001).
Interestingly, in vitro treatment with chemical chaperone rescued several of the missense
mutantsfromtheendoplasmicreticulumtothecellsurface(Liuetal.,2004).
The spectrum of renal disease related to NPHS1 mutations has broadened with the
identification of patients with NPHS1 mutations and childhood and even adult onset SRNS
(Philippeetal.,2008;Santín,GarcíaͲMaset,etal.,2009).Philippeetal.foundNPHS1mutations
in 10 of 160 patients presenting with SRNS at a mean age of 3 years (from 6 months to 8
years), MCD or FSGS on renal biopsy, and ESRD at a mean age of 13.6 years (from 6 to 25
years).Santínetal.detectedNPHS1mutationsinapatientdiagnosedat27yearsofageand
with unimpaired renal function after two years of followͲup (Santín, GarcíaͲMaset, et al.,
2009). All these patients carried a severe mutation and one mild mutation in compound
heterozygousstate.Mildmutationsexhibitednormaltraffickingtotheplasmamembraneand
maintained the abilities to form nephrin homodimers and to heterodimerize with NEPH1,
suggestingthatpartialstructuralandsignalingfunctionwaspreserved(Philippeetal.,2008).
Patients carrying two mutations in the cytoplasmic domain were also associated with a mild
phenotype(Machucaetal.,2010).Thehomozygousp.R1160*mutationhasbeenreportedto
result in a mild CNF disease in about 50% of cases, mostly females. These patients have
histologicalfindingsconsistentwithCNFandeithermildproteinuriaorcompleteremissionup
to19yearsofage(Kozielletal.,2002).Asummaryofthemildmutationsreportedtodateis
showninFigure21.
44
Figure
e 21. NPHS1 mutations deetected in thee following sttudies: Liu et
t al., 2001; Ph
hilippe et al., 2008;
Machuca et al., 20
010, and Sch
hoeb et al., 2010.
2
Schemaatic representtation of the localization of the
ns and protein functional domains.
d
Ig, IgͲlike domain; FNIII, fibro
onectin
mutattions with resspect to exon
typeIIIdomain;TM
M,transmemb
branedomain(adaptedfrom
mPhilippeetal.,2008).
5.1.2. NPHS2gen
N
e
T NPHS2 gene
The
g
spans approximateely 25 kb on
n chromosom
me 1q25Ͳq3
31 and contaains 8
exonss (Boute et al., 2000). NPHS2
N
encod
des podocin, a 42ͲkDa integral mem
mbrane protein of
383aaminoacidstthatbelongsstothestom
matinfamily. Podocinisalmostexclussivelyexpressedin
thekkidneyattheepodocyteslitdiaphragm
m.Itisprediictedtobeaanintegralm
membraneprotein
insertted in the membrane through a short
s
hydrophobic regio
on resultingg in a hairpiinͲlike
topollogy with in
ntracellular NͲ
N and CͲterrminal ends. It also con
ntains a pro
ohibitin hom
mology
domaain that allo
ows podocin binding to cholesterol in plasma membrane. This protein
n was
show
wn to accumulate in oligomeric form
m in lipidͲraftt microdomaains and to recruit neph
hrin in
theseespecializedmicrodomainsoftheslittdiaphragmplasmamem
mbrane(Hub
ber,Simons,etal.,
2003). By also interacting with
w
CD2AP and TRPC6
6, podocin represents
r
aan importan
nt link
weentheslitd
diaphragmaandthepodo
ocytecytoske
eleton.
betw
T
Theclassical
phenotypeaassociatedw
withNPHS2m
mutationsis earlyͲchildhoodNS(neaarlyall
beforre6yearsoffage),resisttanttocorticcosteroidsandimmunossuppressive agents,and rapid
progrressiontoESSRD(beforettheendofth
hefirstdecaadeoflife)w
withlowrecu
urrenceafterrrenal
transsplantation.H
HistologicalffindingsshowFSGSinap
pproximatelyy80%ofcassesalthough
hMCD
arealsofound(B
Bouteetal., 2000;Webeeretal.,200
04;Hinkesettal.,2008). NPHS2mutaations
alsoaareafrequeentcauseof CNS(15Ͳ39%
%),infantile SRNS(29Ͳ35.2%)and,ttoalesserextent,
adulttonsetSRNS(16%)(Boucchirebetal., 2014;Sadow
wskietal.,20
014).
M
Mutationsin
NPHS2geneeaccountfo
orapproximaately30Ͳ40%
%offamilialccases(Karle etal.,
2002;Webereta
al.,2004;Berdelietal.,2
2007;Hinkessetal.,2007
7;Hinkeset al.,2008)an
nd10Ͳ
45
30%ofsporadic(Caridietal.,2001;Caridietal.,2003;Berdelietal.,2007;Gbadegesinetal.,
2008;Megremisetal.,2009;Jungraithmayretal.,2011).
Todate,morethan110NPHS2pathogenicmutationshavebeenreported(LOVDmutation
database). They are distributed throughout the entire gene and consist of all kinds of
alterations, incuding missense, nonsense, frameshift, and splicing mutations. Missense
mutations are the most frequent type of alteration accounting for 42% of the mutations
(Bouchirebetal.,2014).
NPHS2 mutations are frequently found in patients from Central Europe, North America,
Turkey, the Middle East, North Africa, and South America. However, they are not a major
causeofSRNSinAfrican AmericanandAsianpatients.Severalfounder mutationshavebeen
identified:p.R138QinEurope,p.R138*intheIsraeliͲArabpopulations,p.V260EintheComoros
Islands,andp.A284VinSouthAmerica.TheR138Qmutationisthemostprevalentmutationin
European patients accounting for 32% and 44% of all affected NPHS2 alleles in two large
European series (Weber et al., 2004; Hinkes et al., 2008). However, in Spanish population it
was only found in 2 of 14 alleles, accounting for 14% of all NPHS2 affected alleles (Santín,
TazónͲVega,etal.,2011).Thearginineresidueatposition138ishighlyconservedamongthe
stomatinͲlikeproteinfamilymembersandiscrucialforpodocinfunction(Bouteetal.,2000).
The protein resulting from the substitution of glutamine for arginine is retained in the
endoplasmicreticulum,impairingtheintracellulartraffickingofpodocintocellmembraneand
losingitsabilitytorecruitnephrininlipidrafts(Huber,Simons,etal.,2003).
The nature of the mutations correlates with the age at onset of NS (Figure 22). Patients
withframeshiftornonsensemutationsinhomozygousorcompoundheterozygousstatehave
anearlierageatNSonsetthan those carrying two missensemutations (mean1.75years vs.
4.17 years) (Hinkes et al., 2008). Missense mutations leading to retention of the mutant
proteinintheendoplasmicreticulum(suchasthep.R138Qorthep.R168H)resultinanearlier
onsetofdiseasethanmutationsthatdonotdisruptthemutantproteintraffictotheplasma
membrane(20.8±4vs.128.7±9months,respectively)(Rosellietal.,2004).Incongenitaland
infantileSRNS,the94.1%ofpatientswithNPHS2mutationswerefoundtocarryatleastone
truncating mutation or homozygous p.R138Q mutations, (Hinkes et al., 2007). Missense
mutations like the p.G92C, p.V180M and p.R238S are associated with a milder phenotype, a
laterageatonsetofNSandESRD.Thesemutationsallowthetargetingofthepodocinmutant
tothecellmembrane,likelyresultinginapartialfunctionofthepodocinthatmayexplainthe
laterageatonsetofNS(around10years)(Weberetal.,2004)andthelessseveredisease.
46
Figure
e 22. The natture of NPHSS2 mutation determines
d
th
he age at onset of SRNS. CNSͲFT, conggenital
nephrrotic syndrom
me of Finnish type; FSGS, focal segmen
ntal glomerulo
osclerosis; mo
o, months; y,, years
(adap
ptedfromHild
debrandt&Heeeringa2009).
