* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Appendix L: Climate impacts and adaptation actions for shrub
Climate resilience wikipedia , lookup
Politics of global warming wikipedia , lookup
Global warming wikipedia , lookup
Climate engineering wikipedia , lookup
Citizens' Climate Lobby wikipedia , lookup
Climate sensitivity wikipedia , lookup
Climate governance wikipedia , lookup
Effects of global warming on human health wikipedia , lookup
Climate change adaptation wikipedia , lookup
Atmospheric model wikipedia , lookup
Media coverage of global warming wikipedia , lookup
Climate change feedback wikipedia , lookup
Climate change in Tuvalu wikipedia , lookup
Solar radiation management wikipedia , lookup
Economics of global warming wikipedia , lookup
Attribution of recent climate change wikipedia , lookup
Scientific opinion on climate change wikipedia , lookup
Public opinion on global warming wikipedia , lookup
Climate change in the United States wikipedia , lookup
Climate change and agriculture wikipedia , lookup
Effects of global warming wikipedia , lookup
Years of Living Dangerously wikipedia , lookup
Climate change and poverty wikipedia , lookup
Surveys of scientists' views on climate change wikipedia , lookup
Effects of global warming on humans wikipedia , lookup
General circulation model wikipedia , lookup
Appendix L: Climate impacts and adaptation actions for shrub-steppe TheWashington-BritishColumbiaTransboundary Climate-ConnectivityProjectengagedsciencepracticepartnershipstoidentifypotentialclimate impactsonwildlifehabitatconnectivityand adaptationactionsforaddressingtheseimpactsin thetransboundaryregionofWashingtonandBritish Columbia.iProjectpartnersfocusedtheirassessment onasuiteofcasestudyspecies,vegetationsystems, andregionschosenfortheirsharedprioritystatus amongprojectpartners,representationofdiverse habitattypesandclimatesensitivities,anddata Photo:Famartin availability.Thisappendixdescribespotentialclimate FigureL.1.Shrub-steppevegetation. impactsandadaptationactionsidentifiedforshrubsteppevegetationcommunities.1 Shrub-steppeisthedominantvegetationtypefoundintheColumbiaPlateauecoregionofthePacific Northwest.WithintheWashington-BritishColumbiatransboundaryregion,shrub-steppecommunities arehighlyfragmentedduetoagricultural,residential,andcommercialdevelopment.Additionalthreats toshrub-steppecommunitiesincludechangesinfireregimefromwildfiresuppressionandinvasive cheatgrass(Bromustectorum),intensivegrazingpressurefromcattle,andincreasingenergyextraction activitiesacrosstheregion.2 Futureclimatechangemaypresentadditionalchallengesandneedsforshrub-steppehabitat connectivity.3-4First,climatechangemayimpactshrub-steppecorehabitatareasandcorridorsinways thatmaymakethemmoreorlesspermeabletowildlifemovement.Second,existingshrub-steppecore habitatareasandcorridorsmaybedistributedonthelandscapeinwaysthatmakethemmoreorless abletoaccommodateclimate-drivenshiftsindistributionsofshrub-steppespecies.Forsuchreasons, connectivityenhancementhasbecomethemostfrequentlyrecommendedclimateadaptationstrategy forbiodiversityconservation.5However,littleworkhasbeendonetotranslatethisbroadstrategyinto specific,on-the-groundactions.Furthermore,toourknowledge,nopreviousworkhasidentifiedspecific climateimpactsoradaptationresponsesforshrub-steppehabitatconnectivity(butseeMichalaketal. 2014).2Toaddresstheseneeds,wedescribehereanovelefforttoidentifyandaddresspotentialclimate impactsonshrub-steppehabitatconnectivityinthetransboundaryregionofWashingtonandBritish Columbia. Potential climate impacts on habitat connectivity Toidentifypotentialclimateimpactsontransboundaryshrub-steppehabitatconnectivity,project partnerscreatedaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpected toinfluenceshrub-steppehabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate, andhow(AppendixL.2).Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasierto identifyspecificclimateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeen promotedasusefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6Theshrub i ThisreportisAppendixLoftheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject;for 1 moreinformationabouttheproject’srationale,partners,methods,andresults,seeKrosbyetal.(2016). Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 1 Shrub-steppe steppeconceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipant expertise,andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,and shouldnotbeinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscape featuresandprocessescontributingtoshrub-steppehabitatconnectivity. Projectparticipantsusedconceptualmodelsinconjunctionwithmapsofprojectedfuturechangesin speciesdistributions,vegetationcommunities,andrelevantclimatevariablestoidentifypotential impactsonshrub-steppeconnectivity.Becauseakeyprojectgoalwastoincreasepractitionerpartners’ capacitytoaccess,interpret,andapplyexistingclimateandconnectivitymodelstotheirdecisionmaking,wereliedonafewprimarydatasetsthatarefreelyavailable,spanallorpartofthe transboundaryregion,andreflecttheexpertiseofprojectsciencepartners.Thesesourcesinclude habitatconnectivitymodelsproducedbytheWashingtonConnectedLandscapesProject,7,8future climateprojectionsfromtheIntegratedScenariosofthePacificNorthwestEnvironment9andthePacific ClimateImpactsConsortium’sRegionalAnalysisTool,10andmodelsofprojectedrangeshiftsproduced aspartofthePacificNorthwestClimateChangeVulnerabilityAssessment.11 Keyimpactsontransboundaryshrub-steppeconnectivityidentifiedviathisapproachincludechangesin vegetation,changesindisturbanceregimes,changesininvasivespecies,andchangesinlanduse. Changes in vegetation Climatechangemayimpactshrub-steppehabitatconnectivitybychangingtheextentandlocationof areasofclimaticsuitabilityforplantspeciesassociatedwithshrub-steppecommunities;thismayrender someexistingcorehabitatareasandcorridorsunsuitableforshrub-steppespecies,and/orcreatenew areasofsuitability.Twotypesofmodelsareavailablethatestimatefuturechangesinvegetationforthe transboundaryregion:climaticnichemodelsandmechanisticmodels.ii Climaticnichemodels(CNM)areavailableforbigsagebrush(Artemisiatridentata),adominantshrubsteppeplantspecies.Projectedchangesforbigsagebrushareavailablebasedonfiveclimatemodels (BCCRBCM2.0,CCCMACGCM3,CSIROMK3.0,INMCM3.0,andMIROC3.2MEDRES)iiiforthe2080s undertheA2(high)carbonemissionsscenarioiv(AppendixL.3).Underallfiveclimatemodels,the OkanaganValleyandthenorthernsectionoftheColumbiaPlateauareprojectedtoremainclimatically suitableforbigsagebrush.Inaddition,foramajorityofclimatemodels,adjacentuplandareasbecome moreclimaticallysuitableforbigsagebrush(AppendixL.3).Projectedincreasesinspringprecipitation (AppendixL4:TotalSpringPrecipitation)andthefrost-freeperiod(AppendixL4:NumberofFrostDays) mayhelppromotebigsagebrushgerminationandestablishment. ii Climaticnichevegetationmodelsmathematicallydefinetheclimaticconditionswithinagivenvegetationtype’s currentdistributionandthenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture. Thesemodelsdonotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability, dispersal,competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological processesaswellasprojectedclimatechangesandpotentialeffectsofcarbondioxidefertilization.However, mechanisticmodelsonlyprojectedchangestoverygeneralvegetationtypessuchascoldforest,shrubsteppe,or grassland. iii Globalcirculationmodelssimulatetheresponseoftheglobalclimatesystemtoincreasinggreenhousegas 21,22 concentrations. iv Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregionalclimaterelatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinuetorise st untiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativetopre23 industriallevels. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 2 Shrub-steppe InadditiontothebigsagebrushCNM,thereareCNMandmechanisticmodelsthatestimatefuture changesinvegetationtypes(ratherthanindividualplantspecies)forthetransboundaryregion.Both setsofmodelsarebasedonresultsfromtwoCMIP3globalcirculationmodels(CGCM3.1(T47)and UKMO-HadCM3),vusingtheA2(high)emissionsscenario.ivWhileCNMvegetationmodelsprojectstable orimprovingclimaticconditionsforsagebrushinandaroundtheOkanaganValley,mechanistic vegetationmodelsprojectencroachmentof“coolopenforestwoodland”vegetationintotheValleyby theendofthecentury.UndertheUKMO-HadCM3scenario,thistransformationisextensiveand includesthelowlandsadjacenttotheOkanaganValleyitself.UndertheCGCM3.1(T47)scenario,the lowlandvegetationadjacenttothevalleyremains“coolforest,”althoughmuchoftheOkanaganValley andnorthernColumbiaPlateautransitionto“coolopenforestwoodland.”vi12 Changes in disturbance regimes Climatechangemayaffectshrub-steppehabitatconnectivitybyincreasingthefrequencyandseverityof summerdrought(AppendixL.4:DrySpellDuration;SoilMoisture,July-September)andincreasingthe riskofwildfires(AppendixL.4:DayswithHighFireRisk).Whilefirecanhelppreventtreeencroachment intoshrub-steppecommunities,13anincreaseinfirefrequencymaypreventsagebrushseedlingsfrom establishing,andfiresthataretooseverecanscorchthesoilandpreventregrowthofvegetation.14 Impactsofincreasingfireriskonshrub-steppehabitatconnectivitywillthusultimatelydependonfire returnintervals,severity,andsize,andonthesubsequentsuccessionaltrajectoriesofvegetation. Changes in invasive species Cheatgrassisaninvasivespecieswithdevastatingaffectsonshrub-steppecommunities.Climatechange couldinfluencethedistributionandinvasivenessofcheatgrassduetoitssensitivitytochangesin temperature,precipitation,andfireregime.2CheatgrassCNMsfortheColumbiaPlateauprojecteither nochangeorashrinkingclimaticnichespaceforcheatgrass,15whichwouldhaveapositiveaffecton shrub-steppehabitatconnectivity.However,CNMsdonotaccountfortheinfluenceoffireonhabitat suitability.Projectedincreasesinfirerisk(AppendixL.4:DayswithHighFireRisk)maypromotecheat grassinvasioninshrub-steppecommunities,negativelyaffectinghabitatconnectivity. Changes in land use Climatechangemayleadtochangesinthelocationandproductivityofagriculture.Inparticular,the OkanaganValleyandnorthernColumbiaPlateaucouldbecomemoreproductiveforvineyards.16 VineyardacreageintheOkanaganhasexpandedinrecentyears17andchangingclimateconditionscould makeitprofitabletoexpandvineyardsintohigherelevations.Warmeranddrierconditionsandreduced wateravailabilityfromlossofsnowpack(AppendixL.4:Spring(April1st)Snowpack)couldalsoincrease theneedforirrigation,placingadditionalstressonwaterresources.Suchchangesinlandusewould negativelyaffectshrub-steppehabitatconnectivity. v 21,22 CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs) whicheachprojectdifferent potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet” futurewithinthePacificNorthwest. vi Thedistinctionbetween“coolforest”and“coolopenforestwoodland”isthattheformerforesttypeis>10 12 meterstallwhilethelatteris<10meterstall. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 3 Shrub-steppe Adaptation responses Afteridentifyingpotentialclimateimpactsonshrub-steppeconnectivity,projectparticipantsused conceptualmodelstoidentifywhichrelevantlandscapefeaturesorprocessescouldbeaffectedby managementactivities,andsubsequentlywhatactionscouldbetakentoaddressprojectedclimate impacts(AppendixL.2).Keyadaptationactionsidentifiedbythisapproachfallunderthreemain categories:thosethataddresspotentialclimateimpactsonshrub-steppehabitatconnectivity,those thataddressnovelhabitatconnectivityneedsforpromotingclimate-inducedshiftsinshrub-steppe distributions,andthosethatidentifyspatialprioritiesforimplementation. Addressing climate impacts to shrub-steppe connectivity Actionstoaddresspotentialchangesinvegetationtypeinclude: • Developingamonitoringplanforshrub-steppe,particularlywithinkeyhabitatareasand corridors,andareasofprojectedexpansion.Becausemodelprojectionsshowafairamountof uncertaintyregardingfuturechangesinvegetation,monitoringchangeswillbecriticalforrapid detectionandresponsetoimpactsonhabitatconnectivity. • Forestencroachmentcouldbelimited,thoughlikelyjusttemporarily,bymechanicallyremoving invadingtreesorusingprescribedburnstoreducetreerecruitment. • Continuingbestmanagementpracticesformaintaininghighqualityshrub-steppecommunities mayincreasetheresilienceofcorehabitatareasandcorridorstofuturechange.vii18 • Facilitatingmigrationofbigsagebrushpopulationsthatarelocallyadaptedtowarmerclimatic conditionsmayhelptomaintainshrub-steppecommunitiesunderfuturechange. Actionstoaddressthepotentialforclimatechangetoimpactconnectivitythroughmorefrequentand severewildfiresinclude: • Usingprescribedburnstoreducetheriskofcatastrophicwildfiresthatcouldnegativelyimpact shrub-steppecorehabitatareasandcorridors.Morefrequent,smallerfiresmaycreateapatchy mosaicthatcanhelppreventlarge,catastrophicfires.Indevelopedareas,implementinganew prescribedburnprogramwouldrequirecarefulevaluationofassociatedrisksandbenefits. • Referencingtribalpracticestoidentifytraditionalstrategiesformanagingfireriskandother potentialclimateimpacts. • Incorporatingprojectionsandobservationsofclimaticchanges(e.g.,earlieronsetoffireseason) toinformthetimingoffirepreventiontechniquesasconditionschange,inordertomaximize safetyandeffectiveness. Actionstoaddresspotentialchangesininvasivespeciesinclude: • Inareasheavilyinvadedbycheatgrass,consideringprescribedburningincombinationwith herbicideandnativeplantreseedingefforts.19 • Incorporateinvasivespeciesmanagementintoallactivitiesrelatedtohabitatconnectivity conservation. vii 18 Forexample,seemanagementrecommendationsfromAltmanandHolmes(2000). Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 4 Shrub-steppe Actionstoaddresspotentialchangesinlanduseinclude: • Managingaccessinshrub-steppecorehabitatareasandcorridorstoreduceimpactsfrom recreation,grazing,andotheruses. Enhancing connectivity to facilitate range shifts Actionsthatmayhelpshrub-steppespeciesadjusttheirrangestotrackshiftsintheirareasofclimatic suitabilityinclude: • Maintainingandrestoringcorridorsthatspanelevationgradients(e.g.,climate-gradient corridors,8AppendixL.1),tofacilitatethedispersalofshrub-steppespeciesintocooler,higher elevationhabitatsastheclimatewarms.Climate-gradientcorridorsmaybeparticularly importantforsmallanimalsandplants,suchasbigsagebrush,thathavelimitedmobility,as thesespeciesmayneedtoresideincorridorsratherthansimplymovethroughthem. • Maintainingandrestoringcorridorsbetweenareasofdecliningclimaticsuitabilityandareasof stableorincreasingsuitability(AppendixL.3). Spatial priorities for implementation Spatialprioritiesforimplementationoftheadaptationactionsdescribedaboveinclude: • Landscapeintegrityandclimate-gradientcorridors(AppendixL.1).Linkagesthatareingood naturalcondition(i.e.,landscapeintegritycorridors7)andthatspanclimategradients(i.e., climate-gradientcorridors8)mayhelppromotedispersalofshrub-steppeplantspeciesamong