P
Patients
carrying the p.R
R229Q and a
a pathogenic mutation have been aassociated with
w a
signifficantly laterr onset of th
he disease. These patie
ents represen
nt almost alll the adult onset
casess with NPHSS2 mutations and they develop ESR
RD at a meean age of 2
26.1 ± 18.9 years
(Tsukkaguchi et al.,
a 2002). The
T
p.R229Q
Q is the most frequentlly reported nonͲsynonyymous
NPHSS2variantinCaucasians (Franceschinietal.,200
06).Ahigherfrequency ofp.R229Q allele
wasffoundinSRN
NS,particulaarlyinEurop
peanorSoutthAmerican populationss,thanincontrols
(Machuca,Humm
mel,etal.,20
009).InSpanishpopulattion,p.R229Qwasfound
din5.3%of SRNS
o
1.98% of
o controls (SSantín, TazónͲVega, et al.,
a 2011). In addition, in
n vitro
patients and in only
m
pro
otein to nephrin,
studies demonsttrated decreased binding of the p.R229Q mutant
maybepathogenic(Tsukkaguchietal.,2002).Reecently,Tory etal.
suggeestingthatthisvariantm
demo
onstratedthatthepatho
ogenicityoftthep.R229Q
Qvariantdep
pendsontheetransͲassocciated
mutaation. The p.R229Q variant lead to disease phe
enotype onlly when it is associated
d with
certain specific CͲterminal
C
N
NPHS2
mutaations, whicch exert a dominant
d
neegative effe
ect on
29Q podocin
n through altered
a
dimeeritzation and mislocaliization. In ccontrast, paatients
p.R22
carryingthep.R2
229Qinhom
mozygousstateareasymptomatic(To
oryetal.,20
014).Interesstingly
panish patien
nts with latee onset SRN
NS, the p.R229Q was freequently fou
und in comp
pound
in Sp
heterrozygosity with
w
the p.A
A284V path
hogenic muttation, whicch is found in a consserved
haplo
otype(Santín
n,TazónͲVegga,etal.,201
11).
5.1.3. PLCE1gene
P
e
T
ThePLCE1ge
enespans33
34.4kboncchromosome
e10q23and contains34
4exons.Thissgene
encod
desthephosspholipaseC
Cepsilon1(P
PLCɸ1)prote
ein,acytoplaasmicenzym
methatbelon
ngsto
thep
phospholipassefamilyof proteinsand
dcatalyzesthehydrolysisofpolypho
osphoinositid
desto
47
generate the second messengers: inositol 1,4,5Ͳtriphosphate (IP3) and diacylglycerol (DAG).
Theseproductsinitiatethecascadeofintracellularpathwaysofcellgrowthanddifferentiation.
This protein has two isoforms: PLCɸ1 isoform A of 2302 amino acids (258 kDa), and PLCɸ1
isoform B of 1994 aminoacids (224 kDa). The PLCɸ1 protein contains the following putative
protein domains: RasGEF_CDC25 (guanine nucleotide exchange factor for RasͲlike small
GTPasesdomain),PHdomain(Pleckstrinhomologydomain),EFhand,phospholipasecatalytic
domains(PLC_XandPLC_Y),C2motif(proteinkinaseCconservedregion2,subgroup2)and
RA1 and RA2 domains (RasGTP binding domain from guanine nucleotide exchange factors)
(Hinkesetal.,2006).PLCɸ1isexpressedinthepodocytes,neuraltissue,andskeletalmuscleof
mouse embryos, as well as the skin, skeletal muscle and heart of adult mice (Tadano et al.,
2005; Wu et al., 2003; Bai et al., 2004). PLCɸ1 has an important role during glomerular
development,andrecruitsnephrintotheplasmamembraneviaIQGAP1.
MutationsinPLCE1genewereidentifiedinpatientswithearlyͲonsetNSandDMSorFSGS
onrenalhistology(Hinkesetal.,2006).StudiesinlargecohortsrevealedthatPLCE1mutations
are the major cause of idiopathic DMS, accounting for approximately 28.6Ͳ33% of idiopathic
DMSpatients(Gbadegesinetal.,2008).Mutationsinthisgenewerealsodetectedinabout8%
of FSGS cases without NPHS2 mutations. Patients with PLCE1 mutations have an earlyͲonset
NS, mean age of 22.8 ± 5.0 months, and lead to ESRD at a mean age of 39.1 ± 6.3 months
(Boyeretal.,2010).
Todate,morethan40differentmutationshavebeendescribed,predominantlytruncating
mutationswithno clusteringarounda specificgeneregion.Intheinitialcohortreported, all
the individuals with homozygous truncating mutations presented DMS as histological lesion
whereastwopatientscarryinghomozygousnonͲtruncatingmutationspresentedFSGS(Hinkes
et al., 2006). However, in a more extensive study of 139 patients with earlyͲonset SRNS,
truncating and missense mutations led to similar renal presentation and evolution and were
detectedinpatientswithboth,DMSandFSGShistologicallesions.Recently,anearlierageof
onsethasbeenreportedforpatientscarryingsplicesitemutationscomparedwithCͲterminal
truncatingmutations(afteraminoacidresidue1000)ormissensemutations(Sadowskietal.,
2014).RenalprognosisisworstinpatientswithDMScomparedtothosewithFSGS:meanage
atonsetofNS15.3±6.0monthsvs.30.5±7.7months,andmeanageatESRD20.9±5.8vs.
57.2±7.3months,respectively(Boyeretal.,2010).
InindividualswithPLCE1mutations,thepresenceofDMSlesionswiththeappearanceof
immatureglomeruli,togetherwiththereducednephrinandpodocinexpression,indicatesthat
48
PLCɸ1 is necessary for proper progression of glomerular development at the capillary loop
stage.PLCɸ1mightinteractwithIQGAP1inthevicinityoffootprocessesandmightserveasan
assemblyscaffoldfortheorganizationofamultimolecularcomplexinvolvedinmorphogenetic
processesofglomerulardevelopmentatthecapillaryloopstage(Hinkesetal.,2006).
Four families with transiently affected or asymptomatic family members carrying
homozygoustruncatingmutationshavebeenreported(Gilbertetal.,2009;Boyeretal.,2010).
This finding raised the possibility that modifier genes or environmental factors could play a
role in the renal phenotypic variability observed in individuals carrying PLCE1 mutations, but
additionalvariantsin19candidategenes,including16phospholipases,wereruledout(Boyer
etal.,2010).Theeffectofmodifiersgenescouldalsoexplaintheabsenceofanobviousrenal
phenotypeinthePlce1knockoutmousemodel(Hinkesetal.,2006).
5.1.4. CD2APgene
CD2AP spans approximately 170 kb on chromosome 6p12.3 and contains 18 exons. This
geneencodestheCD2ͲAssociatedProtein (CD2AP), aproteinof 639aminoacidsand80kDa.
CD2APproteinwasoriginallyclonedasaninteractionpartnerofCD2,acelladhesionmolecule
found on the surface of T lymphocytes and natural killer cells that is implicated in TͲcell
adhesion to antigenͲpresenting cells. In the kidney CD2AP is expressed in proximal tubules,
collecting ducts and podocytes, where it interacts with nephrin (Shih et al., 1999), podocin
(Schwarzetal.,2001)andFͲactin(Lehtonenetal.,2002)suggestingitsroleinanchoringthe
slitdiaphragmtotheactincytoskeleton.
TheCd2apnullmousemodelwasfoundtopresentnotonlyanimpairedTͲcellfunctionin
vitro but also CNS leading to ESRD by 6Ͳ7 weeks of age (Shih et al., 1999). In addition, mice
with Cd2ap haploinsufficiency developed glomerular changes at 9 months of age and had
increasedsusceptibilitytoglomerularinjurybynephrotoxicantibodiesorimmunecomplexes
(Kimetal.,2003).
To date, only one homozygous CD2AP mutation in an infantile form of NS (Lowik et al.,
2007),twocompoundheterozygousCD2APmutationsinacongenitalonsetNS(AlͲHamedet
al., 2013), and five heterozygous mutations in pediatric and adult FSGS cases have been
described(Kimetal.,2003;Lowiketal.,2008;Giganteetal.,2009).Thehomozygouspatient
had failure to thrive secondary to nephroticͲrange proteinuria and microscopic hematuria at
theageof10months,FSGSonhistology,andprogressedtoESRDbytheageof3yearswithno
49
recurrence after renal transplantation. Both parents were heterozygous and asymptomatic,
discarding a haploinsufficient phenotype in this family (Lowik et al., 2007). Studies in large
internationalcohortsdidnotidentifyanymutationinCD2AP,suggestingthatthecontribution
ofthisgenetoSRNSislimited(Sadowskietal.,2014).
5.1.5. PTPROgene
PTPROgeneencodestheproteintyrosinephosphatasereceptortypeO.Thisproteinwas
identifiedinrabbitasapodocyteͲspecifictransmembraneproteinlocalizedtotheapicalside
offootprocesses.Thisreceptormightplayaroleinmaintainingfootprocessstructureand/or
functionbyregulatingtyrosinephosphorylationofpodocyteproteins(Thomasetal.,1994).
PTPROmutationswereidentifiedintwoTurkishconsanguineousfamilies(fiveindividuals)
bygenomeͲwideanalysisfollowedbyhomozygositymapping.PatientswithPTPROmutations
hadanonsetofSRNSbetween5and14yearsoldwithFSGSorMCDonhistologyandsevere
footprocesseffacement.OnepatientreachedESRDattheageof18yearswhereastheothers
hadpreservedrenalfunctionat7,11,12and15yearsold(Ozaltinetal.,2011).