existinghabitatareasandintonewlysuitablehabitatastheclimatewarms. • ConnectivitypriorityareasidentifiedfortheOkanagan-Kettleregion(AppendixL.1).20 Policy considerations Referrals response Actionsforaddressingclimateimpactsonshrub-steppeconnectivitythroughFirstNationsandtribal referralsprocessesinclude: • Considerpotentialimpactsonhabitatconnectivityduringthereferralsprocess,particularlyfor activitiesthatmayimpacthabitatconnectivityneeds(e.g.,climategradientcorridors)under climatechange. • Lookforopportunitiestoreducegrazingpressureinkeycorridors. Land and water use planning and zoning Actionsforaddressingclimateimpactsonshrub-steppeconnectivitythroughlandandwateruse planningandzoninginclude: • Carefullyreviewingpermitrequestsfornewirrigationwithdrawalswithincorehabitatareasand corridors,toensurethatwaterresourcesremainavailableforshrub-steppespeciesifsummers becomehotteranddrier. • Monitoringtrendsandreviewingpoliciesrelatingtovineyardestablishment.Strivetoavoid establishingvineyardsinshrub-steppecorehabitatareasorcorridors. • UsinglargeparcelzoningtomaintaincontiguityofnaturalareaswithinFirstNationandtribal lands.Outsideoftheselands,workwithprivatelandownersandwithenvironmentalpolicyto maintaincontiguousswathsofsuitablelandthatwillfacilitatemovement. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 5 Shrub-steppe • Consideringtheestablishmentofadditionalconservationareasatelevationsabovethecurrent shrub-steppesystem,inordertoaccommodateupwardrangeexpansionsofshrub-steppe species. • Increasingthenumberofshrub-steppeprotectedareas,whichcouldincreasetheresilienceand permeabilityoftheoverallconservationnetwork. • Consideringthefullrangeoflandprotectionandmanagementapproachesforhabitat connectivityconservation,fromlandpurchasesandeasementstostewardshipactivities. • Coordinatingstewardshipandmanagementactivitieswithprovincialandlocalgovernments, NGOs,FirstNationsandtribes,andespeciallywithprivatelandowners. • Incorporatingtheseadaptationactionsintothemanagementofconservationareas,working witharangeofgovernment,NGO,FirstNation,tribal,andprivatelandownerpartnersto anticipateandrespondtoclimateimpactsonshrub-steppehabitatconnectivity. Research needs Futureresearchthatcouldhelpinformshrub-steppeconnectivityconservationunderclimatechange includes: • Developingclimaticnichemodelsforadditionalshrub-steppeplantspecies.Thiswouldallow morethoroughunderstandingofpotentialimpactsonshrub-steppehabitatconnectivity. • Developinghabitatconnectivitymodelsthatincorporateprojectedchangesindevelopment withinshrub-steppehabitats,includinghumanresponsetoclimatechange.Thiswouldimprove theabilitytoanticipatefuturethreatstoshrub-steppehabitatconnectivity. • Evaluatingtheextenttowhichsoilconditionsandotherecologicalfactorscouldsupportshrubsteppevegetationinareasprojectedtobecomeclimaticallysuitable,tobetteranticipateand planforfutureareasofexpansion. • Identifyingclimateresilientshrub-steppecorehabitatareasandcorridors.Overlayavailable corridornetworks(AppendixL.1)7withprojectedchangesinvegetation(AppendixL.3,Appendix L.4)andclimatevariables(AppendixL.5).Coreareasandcorridorsthatareprojectedbymultiple modelstoretainsuitableclimaticconditionsandvegetation,andtoseetheleastchangein relevantclimaticvariables,maybemostlikelytocontinuesupportingshrub-steppehabitatand connectivityinthefuture.Theseclimate-resilienthabitatareasmaybeusedaspriorityareasfor theadaptationactionsdescribedabove.212223242526 References 1.Krosby,M.,Michalak,J.,Robbins,T.O.,Morgan,H.,Norheim,R.,Mauger,G.,andT.Murdock.2016. TheWashington-BritishColumbiaTransboundaryClimate-ConnectivityProject:Identifyingclimate impactsandadaptationactionsforwildlifehabitatconnectivityinthetransboundaryregionof WashingtonandBritishColumbia.ClimateImpactsGroup,UniversityofWashington. 2.Michalak,J.L.,J.C.Whitey,J.J.Lawler,S.Hall,andT.Nogeire.2014.Climatevulnerabilityand adaptationintheColumbiaPlateau,WA.ReportpreparedfortheGreatNorthernLandscape ConservationCooperative.SchoolofEnvironmentalandForestSciences,UniversityofWashington, Seattle,WA. 3.Krosby,M.,Tewksbury,J.J.,Haddad,N.,andJ.Hoekstra.2010.Ecologicalconnectivityforachanging climate.ConservationBiology24:1686-1689. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 6 Shrub-steppe 4.Cross,M.S.,Hilty,J.A.,Tabor,G.M.,Lawler,J.J.,Graumlich,L.J.,andJ.Berger.2012.Fromconnectthe-dotstodynamicnetworks:Maintainingandrestoringconnectivityasastrategytoaddressclimate changeimpactsonwildlife.In:J.Brodie,E.Post,D.Doak,eds.Conservingwildlifepopulationsina changingclimate.ChicagoUniversityPress. 5.Heller,N.E.,andE.S.Zavaleta.2009.Biodiversitymanagementinthefaceofclimatechange:areview of22yearsofrecommendations.BiologicalConservation142:14–32. 6.Cross,M.S.,etal.2012.TheAdaptationforConservationTargets(ACT)framework:atoolfor incorporatingclimatechangeintonaturalresourcemanagement.EnvironmentalManagement 50:341–351. 7.WashingtonWildlifeHabitatConnectivityWorkingGroup.2010.WashingtonConnectedLandscapes Project:StatewideAnalysis.WashingtonDepartmentsofFishandWildlife,andTransportation, Olympia,WA.www.waconnected.org. 8.WashingtonWildlifeHabitatConnectivityWorkingGroup.2011.WashingtonConnectedLandscapes Project:Climategradientcorridorsreport.WashingtonDepartmentsofFishandWildlife,and Transportation.Olympia,WA.www.waconnected.org. 9.IntegratedScenariosoftheFutureNorthwestEnvironment. http://climate.nkn.uidaho.edu/IntegratedScenarios 10.PacificClimateImpactsConsortium(PCIC),RegionalAnalysisTool.2014. https://www.pacificclimate.org/analysis-tools/regional-analysis-tool 11.PacificNorthwestClimateChangeVulnerabilityAssessment(PNWCCVA). http://www.climatevulnerability.org/ 12.Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesfor thenorthwestUnitedStatesandsouthwestCanadaatafinespatialresolutionusingadynamic globalvegetationmodel.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759 13.Heyerdahl,E.K.,R.F.Miller,R.A.Parsons.2006.HistoryoffireandDougals-firestablishmentina savannaandsagebrush-grasslandmosaic,southwesternMontana,USA.ForestEcologyand Management,230,107-118. 14.Tirmenstein,D.1999.Artemisiatridentatasubsp.tridentata.In:FireEffectsInformationSystem, [Online].U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation,Fire SciencesLaboratory(Producer).Available: http://www.fs.fed.us/database/feis/plants/shrub/arttrit/all.html. 15.Bradley,B.A.2009.Regionalanalysisoftheimpactsofclimatechangeoncheatgrassinvasionshows potentialriskandopportunity.GlobalChangeBiology15:196-208. 16.Hannah,L.,Roehrdanz,P.R.,Ikegami,M.,Shepard,A.V.,Shaw,M.R.,Tabor,G.,Zhi,L.,Marquet,P.A., andHijmans,R.J.2013.Climatechange,wine,andconservation.Proc.Natl.Acad.Sci.110:6907– 6912. 17.BritishColumbiaWineInstitute.2011.2011B.C.WinegrapeAcreageReport(BritishColumbiaWine Institute,Kelowna,BC,Canada). 18.Altman,B.,Holmes,A.,andFlight,O.-W.P.in(2000).Conservationstrategyforlandbirdsinthe ColumbiaPlateauofEasternOregonandWashington. 19.USFS.FieldguideformanagingcheatgrassintheSouthwest.2014.TP-R3-16-04. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 7 Shrub-steppe 20.TransboundaryConnectivityGroup.2016.ProvidingaRegionalConnectivityPerspectivetoLocal ConnectivityConservationDecisionsintheBritishColumbia–WashingtonTransboundaryRegion: Okanagan-KettleSubregionConnectivityAssessment.www.waconnected.org. 21.