5.1.6. MYO1Egene
MYO1E encodes myosin 1E (MYO1E), a member of the ubiquitously expressed class I
myosins. In podocytes MYO1E is associated with the plasma membrane and is implicated in
podocyteactincytoskeletonorganizationandmotility(Nabetetal.,2009;Meleetal.,2011).
Mutations in the MYO1E gene have been described in 5 families (7 individuals) with
isolatedSRNS,accountingforapproximately6%ofpatients.However,allthefamiliesreported
to date had some degree of consanguinity. Thus, MYO1E mutations do not appear to be a
common cause of SRNS in familial or sporadic cases but to account for a number of
consanguineousfamilies(Meleetal.,2011;AlͲHamedetal.,2013).
AllthefamiliespresentedwithisolatedSRNSand,insomecases,microhematuriawasalso
described. They had an age at onset ranging from 4 months to 9 years and developed ESRD
between10and13yearsofage,althoughfourpatientspreservednormalrenalfunctionat11,
13 and 14 (n=2) years old. Renal biopsy showed FSGS in all the cases except one with MCD
(Meleetal.,2011;SannaͲCherchietal.,2011;AlͲHamedetal.,2013).Affectedmemberswere
resistant to treatment with corticosteroids but some of them responded to
immunosuppressivetreatmentwithcyclosporine(Meleetal.,2011)(MeleCetal2011).
50
Myo1eͲknockoutmicehaveproteinuria,podocytefootprocesseseffacement,andchronic
renal disease, mimicking the phenotype of individuals with MYO1E mutations (19 Mele).
Functional studies in some of the mutations found revealed an abnormal subcellular
localization of the protein or an impaired function due to the loss of important MYO1E
domains(Mele).
5.1.7. ARHGDIAgene
The ARHGDIA gene encodes the RhoͲGDP dissociation inhibitorͲalpha (RhoGDIɲ), which
sequestersRhoͲGTPasesinaninactivestateinthecytosol.AhomozygousmutationinͲframe
deletioninARHGDIAwasfoundintwosiblingsofconsanguineousPakistaniparentsbywholeͲ
exome sequencing. Both siblings presented CNS with generalized edema, severe proteinuria
andhypoalbuminemia.TherenalbiopsyperformedinoneofthemrevealedDMS.Onesibling
reachedESRDat3monthswhereastheotherdied.ThemutationinthisfamilyledtoalossͲofͲ
function of RhoGDIɲ likely disturbing the balance of RHOͲGTPases within podocytes, which
wouldcausedearrangementoftheactincytoskeleton,podocyteinjury,andNS(Guptaetal.,
2013). Gee et al. identified two more families with homozygous missense mutations in
ARHGDIA gene by combining homozygosity mapping with wholeͲexome sequencing. These
families presented with early onset SRNS (from 14 days to 2.4 years), DMS on renal biopsy
(when performed), and rapidly progressed to ESRD (from 6 weeks to 3 years). Extrarenal
featuressuchasintellectualdisability,sensorineuralhearingloss,seizuresorcorticalblindness
werereportedinsomepatients.Themissensemutationsinthesefamiliesabrogateinteraction
with RHO GTPases, increase active GTPͲbound RAC1 and CDC42, and result in a migratory
phenotypicchangeinpodocytes(Geeetal.,2013).
5.1.8. ADCK4gene
The ADCK4 gene encodes the AarF Domain Containing KinaseͲ4, a protein of 544 amino
acidsandapproximately60kDa.Thisproteinlocalizestothemitochondriaandfootprocesses
inpodocytesandissuggestedtobeinvolvedincoenzymeQ10(CoQ10)biosynthesis(Ashrafet
al.,2013).
Recessive mutations in ADCK4 have been identified in a total of 20 SRNS families (41
individuals), accounting for approximately 2% of SRNS screened. However, this prevalence
might be overestimated by the fact that most families were consanguineous (Ashraf et al.,
2013;Korkmazetal.,2015).
51
The disease first manifested in adolescence, typically with mild to moderate proteinuria
and no or mild edema. Hematuria was present in 25% of patients at diagnosis. All patients
showed FSGS on biopsy. Advanced CKD was present in almost half of patients at time of
diagnosisandprogressiontoESRDoccurredexclusivelyintheseconddecadeoflife(Korkmaz
etal.,2015).
PatientswithADCK4mutationswerefoundtohavereducedcellularCoQ10content(Ashraf
et al., 2013; Desbats et al., 2015). Hereditary defects of CoQ10 biosynthesis cause SRNS as a
partofmultiorganinvolvementbutmayalsocontributetoisolatedSRNS.PatientswithADCK4
mutationsshowedlargelyrenalͲlimitedphenotype,withonlysevenpatientspresentingsigns
and symptoms compatible with neurologic dysfunction (Ashraf et al., 2013; Korkmaz et al.,
2015).
5.1.9. TTC21Bgene
TheTTC21Bgenespans96.37Kbonchromosome2q24andcontains29exons.Thisgene
encodestheretrogradeintraflagellartransportprotein139(IFT139),consistingof1216amino
acids and 151 kDa. It contains multiple tetratricopeptide repeat domains (TRP) that bind
specific peptide ligands and are thought to mediate protein–protein interactions (Brinker et
al.,2002).IFT139isacomponentoftheintraflagellartransportͲAcomplexthatassociateswith
themotorproteindynein2toregulateretrogradetraffickingintheprimarycilium(Taschneret
al.,2012).
TheprimaryciliumisamicrotubuleͲbasedantennaͲlikeorganellepresentonthesurfaceof
mostcells.Itiscomposedoftheaxoneme(amicrotubuleͲbasedcorestructure)surroundedby
aciliarymembranethatiscontinuouswiththeplasmamembrane.Theprimaryciliumplaysan
important role in sensing flow changes and mediating signaling pathways involved in the
establishment of cell polarity during development (Ishikawa & Marshall 2011). The
intraflagellartransportinvolvesmovementoflargeproteincomplexes,includingIFTparticles
consistingoftwodistinctcomplexes:AandB.Theanterogrademovement(fromcytoplasmto
ciliary tip) is powered by kinesinͲ2 while the retrograde movement (from the ciliary tip to
cytoplasm)ispoweredbydynein2(Figure24).
52
Figure23.Structureandorganizationoftheprimarycilium(Valenteetal.,2014).
Mice carrying a homozygous null mutation in Ttc21b were embryonic lethal and their
phenotypeoverlappedwiththeclinicalfeaturesofsevereciliopathiesinhumans(Tranetal.,
2008). Mutations in TTC21B gene have been identified in nine individuals with different
ciliopathies: Jeune Asphyxuating Thoracic Dystrophy (a chondrodysplasia that often leads to
death in infancy); nephronophthisis with extraͲrenal manifestations; and isolated
nephronophthisis(Davisetal.,2011;Ottoetal.,2011;McInerneyͲLeoetal.,2014).Ofnote,all
patients with isolated nephronophthisis carried the homozygous p.P209L mutation.
Unexpectedly,thissamemutationhasrecentlybeenidentifiedinsevenfamilieswithFSGSand
tubulointerstitiallesions.Allthereportedpatientswiththep.P209Lmutationsharethesame
haplotype, indicating a founder effect for this mutation in patients of Portuguese or North
African origin. Therefore, TTC21B is the first ciliary gene involved in a glomerular disorder
(HuynhCongetal.,2014).
The clinical phenotype associated with TTC21B mutations is characterized by lateͲonset
proteinuria (9Ͳ23 years), high blood pressure and ESRD at ages 15Ͳ32 years. Renal biopsies
show FSGS together with characteristic alterations of nephronophthisis such as tubular
basement membrane thickening, indicating the coexistence of primary glomerular and
tubulointerstitialalterations(HuynhCongetal.,2014).
TheIFT139proteinisexpressedatthebaseofprimaryciliumindistaltubulesbutalsoin
podocytes.Fetalpodocyteshaveaprimaryciliumbutitislostinthemaduration,thenIFT139
expressionisenhancedandrelocalizedalongthemicrotubulenetwork.Functionalstudieson
the effect of the p.P209L mutation in glomerulus suggested that it causes cytoskeleton
53
alterations that may destabilize podocyte architecture leading to FSGS (Huynh Cong et al.,
2014).
5.1.10. CRB2gene
TheCRB2geneencodestheputativetransmembraneCrumbshomolog2protein,aprotein
required for podocyte foot process arboritzation, slit diaphragm formation, and proper
nephrintrafficking(Ebarasietal.,2015).
HomozygousorcompoundheterozygousmutationsinCRB2genehavebeenidentifiedby
homozygositymappingandwholeexomesequencinginfourfamilieswithchildhoodͲonset(9
monthsͲ6 years) isolated SRNS and FSGS as histological lesions (Ebarasi et al., 2015). All
affected children carried a missense mutation in at least one allele, in accordance with the
embryoniclethalityofCrb2knockoutmice(Xiaoetal.,2011).Ofnote,CRB2mutationswere
also detected in five fetuses and one infant with cerebral ventriculomegaly and echogenic
kidneyswithhistopathologicalfindingsofcongenitalnephrosis(Slavotineketal.,2015).
5.1.11. NUP107gene
The NUP107 gene encodes the essential scaffold protein of the nuclear pore complex
NUP107.Thisproteinfacilitatestheefficienttransferofmacromoleculesbetweenthenucleus
and cytoplasmina highlyselectivemannerandplayspivotalrolesin thenuclearframework
andgeneexpression(StrambioͲDeͲCastilliaetal.,2010).
RecessivemutationsinNUP107genehavebeenidentifiedbywholeͲexomesequencingin
five SRNS families (nine individuals). In four of the five families, all the individuals showed
earlyͲonsetSRNSmanifestingat2Ͳ3yearsofageandreachedESRDbefore10yearsofage.In
theremainingfamily,thetwoaffectedindividualshadadiseaseonsetafter10yearsold,one
ofthemreachedESRDat12yearsoldwhereastheotherhaspreservedrenalfunctionatthe
current34yearsofage.Inalltheaffectedindividualsrenal biopsiesrevealedFSGSandthey
wereresistanttocorticosteroidtherapybutpartiallyrespondenttoimmunosuppressivedrugs.
None of the five patients that underwent renal transplantation experienced recurrence of
SRNS(Miyakeetal.,2015).
A total of four different mutations were found in the five families. Interestingly, the
heterozygousp.D831Amutationwascommoninallthefivefamilies.Thismutationislikelyto
be specific to East Asian because it has only been reported in Japanese population.
54
Furthermore, haplotype analysis confirmed that all the families shared the same haplotype
confirming a common ancestor for this mutation. Mutations in NUP107 are likely to cause
immatureand/orhypoplasticpodocytes,oratleastimpairedpodocytesthatareprogressively
destroyedbyincreasedfiltrationpressureafterbirth(Miyakeetal.,2015).
5.1.12. NUP93gene
Mutations in NUP93, encoding nuclear pore protein 93 likely involved in nuclear pore
complexassembly,havebeenrecentlyidentifiedinsixfamilieswithSRNS(Braunetal.,2016).
Phenotypically,affectedmembershadSRNSthatmanifestedbetween1and6yearsofage
andcausedESRDbetweentheagesof1and11years.RenalbiopsyshowedFSGSorDMS.In
addition,therewasarenaltubularphenotypeinvolvingtubulardilationwithproteincastsand
interstitial cell infiltration. Electron microscopy showed partial podocyte foot process
effacement. One patient showed partial response to corticosteroids, and two patients
respondedtoimmunosuppressivetherapywithcyclosporineA(Braunetal.,2016).
Five different mutations were detected in homozygous or compound heterozygous state
including three missense mutations, one small deletion and one splicing mutation. The
mutations p.G591V and p.Y629C apparently represent European and Turkish founder alleles,
respectively.FunctionalstudiesrevealedthatNUP93mutationscauseddisruptednuclearpore
complex assembly and abrogated interaction with SMAD4, thus identifying aberrant SMAD
signalingasanewdiseasemechanismofSRNS(Braunetal.,2016).
55
5.2. GenesimplicatedinautosomaldominantisolatedSRNSandFSGS
Table2.GenescausativeofautosomaldominantisolatedSRNSandFSGS.
Gene
Reference
MOI
Typicalageatdiagnosis
ofproteinuria/NS
Tyical
histology
Ageat
ESRD
Numberoffamilies
(patients)published
WT1
Coppesetal.,1992
AD
3Ͳ59years
FSGS
10Ͳ69years
7(31)
ACTN4
Kaplanetal.,2000
AD
3Ͳ54years
FSGS
6Ͳ59years
12(>75)
TRPC6
Reiseretal.,2005
AD
2Ͳ75years
FSGS
0Ͳ20years
afteronset
>28(>62)
INF2
Brownetal.,2010
AD
5Ͳ72years
FSGS
13Ͳ70years
>60(>221)
LMX1B
Boyeretal.,2013
AD
5Ͳ70years
FSGS
28Ͳ70years
8(>28)
AD
ND
FSGS
12Ͳ29years
1(3)
ARHGAP24 Akileshetal.,2011
ANLN
Gbadegesinetal.,
2014
AD
9Ͳ69years
FSGS
35Ͳ75years
2(12)
PAX2
Baruaetal.,2014
AD
7Ͳ68years
FSGS
30Ͳ58years
7(24)
Abbreviations: AD, autosomal dominant; ESRD, endͲstage renal disease; FSGS, focal segmental
glomerulosclerosis;MOI,modeofinheritance;ND,nodata;NS,nephroticsyndrome.
5.2.1. WT1gene
The WT1 gene spans 47.86 kb on chromosome 11p13 and contains 10 exons. This gene
encodes Wilms Tumor protein 1 (WT1), a zinc finger transcription factor of 449 amino acids
and49kDathatcontainsanNͲterminaltransactivationdomain(exon1)andfourzincͲfingers
at the CͲterminal (exons 7Ͳ10). WT1 encodes numerous isoforms, which are products of
alternative translation start sites, alternative splicing, and RNA editing. Of particular interest
areWT1(+KTS)andWT1(ͲKTS)variants,whichdifferbythepresenceofthreeaminoacids(KTS)
betweenthezincfingersthreeandfour.Thepresenceofthisinsertinfluencesthemolecular
biochemicalpropertiesoftheresultingprotein.WhileWT1(ͲKTS)bindDNAefficientlyandacts
as a transcriptional activator, WT1(+KTS) seem to have higher affinity to RNA and splicing
factors(Hammesetal.,2001).
WT1proteinplaysacrucialroleinkidneyandgenitaltractdevelopment(PritchardͲJones
etal.,1990;Rivera&Haber2005).Inthefetalkidney,WT1isabundantlyexpressedinareasof
56
active glomerulogenesis whereas in the adult kidney, WT1 expression persists in podocytes
anditsintegrityisrequiredforproperGFBfunction(Morrisonetal.,2008).
MutationsinWT1geneareassociatedwithawidespectrumofADsyndromesinchildren
including Wilms tumor (Gessler et al., 1990), syndromic forms of glomerular disease and
genitourinaryabnormalities:DenysͲDrash(Pelletieretal.,1991),FraiserSyndromes(Klamtet
al., 1998) and WAGR syndrome (Wilms tumor, Aniridia, Genitourinary abnormalities, and
mental Retardation)(Miller et al., 1964), and isolated SRNS (Jeanpierre et al., 1998;
Schumacheretal.,1998;Itoetal.,1999;Denamuretal.,2000;Dharnidharkaetal.,2001;Itoet
al., 2001). Interestingly, WT1Ͳassociated disorders may include SRNS either as an initial
symptomorasalaterdevelopmentinapatientdiagnosedonthebasisofextrarenalfeatures.
Thetypeandlocalizationofthemutationshasbeenclearlyassociatedwiththerenaland
extrarenalphenotypes.Germlinealterations,usuallytruncatingmutations,locatedthroughout
theentirecodingsequencepredisposetoWilmstumor.Heterozygousmissenseortruncating
mutations in exons 8 and 9, mostly de novo, cause DenysͲDrash syndrome or isolated SRNS
(Muchaetal.,2006).ThesemutationsaffecttheDNAͲandRNAͲbindingaffinityofthesecond
and third zinc finger domains. Heterozygous mutations in the donor splice site of intron 9
resultinFraiserSyndrome.These mutationsleadtoareductionofthe+KTSisoformcausing
the alteration of the normal ratio of +KTS/ͲKTS isoforms in the cell (Barbaux et al., 1997).
Finally, large genomic rearrangement affecting chromosome 11p13 may disrupt WT1 among
severalgenes,resultinginWAGRsyndrome.
The renal phenotype associated with WT1 mutations is characterized by an earlyͲonset
SRNSandrapidprogressiontoESRD.Inpatientswithmutationsinexons8and9affectingthe
DNA binding capacity (classically associated with DenysͲDrash Syndrome) NS presents in the
first months of life, may be preceded by isolated proteinuria, and is always resistant to
corticosteroidtherapy.ProgressiontoESRDoccursmostoftenbefore4yearsofage,andno
recurrence is observed after renal transplantation (Habib et al., 1985). Histological findings
show DMS in most patients. In contrast, patients with KTS mutations, causing Fraiser
syndrome, have a childhoodͲonset proteinuria usually between 2 and 6 years of age, almost
invariably FSGS on biopsy, and slow progression leading to ESRD in adolescence or early
adulthood.
Therenalphenotypeofpatientscarryingotherexonicmutationsisdeterminedbythetype
of mutation. Most subjects with truncating mutations develop Wilms tumor early in life
57
whereas SRNS occurs later, typically in the second decade after nephrectomy. Missense
mutations affecting amino acids in nonͲDNA binding positions are characterized by an
intermediate renal phenotype manifesting within the first 5 years of life, usually presenting
withDMSonbiopsy,andprogressingtoESRDatapproximately10yearsold.
Femalepatients(46,XX)carryingeithermissenseorspliceͲsiteWT1mutationscommonly
do not exhibit genital anomalies, have normal puberty, and therefore present with isolated
sporadicSRNS(Ruf,Schultheiss,etal.,2004;Muchaetal.,2006).Missensemutationsinexon8
or 9 (p.R458Q, S461F, or R471K) affecting the second and third zinc fingers have been
identifiedinfamilieswithisolatedADFSGS,includingmaleswithoutgenitalabnormalitiesor
developmentaltumorswhotransmittedthemutation(Coppesetal.,1992;Benettietal.,2010;
Guaragnaetal.,2013;Zhuetal.,2013;Halletal.,2015).
Recently, a detailed study compared 61 patients with WT1Ͳrelated SRNS with 700 SRNS
patients negative for WT1 mutations and revealed several genotypeͲphenotype correlations.
WT1 mutated patients presented more frequently with chronic kidney disease and
hypertension at diagnosis and exhibit more rapid disease progression compared to WT1
negative patients. FSGS is the most prevalent histopathological finding in WT1 nephropathy
butDMSislargelyspecificforWT1diseaseandispresentin34%ofDMScases(Lipskaetal.,
2014). This finding goes against the results obtained by Gbadegesin et al. who identified
mutationsinPLCE1in28.6%offamilieswithDMSwhereasmutationsinWT1wereonlyfound
in8.5%ofthesefamilies(Gbadegesinetal.,2008).Extrarenalphenotypesarealmostexclusive
toWT1andmostlycomprise:sexreversaland/orurogenitalabnormalities(52%),Wilmstumor
(38%),andgonadoblastoma(5%)(Lipskaetal.,2014).
5.2.2. ACTN4gene
AgenomeͲwidescanperformedina100ͲmemberkindredallowedMathisetal.tomapthe
firstlocusofADFSGSonchromosome19q13(Mathisetal.,1992;Mathisetal.,1998).Linkage
analysis including additional families helped to reduce the size of the region and led to the
identificationofthreenonconservativemissensemutationsintheACTN4gene(Kaplanetal.,
2000).ACTN4genecomprises21exonsandencodestheɲͲactininͲ4protein,aproteinof911
aminoacidsandabout105kDathatbelongstothespectringenesuperfamily.ɲͲactininͲ4isan
ubiquitously expressed actinͲbinding protein, that interconnects actin filaments in podocyte
foot processes (Ichimura et al., 2003). Its structure is a headͲtoͲtail antiparallel homodimer
withthefollowingparts:twocalponinhomologousdomains(CH1,CH2)withactinbindingsites
58
intheNͲterminal,followedbyfourspectrinrepeatsandtwoEFhanddomainsthatcanbind
Ca2+ionsintheCͲterminal(Baronetal.,1987;Imamuraetal.,1988;Leinweberetal.,1999).
Affectedcasestypicallypresentwithproteinuriastartingintheadolescenceorlater,with
FSGSlesionsonkidneyhistology,andslowlyprogresstoESRDinthefifthdecadeoflife.Also,
heterozygousACTN4mutationshaveseldombeenreportedinchildhoodͲonsetNS(Kaplanet
al., 2000; Weins 2005; Pollak et al., 2007; Choi et al., 2008). Disease incomplete penetrance
andgermlinemosaicismhasbeendescribed(Weins2005;Choietal.,2008).
MutationsintheACTN4genewerereportedtoaccountforapproximately2%ofADFSGS
(Barua et al., 2013). However, recent studies in large cohorts did not identify any patient
carryingACTN4mutations,suggestinganevenlowercontributionofmutationsinthisgeneto
ADFSGS(Sadowskietal.,2014).
Todate,16mutationshavebeenreported.Mostofthemaremissensemutationsinvolving
residueswithinornexttotheactinbindingsiteofɲͲactininͲ4(Kaplanetal.,2000;Ichimuraet
al.,2003;Weins2005;Baruaetal.,2013;Giglioetal.,2015).Someofthesemutationshave
been shown to increase the affinity of ɲͲactininͲ4 to FͲactin and/or induce ɲͲactininͲ4
mislocalization and the formation of ɲͲactininͲ4 and FͲactin aggregates around the nucleus
with subsequent impairment of podocyte spreading and motility (Kaplan et al., 2000; Weins
2005; Yao et al., 2004; Michaud 2003; Michaud et al., 2006). KnockͲin and knockout mouse
modelsandinvitrodatasuggestbothgainͲofͲfunctionandlossͲofͲfunctionmechanisms(Yao
etal.,2004).
5.2.3. TRPC6gene
TRPC6 spans approximately 421 kb on chromosome 11q22 and contains 13 exons. This
gene encodes the short transient receptor potential canonical 6 (TRPC6), a protein of 931
amino acids and around 106 KDa. TRPC channels are tetrameric proteins composed of six
transmembraneͲspanningdomainsandNͲandCͲterminalfacingthecytosol(Venkatachalam&
Montell 2007). The fifth and sixth transmembrane domains line the pore of the ion channel
(Hofmannetal.,2002)(Figure26).TRPC6isareceptorͲoperatednonͲselectivecationchannel,
whichallowsintracellularCa2+toflowintothecellinresponsetoactivationbyDAGsecondary
tophospholipaseCmediatedsignalcomingfromstimulationofspecificcellsurfacereceptors
(Hofmannetal.,1999;Montell2005).Inthekidney,TRPC6isexpressedinrenaltubulesandin
glomeruli,withpredominanceinpodocytes.TRPC6coͲlocalizeswithpodocinandnephrinand
59
immu
unoprecipitationstudies showedphyysicalinteractionbetweenTRPC6an
ndthesepro
oteins,
indicaating that th
he channel is integrated into the signaling
s
complex at th
he slit diaphragm.
Thereefore,TRPC6
6iscriticalin
nadjustingth
hecationicionfluxcloseetotheslitd
diaphragm(R
Reiser
etal.,2005).Inaaddition, Mo
olleretal. deemonstrated
dthatTRPC6
6isfunction
nallyconnecttedto
Mölleretal.,2007).
theactincytoskeletoninthepodocyte(M
Figure
e24.Structurreandlocationofthe TRPC
C6proteinintheslitdiaphragm.FP,foootprocesses;SSD,slit
diaphragm. Ank, ankyrin
a
repeaat; cc, coiledͲcoil; CIRB, caalmodulin and
d IP3 recepto
orͲbinding (ad
dapted
al.,2009;Dryeer&Reiser2010).
fromMachucaeta
L
Linkage
analyysis of a 399Ͳmember family
f
with FSGS identiffied a locuss on chromo
osome
11q21Ͳq22thatliinkedtothedisease(Wiinnetal.,19
999).Thisreggioncontain
nedseveralkknown
genessaswellas multiplenovelandpred
dictedgeness,whichwerresystematiccallyscreene
edfor
mutaationsbydireectsequencing.Afterexaaminationoff42genes,TTRPC6emerggedasacand
didate
onth
hebasisofreeportsofdettectionofTR
RPC6mRNAiinthekidneyy(Riccioeta
al.,2002;Garcia&
Schilling 1997). Sequencing
S
of the 13 exons of th
his gene ideentified a m
missense muttation
12Qinexon 2thatsegreegatedwithtthediseaseiinallavailab
blefamilymeembersconssistent
p.P11
with anautosomaldominanttpattern(W
Winn2005).A
Additionalwo
orkwasrepo
ortedbyReiseret
dfivefamilieeswith mutationsinTR
RPC6thatseggregatedwitth FSGS,alth
hough
al.whoidentified
mpletepenettrancewaso
observed(Reeiseretal.,2005).
incom
B
Basedonthe
esetwostudiesthephen
notypeassocciatedwithTTRPC6mutattionsislateͲͲonset
ADFSSGSandvariiablerateof progression
ntoESRD(W
Winn2005;Reeiseretal.,2
2005).Howe
ever,a
signifficant numb
ber of sporradic and childhoodͲon
c
nset FSGS cases
c
have been identified.
ChildhoodͲonset SRNS has been reporteed in nine paatients carryying TRPC6 m
mutations (SSantín,
e al., 2009; Heeringa et al., 2009; Buscher et al.,
a 2012; Gigante et al.,, 2011; Mir et al.,
Ars, et
2012).Renalbiop
psytypicallyshowedFSG
GSbutcollapssingglomeru
ulopathy(Gigganteetal.,2011;
opoulos et al.,
a 2011) and MCD have been repo
orted (Gigan
nte et al., 20
011; Mottl et
e al.,
Liako
60
2013).Thishighphenotypicvariabilitycanalsooccurwithinmembersofthesamefamilyeven
withmutationcarriersshowingeithernosignsormildsignsofthedisease,indicatingthatthe
disease is not fully penetrant (Reiser et al., 2005; Santín, Ars, et al., 2009). Studies in large
cohorts revealed that TRPC6 mutations account for approximately 8% of AD FSGS patients
(Sadowskietal.,2014).
Todate,19differentmutationshavebeenreportedin22familial/sporadicpatientsfrom
differentethnicbackground.ThreemutationsarelocatedintheANK1,twointheANK2,onein
ANK3, one in ANK4, and five additional NͲterminal mutations are located outside of the
predictedANKdomains(Reiseretal.,2005;Winn2005;Santín,Ars,etal.,2009;Giganteetal.,
2011;Heeringaetal.,2009;Buscheretal.,2012;Hofstraetal.,2013;Miretal.,2012).Seven
other TRPC6 mutations were located to the CͲterminal cytoplasmic tail (Reiser et al., 2005;
Santín,Ars,etal.,2009;Giganteetal.,2011;Zhuetal.,2009;Mottletal.,2013),fourofthem
mapping to a predicted coiledͲcoil domain at the CͲterminal (Gudermann et al., 2004). No
mutationshavebeenidentifiedinthetransmembrane,extracellularorporeͲformingregionsof
thechannel.
Several of these mutations are gainͲofͲfunction mutations leading to increased channel
activity by increasing calcium current amplitudes or by delaying channel inactivation. The
p.N143S, p.S270T and p.K874* mutations did not modify the calcium influx during the
functional assays, suggesting that an abnormality other than increased current amplitude is
the cause of disease in individuals with these mutations. The several possibilities include
altered channel regulation (despite normal amplitude), altered interaction with other slit
diaphragmproteinsandalteredproteinturnover(Reiseretal.,2005).
5.2.4. INF2gene
TheINF2genespansapproximately33kbonchromosome14q32andcontains23exons.
Thisgeneencodestheinvertedformin2(INF2),aproteinof1249aminoacidsandaround136
KDa that belongs to formin family. Formins are widely expressed proteins governing several
dynamiceventsthatrequireremodelingoftheactincytoskeletonsuchascellpolarity,celland
tissuemorphogenesis,andcytokinesis(Boyer,Benoit,et al.,2011).TheINF2protein hasthe
uniqueabilitytoacceleratebothpolymerizationanddepolymerizationofactin(Chhabraetal.,
2009). This protein contains the following domains, from NͲterminal to CͲterminal: the
diaphanous inhibitory domain (DID), the formin homology domains FH1 and FH2, and the
diaphanousregulatorydomain(DAD).TheFH2domaindirectlymediatesactinassembly,and
61
theFH1domainsacceleratefilamentelongation.InteractionbetweenDIDandDADblocksthe
ability of FH2 to interact with actin, inhibiting actin depolymerization but not actin
polymerization. This step is inhibited by the binding of Rho GTPases to DID impeding its
interactionwithDAD(Boyer,Benoit,etal.,2011;Gbadegesinetal.,2012).
MutationsinINF2genewereidentifiedasacauseofADFSGSbyBrownetal.(Brownetal.,
2010).StudiesinlargecohortsdescribedthatINF2mutationsaccountforapproximately9%Ͳ
17%offamilialADFSGSand<1%ofsporadiccases(Boyer,Benoit,etal.,2011;Gbadegesinet
al.,2012;Baruaetal.,2013).MutationsinthisgenearealsothemaincauseofCharcotͲMarieͲ
ToothdiseasewithFSGS(Boyer,Nevo,etal.,2011).
The clinical phenotype of individuals with INF2 mutations is characterized by moderate
proteinuria, without overt NS, manifesting at early adolescence or adulthood that is
progressiveandoftenledtoESRD.However,nephroticrangeproteinuriaandfullͲblownNSat
onset have been described. Microscopic hematuria and hypertension at onset have been
noted in some individuals. Most individuals have an onset of the disease in the second to
fourth decade of life with onset of renal failure in the third decade (Barua et al., 2013) but
significantvariabilityhasbeenreported.Consideringallthepatientspublishedtodate,ageat
proteinuriaonsetrangesfrom5yearsto72yearsandageatESRDonsetfrom13to70(Brown
etal.,2010;Boyer,Benoit,etal.,2011).IntraͲfamilialvariabilityintheclinicalexpressionofthe
diseaseisalsowidewithclinicallyunaffectedmemberscarryingthesamemutationthattheir
affected son or daughter, consistent with incomplete penetrance that is often seen in AD
diseases(Leeetal.,2011;Boyer,Benoit,etal.,2011;Gbadegesinetal.,2012).
All the mutations described to date (more than 40) are highly conserved residues within
theDIDdomain.Mostofthemclusterinexon4and2,accountingforapproximately80%and
10%ofmutations,respectively.Mutationsinexons3and6havebeenreportedintwoandone
families,respectively(Baruaetal.,2013;SanchezͲAresetal.,2013).
Many of the mutations reported are recurrent with certain codons appearing to be
hotspots, such as Arg218 or Arg214. Mutations in Arg218 have been described in eight
unrelatedfamilies,sixofthemcarrythep.R218Qmutation(Brownetal.,2010;Boyer,Benoit,
etal.,2011;Gbadegesinetal.,2012;Baruaetal.,2013)whereastheremaining2familiescarry
thep.R218Wmutation(Baruaetal.,2013).MutationsinArg214havebeendescribedineight
familiesfourofthemcarrythep.R214H(Brownetal.,2010;Gbadegesinetal.,2012)mutation
while the remaining four families carry the p.R214C mutation (Boyer, Benoit, et al., 2011;
62
Gbadegesinetal.,2012;Baruaetal.,2013).Apossiblefoundereffectofthesemutationswas
studied by haplotype analysis but no common ancestral diseaseͲassociated haplotype was
found(Boyer,Benoit,etal.,2011).
INF2 mutations have been suggested to cause defects in actinͲmediated podocyte
structuralmaintenanceandrepair(Brownetal.,2010).Mostofthemutationsreportedhave
beenshowntocausemislocalizationofINF2inpodocytecultureandsomeofthemalsoinhibit
the interaction between INF2ͲDID and mDiasͲDAD (mouse DiaphanousͲrelated formins),
suggesting that changes are functionally important for regulation of actin cytoskeleton
(Gbadegesinetal.,2012).
5.2.5. LMX1Bgene
The LMX1B gene encodes the LIM homeodomainͲcontaining transcription factor 1B
(LMX1B) that is essential during development. Mutations in LMX1B cause NailͲPatella
syndromeassociatingdysplasiaofthepatellae,nailsandelbows,iliachorns,glaucomaand,in
somecases,FSGSwithspecificlesionscharacterizedbythepresenceoftypeIIIcollagenfibrils
in the GBM by electron microscopy (Dreyer et al., 1998). However, LMX1B mutations have
been identified in four families (14 individuals) with AD FSGS but no glomerular membrane
anomalysuggestiveofnailͲpatellaͲlikerenaldiseasebyelectronmicroscopyandnoextrarenal
features (Boyer et al., 2013; Edwards et al., 2015). These patients presented significant
albuminuriabetween5and70yearsofage,andsomeofthemreachedESRDbetween26and
70yearsofage.Thethreedifferentmutationsdetected(p.R246Q,p.R246Pandp.R249Q)are
locatedintheLMX1Bhomeodomain.Theaffectedresiduesarelikelytoplayanimportantrole
in strengthening the interaction between the homeobox domain of LMX1B and DNA, by
holdinginteractionswiththeDNA(Boyeretal.,2013).
5.2.6. ANLNgene
The ANLN gene encodes for anillin, an FͲactin binding protein that is enriched in the
cytoskeleton.HeterozygousmissensemutationsinANLNhaverecentlybeendescribedintwo
familieswithADFSGSbygenomeͲwidelinkagestudyandwholeͲexomesequencing.Theageat
proteinuria onset varied from 9 to 69 years and ESRD occurred between 35 and 75 years
(Gbadegesinetal.,2014).
63
5.2.7. PAX2gene
PAX2isatranscriptionfactor expressedfromthefourthweek ofgestationin thekidney
andplayacriticalroleinkidneydevelopment(Nakanishi&Yoshikawa2003).Mutationsinthis
gene have typically been associated with congenital abnormalities of the kidney and urinary
tract (CAKUT) as part of a syndrome known as renal coloboma or papillorenal syndrome
(Sanyanusinetal.,1995).Baruaetal.identifiedaPAX2mutationinafamilywithADFSGSby
exomesequencing.SequencingofthePAX2geneinFSGSfamiliesrevealedaPAX2mutationin
7ofthe175familiesanalyzed(24patients),suggestingthatmutationsinPAX2mightaccount
forapproximately4%offamilieswithFSGS(Baruaetal.,2014).
The affected patients had various degrees of proteinuria diagnosed between 7 and 68
years old (mostly second to fourth decades) and FSGS on biopsy. ESRD occurred in nine
patientsbetween30and58yearsold.KidneyultrasoundinpatientswithPAX2ͲrelatedFSGS
either was normal or could reveal echoic or small kidneys, dilated renal pelvis, or calyceal
diverticulum. Most patients did no exhibit any extrarenal symptom, but renal coloboma was
diagnosedretrospectivelyinonefamily(Baruaetal.,2014).
Interestingly, a patient with a PAX2 mutation together with the homozygous p.R229Q in
theNPHS2genehasbeenreported.ThispatientpresentedwithsubͲnephroticproteinuriaat7
months. At 20 years old he presented nephroticͲrange proteinura, FSGS on renal biopsy and
hisrenalfunctionprogressivelydeterioratedreachingESRDat33yearsofage.Norecurrence
ofthediseasewasobservedafteroneyearofrenaltransplantation.Additionally,hepresented
ocularabnormalitiesinaccordancewiththeocularabnormalitiesseeninrenalcoloboma(Kerti
etal2013).
64
5.3. GenesimplicatedinsyndromicformsofSRNSandFSGS
Gene
Reference
MOI
Typicalageatdiagnosis
ofproteinuria/NS
Tyicalhistology
AgeatESRD
Syndrome:recurrentextrarenalinvolvement
Nºfamilies(patients)
published
SRNSwithgenitourinaryfeatures
WT1
Pelletieretal.,1991
AD
0–10years
DMS
0–15years
DennysͲDrashsd:Wilmstumorinbothgenders,genitalanomalies
in46,XYpatients
>170
WT1
Klamtetal.,1998
AD
7monthsto34years
FSGS
5toш34years
Fraisersd:Pseudohermaphroditism,gonadoblastomain46,XY
patients
>60
AD
9–76years
22Ͳ52
NailͲPatellasd:hypoplasticnails/patellae,iliachorns
>35(>54)
AR
2–12years
FSGS
3.8–22years
SchimkeImmunoͲosseousdysplasia:spondyloepiphysealdysplasia,
TͲcelldeficiency,cerebralischemia,broadnasaltip,
hyperpigmentedmacules
>90
5–47years
FSGS
13–51years
MELAS:myopathy,encephalopathy,lacticacidosis,andstrokeͲlike
episode,diabetes,anddeafness
>30(>45)
SRNSwithosseousdysplasia
LMX1B
Dreyeretal.,1998
SMARCAL1 Boerkoeletal.,2002
FSGS,NPSͲ
nephropathy
MitochondriopathieswithSRNS
Matern
MTTL1
Gotoetal.,1990
COQ2
Quinziietal.,2006
AR
0–30months
FSGS
0toш5years
COQ10deficiency:encephalomyopathy,hypotonia,seizures,
lactateacidosis
10(13)
PDSS2
Lopezetal.,2006
AR
0Ͳ23months
ND
Nodata
COQ10deficiency:encephalomyopathy,hypotonia,seizures,
lactateacidosis
3(3)
COQ6
Heeringaetal.,2011
AR
2monthsto6.4years
FSGS
COQ10deficiency:sensorineuraldeafness,seizure
8(16)
SCARB2
Balreiraetal.,2008
AR
9to>59years
FSGS
Progressivemyoclonicepilepsy,cerebralandcerebellaratrophy,
peripheralneuropathy,hearingimpairment
18(24)
al
5monthsto
9.3years
9to>59years
SRNSwithcutaneousfeatures
65
Gene
Reference
MOI
ITGB4
Kambhametal.,2000
AR
LAMB3
Hataetal.,2005
ITGA3
CD151
Typicalageatdiagnosisof
Nºfamilies(patients)
Tyicalhistology
AgeatESRD
Syndrome:recurrentextrarenalinvolvement
2monthsto10years
FSGS
NA
Junctionalepidermolysisbullosa,naildystrophy,recurrent
hemorrhagiccystitis,desquamationoflaryngealmucosa
2(2)
AR
ч4months
DMS
Epidermolysisbullosa,naildystrophy
1(1)
Nicolaouetal.,2012
AR
0Ͳ4years
FSGS
Interstitiallungdisease,epidermolysisbullosa
6(6)
Karamaticetal.,2004
AR
ND
ND
Pretibialepidermolysisbullosa,sensorineuraldeafness,lacrimal
ductstenosis,naildystrophy
2(2)
Intellectualdisability
3(6)
proteinuria/NS
NA(5
months*)
2weekstoш4
years
Thickeningof
GBM
published
SRNSwithintellectualdisability
6weeksto3
ARHGDIA
Guptaetal.,2013
AR
0–2.4years
DMS
KANK4
Geeetal.,2015
AR
2months
FSGS
ND
XPO5
Braunetal,,2016
AR
2years
MCD
ND
Speechdevelopmentdelay
1(1)
AR
0–6years
DMS
0Ͳ21years
Piersonsd:microcoria,abnormallens,VI,hypotonia,motordelay
>60(>70)
years
Intellectualdisability,shortstature,facialdysmophism,atrialseptal
defect,dilativecardiomyopathy,leukocytosis
2(2)
SRNSwithotherfeatures
LAMB2
HasselbacherKetal.,
2006
WDR73
Colinetal.,2014
AR
5to>13years
FSGS
ш5years
GallowayͲMowatsd:secondarymicrocephaly,intellectual
deficiency,corticalandcerebellaratrophy,facialdysmorphy,optic
atrophy
2(3)
INF2
Boyeretal.,2011
AD
10–46years
FSGS
12–47years
Charcot–Marie–Toothneuropathy,deafness
27(44)
NUP205
Braunetal.,2016
AR
2Ͳ3years
FSGS
7years
Bicuspidaorticvalve,aorticinsufficiency,aorticrootenlargement
1(2)
Abbreviations: AD, autosomal dominant; AR, autosomal recessive, diffuse mesangial sclerosis; ESRD, endͲstage renal disease; FSGS, focal segmental glomerulosclerosis;
MCD,minimalchangedisease;MOI,modeofinheritance;ND,nodata;NPS,NailͲpatellasyndrome;NS,nephroticsyndrome;sd,syndrome.
66
6. CLINICALUTILITYOFGENETICTESTING
TheidentificationofthegeneticcauseofSRNShasseveralclinicalimplications:
Ͳ
Provides an unequivocal molecular diagnosis for the patients and their family
membersandmaydiagnosepreviouslyunrecognizedaffectedfamilymembers.
Ͳ
Predicts resistance to corticosteroid and/or immunosuppressive therapy. Therefore,
theunnecessaryextensionofcorticosteroidtreatmentaswellasthepotentialriskand
sideeffectsassociatedwiththesetreatmentscanbeavoided(Weberetal.,2004;Ruf,
Lichtenberger,etal.,2004;Buscheretal.,2010;Giglioetal.,2015).
Ͳ
A low risk of relapse after renal transplantation, hence, living donor renal
transplantationisencouraged.
Ͳ
Geneticcounseling(prenatalorpreimplantationgeneticdiagnosis)forfamilyplanning
can be offered to couples with known risk for severe NS, in whom the causative
mutationshavebeenidentifiedinafirstaffectedchild.
Ͳ
Prognosisinformationdependingonwhichgeneismutatedandthetypeofmutations
consideringthegenotypeͲphenotypecorrelationsexplainedintheprevioussection.
Althoughtheseclinicalimplicationsaregenerallyapplicabletoallpatientswithagenetic
cause of SRNS identified, specific particularities and/or exceptions have been described
dependingonthemutatedgene.
Most patients with NPHS1 mutations are resistant to corticosteroids and
immunosuppressive treatment. However, five patients (three families) with compound
heterozygous or homozygous missense mutations and partial remission have been reported
(Kitamuraetal.,2007;Heeringaetal.,2008;Schoebetal.,2010).Twosiblingswithfrequent
relapsingNSthatcarriedcompoundheterozygousp.C265Randp.V822MmutationsinNPHS1
gene achieved remission of proteinuria without immunosuppressive treatment. Functional
studiesshowedthatthep.C265Rmutationwastrappedintheendoplasmicreticulumwhereas
thep.V822Mmutationpartiallyreachedtheplasmamembrane,likelyexplainingtheirmilder
disease(Kitamuraetal.,2007).Intheremainingthreepatients(twofamilies)partialremission
duetosteroidtreatmentwasachieved(Heeringaetal.,2008;Schoebetal.,2010).
PostͲtransplantation recurrence in NPHS1 mutated patients is very low. However, in a
studyofpatientswithFinͲMajororFinͲminormutations(thatleadtotheabsenceofnephrin)
recurrenceoccurredin25%ofpatientsatameantimeof12monthspostͲtransplantation.All
67
these patients were homozygous for the FinͲmajor mutation, which leads to an early stopͲ
codon and total absence of nephrin in the native kidney. In almost half of them antibodies
againstnephrinweredetected(Patrakkaetal.,2002).Similarly,KuusniemietalreportedpostͲ
transplantrecurrenceratein30%ofpatientshomozygousfortheFinͲmajormutationand70%
of them showed antiͲnephrin antibodies (Kuusniemi 2007). Two patients with mutations
different from the FinͲmajor and postͲtransplant recurrence have also been reported
(Srivastavaetal.,2006;Chaudhurietal.,2012).InoneofthemantiͲnephrinantibodieswere
detected (Chaudhuri et al., 2012). Thus, recurrence in these patients was considered an
immune process against the nephrin present in the graft and treatment with
immunosuppressiveagentsledtoremissioninsomecases(Flynnetal.,1992).
Duringpregnancy,elevatedAFPinthematernalserumandamnioticfluidisindicativeof
CNS. However, elevated AFP is not a specific marker of CNS as it has also been observed in
NPHS1 heterozygous fetal carriers and in a fetus with DennysͲDrash syndrome (Devriendt et
al., 1996; Patrakka et al., 2002). Therefore, prenatal genetic diagnosis is required to confirm
CNSbeforeconsideringmedicalterminationofpregnancy.
NPHS2mutatedpatientsdonotgenerallyrespondtocorticosteroidorimmunosuppressive
therapy,butapartialreductionofproteinuriahasbeenreportedwithcyclosporineAineight
patients(Ruf,Lichtenberger,etal.,2004;Malinaetal.,2009;Machuca,Hummel,etal.,2009).
However, complete remission in SRNS caused by NPHS2 mutations have not been reported
(Ruf, Lichtenberger, et al., 2004; Buscher et al., 2010). PostͲtransplant disease recurrence is
significantly low in patients with NPHS2 mutations than in patients with without mutations,
4.5% vs. 28.5%, respectively according to a recent study in a large international cohort
(Trautmannetal.,2015).However,postͲtransplantdiseaserecurrencehasbeendescribedin
12patients(Carraroetal.,2002;Bertellietal.,2003;Billingetal.,2004;Weberetal.,2004;
Hocker et al., 2006; BeckerͲCohen et al., 2007; Trautmann et al., 2015). The most common
mutationsinthesepatientswasthep.R138*andthep.R138Q.Thereisnoevidenceofpodocin
antibodies in these patients, thus the pathomechanism of disease recurrence in NPHS2
mutatedpatientsremainsunknownandisprobablymultifactorial(Holmberg&Jalanko2014).
TheidentificationofPLCE1representsthefirstmolecularcauseofNSthatmightresponse
totherapyinsomeindividuals. Two childrenrespondedtotreatmentwith corticosteroidsor
cyclosporineAachievingacompleteremissionandremainedfreeofproteinuriaafterseveral
yearsoffollowͲup(Hinkesetal.,2006).Basedonthesefindings,ithasbeenspeculatedthat
the arrest of glomerular development through PLCE1 mutations may be reversible by
68
treatmentwithcorticoidsorcyclosporineAviainductionofaredundantmechanismsuchas
the activity of another phospholipase C (Hinkes et al., 2006). Thus, corticosteroid and
immunosuppressivetreatmentisadvisedinpatientswithPLCE1mutations.NopostͲtransplant
recurrencehasbeendescribedtodate.
PatientswithWT1mutationsweredescribed tobe unresponsivetotherapy. However,a
partial response to immunosuppressive agents has been described in some patients
(Gellermann et al., 2010; Buscher et al., 2010). Gellermann et al. reported a favorable
response to a therapy consisting of cyclosporine A in combination with corticosteroids in 3
patients with FSGS associated with WT1 mutations (Gellermann et al., 2010). Büscher et al.
reported 2 patients who achieved a partial response to cyclosporine A: one phenotypically
femaleFraiserpatient(karyotypeXY)affectedbyaWT1spliceͲsitemutationsandonepatients
(karyotypeXX)withisolatedFSGSaffectedbyaWT1missensemutation(Buscheretal.,2010).
InpatientswithWT1mutations,thekaryotypeoffemalesshouldbeinvestigatedinorder
to exclude the 46 XY karyotype with pseudohermaphroditism. These patients should also be
screened for the development of for the development of Wilms Tumor or gonadoblastoma
(Roodetal.,2012).Geneticcounselingisessentialinbothfemaleandmales,astheyhavea
50% risk to transmit the mutation. Although most WT1 mutations are de novo, parents of a
child with a WT1 mutation should be advised of a low probability of recurrence due to the
possibilityofgerminalmosaicism,whichhasanunknownlikelihood.
PotentialtherapyisavailableforsomerarecausesofSRNS.Forinstance,identificationof
mutations in a gene encoding enzymes of the CoQ10 biosynthesis (COQ2, COQ6, ADCK4 or
PDSS2)maywarranteeexperimentaltreatmentwithCoQ10(Heeringaetal.,2011;Montiniet
al., 2008) as partial response to treatment with coenzyme Q10 has been described in
individuals with SRNS and mutations in COQ2 (Montini et al., 2008), COQ6 (Heeringa et al.,
2011) and ADCK4 (Ashraf et al., 2013). Similarly, individuals with TRPC6 mutations may
potentially be amenable to treatment with calcineurin inhibitors (Schlondorff et al., 2009),
patients carrying CUBN mutations may be amenable to treatment with vitamin B12, and
individuals with ARHGDIA mutations may theoretically be responsive to the eplerenone
treatment(Geeetal.,2013).
GenetictestinginSRNSshouldbestronglyadvisedinthosepatientswithalikelyagenetic
causeofthedisease:1)inCNSpatients,2)inchildhoodͲonsetSRNSpatients,bothfamilialand
sporadic,3)inadultonsetpatientswithafamilyhistoryofthedisease,and4)inpatientsfrom
69
consanguineous marriages. This advice is based on the relatively high prevalence of genetic
causesinthesegroups.
70
AIMS
71
72
Theglobalaimofthepresentthesiswastoincreaseourknowledgeonthecontributionof
genetics to the pathogenesis and clinical outcome of idiopathic membranous nephropathy
(IMN)andSRNS/FSGS.
Thefirstpartofthisthesiswasfocusedontheassociationofgeneticpolymorphisms:SNPS
andCopynumbervariants(CNVs),withtherisktodevelopIMNanditsclinicalcourse.Specific
aimsofthispartwere:
Ͳ
To validate the association of HLAͲDQA1 and PLA2R1 genes with the risk to develop
IMNinSpanishpopulation.
Ͳ
To test the putative association of CNVs within FCGR3A and FCGR3B genes with
susceptibilitytoIMNinSpanishpopulation.
Ͳ
Toassessthecontributionofthesegeneticfactorstopredicttheclinicaloutcomeand
renalfunctiondecline.
ThesecondpartofthisthesisaimedtoanalyzethegeneticcausesofSRNS/FSGSaswellas
toidentifygeneticmodifiersofdiseaseseverity.Particularaimsofthispartwere:
Ͳ
ToimprovethegenetictestingofSRNS/FSGS.
Ͳ
To assess the putative influence of mutations in multiple glomerular genes on
SRNS/FSGSphenotypevariability.
Ͳ
TostudythecausativeandmodifyingroleofTTC21Bgene
Thefinalaimofthepresentthesiswastodevelopanefficientandcomprehensivegenetic
diagnosis including all known genes causative of glomerular and cystic inherited kidney
diseases.
73
74