(IPCC)IntergovernmentalPanelonClimateChange.2007.WorkingGroup1,Summaryfor Policymakers.Availableat:http://ipcc.ch/publications_and_data/ar4/wg1/en/contents.html 22.Meehl,G.A.,Covey,C.,Delworth,T.,Latif,M.,McAvaney,B.,Mitchell,J.F.B.,Stouffer,R.J.,andK.E. Taylor.2007:TheWCRPCMIP3multi-modeldataset:Anewerainclimatechangeresearch.Bulletin oftheAmericanMeteorologicalSociety88:1383-1394. 23.Nakicenovic,N.etal.2000.SpecialReportonEmissionsScenarios:ASpecialReportofWorking GroupIIIoftheIntergovernmentalPanelonClimateChange,CambridgeUniversityPress, Cambridge,U.K.,599pp.Availableonlineat:http://www.grida.no/climate/ipcc/emission/index.htm 24.(IPCC)IntergovernmentalPanelonClimateChange.2013.WorkingGroup1,Summaryfor Policymakers.Availableat:http://www.climatechange2013.org/images/uploads/WGIAR5SPM_Approved27Sep2013.pdf 25.Taylor,K.E.etal.2012.AnoverviewofCMIP5andtheexperimentdesign.BulletinoftheAmerican MeteorologicalSociety93:485-498.doi:10.1175/BAMS-D-11-00094.1 26.VanVuuren,D.P.etal.2011.Therepresentativeconcentrationpathways:Anoverview.Climatic Change109:5-31. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 8 Shrub-steppe Glossary of Terms Assistedmigration–Speciesandpopulationsaredeliberatelyplantedortransportedtonewsuitable habitatlocations,typicallyinresponsetodeclinesinhistorichabitatqualityresultingfromrapid environmentalchange,principallyclimatechange. Centrality—Referstoagroupoflandscapemetricsthatranktheimportanceofhabitatpatchesor linkagesinprovidingmovementacrossanentirenetwork,i.e.,as“gatekeepers”offlowacrossa landscape.viii Connectivity—Mostcommonlydefinedasthedegreetowhichthelandscapefacilitatesorimpedes movementamongresourcepatches.ixCanbeimportantformaintainingecological,population-level,or evolutionaryprocesses. CoreAreas—Largeblocks(10,000+acres)ofcontiguouslandswithrelativelyhighlandscape permeability. Corridor—Referstomodeledmovementroutesorphysicallinearfeaturesonthelandscape(e.g., continuousstripsofriparianvegetationortransportationroutes).Inthisdocument,theterm“corridor” ismostoftenusedinthecontextofmodeledleast-costcorridors,i.e.,themostefficientmovement pathwaysforwildlifeandecologicalprocessesthatconnectHCAsorcoreareas.Theseareareas predictedtobeimportantformigration,dispersal,orgeneflow,orforshiftingrangesinresponseto climatechangeandotherfactorsaffectingthedistributionofhabitat. Desiccation–Extremewaterdeprivation,orprocessofextremedrying. Dispersal—Relativelypermanentmovementofanindividualfromanarea,suchasmovementofa juvenileawayfromitsplaceofbirth. FractureZone—Anareaofreducedpermeabilitybetweencoreareas.Mostfracturezonesneed significantrestorationtofunctionasreliablelinkages.Portionsofafracturezonemaybepotential linkagezones. HabitatConnectivity—SeeConnectivity. LandscapeConnectivity—SeeConnectivity. Permeability—Theabilityofalandscapetosupportmovementofplants,animals,orprocesses. viii Carroll,C.2010.Connectivityanalysistoolkitusermanual.Version1.1.KlamathCenterforConservation Research,Orleans,California.Availableatwww.connectivitytools.org(accessedJanuary2016). ix Taylor,P.D.,L.Fahrig,K.Henein,andG.Merriam.1993.Connectivityisavitalelementoflandscapestructure. Oikos68:571-573. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 9 Shrub-steppe Pinchpoint—Portionofthelandscapewheremovementisfunneledthroughanarrowarea.Pinch pointscanmakelinkagesvulnerabletofurtherhabitatlossbecausethelossofasmallareacanseverthe linkageentirely.Synonymsarebottleneckandchokepoint. Refugia–Geographicalareaswhereapopulationcansurvivethroughperiodsofunfavorable environmentalconditions(e.g.,climate-relatedeffects). Thermalbarriers–Watertemperatureswarmenoughtopreventmigrationofagivenfishspecies. Thesebarrierscanpreventordelayspawningformigratingsalmonids. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 10 Shrub-steppe Appendices L.1-5 Appendicesincludeallmaterialsusedtoidentifypotentialclimateimpactsonhabitatconnectivityfor casestudyspecies,vegetationsystems,andregions.Forshrub-steppe,thesematerialsinclude: AppendixL.1.Habitatconnectivitymodels AppendixL.2.Conceptualmodelofhabitatconnectivity AppendixL.3.Climaticnichemodels AppendixL.4.Projectedchangesinvegetationcommunities AppendixL.5.Projectedchangesinrelevantclimaticvariables Allmapsincludedintheseappendicesarederivedfromafewprimarydatasets,chosenbecausethey arefreelyavailable,spanallorpartofthetransboundaryregion,andreflecttheexpertiseofproject sciencepartners.ThesesourcesincludehabitatconnectivitymodelsproducedbytheWashington ConnectedLandscapesProject,7,8futureclimateprojectionsfromtheIntegratedScenariosofthePacific NorthwestEnvironment9andthePacificClimateImpactsConsortium’sRegionalAnalysisTool,10and modelsofprojectedrangeshiftsandvegetationchangeproducedaspartofthePacificNorthwest ClimateChangeVulnerabilityAssessment.11 Allmapsareprovidedatthreegeographicextentscorrespondingtothedistinctgeographiesofthethree projectpartnerships(Fig.L.2): i. OkanaganNationTerritory,theassessmentareaforprojectpartners:OkanaganNationAlliance anditsmemberbandsandtribes,includingColvilleConfederatedTribes. ii. TheOkanagan-KettleRegion,theassessmentareaforprojectpartners:Transboundary ConnectivityWorkingGroup(i.e.,theWashingtonHabitatConnectivityWorkingGroupandits BCpartners). iii. TheWashington-BritishColumbiaTransboundaryRegion,theassessmentareaforproject partners:BCParks;BCForests,Lands,andNaturalResourceOperations;USForestService;and USNationalParkService. Allprojectreports,datalayers,andassociatedmetadataarefreelyavailableonlineat: https://nplcc.databasin.org/galleries/5a3a424b36ba4b63b10b8170ea0c915e Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 11 Shrub-steppe FigureL.2.Projectpartnersandassessmentareas. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 12 Shrub-steppe Appendix L.1. Habitat Connectivity Models HabitatconnectivitymodelsareavailablefromtheWashingtonConnectedLandscapesProject.xThese modelscanbeusedtoprioritizeareasformaintainingandrestoringhabitatconnectivitynowandinthe futureastheclimatechanges.Availablemodelsincludespeciescorridornetworks,landscapeintegrity corridornetworks,andclimate-gradientcorridornetworks.Thesemodelsareavailableattwodistinct scales(thoughformanyspecies,onlyonescaleisavailableorwasselectedforusebyproject participants):1)WHCWGStatewidemodelsspanWashingtonStateandsurroundingareasofOregon, Idaho,andBritishColumbia;2)WHCWGColumbiaPlateaumodelsspantheColumbiaPlateauecoregion withinWashingtonState,anddonotextendintoBritishColumbia;3)TransboundaryWorkingGroup Okanagan-KettlemodelsspantheOkanagan-Kettleregion. a) WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork.7 Thismapshowscorridor networksconnectingcorehabitatareas(greenpolygons)forareasofhighlandscapeintegrity(e.g., areaswithfewroads,agriculturalareas,orurbanareas).Corridorsarerepresentedasyellowareas, withresistancetomovementincreasingasyellowtransitionstoblue.Greenareasrepresentlarge, contiguouscoreareasofhighlandscapeintegrity.Thenorthernextentofthisanalysisfallsjustnorth ofKamloops,BC. b) WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+Landscape Integrity).8Thismapshowscorridors(glowingwhiteareas,withresistancetomovementincreasing aswhitefadestoblack)connectingcorehabitatareas(polygons,shadedtoreflectmeanannual temperatures)thatareofhighlandscapeintegrity(i.e.,havelowlevelsofhumanmodification)and differintemperatureby>1oC.Thesecorridorsthusallowformovementbetweenrelativelywarmer andcoolercorehabitatareas,whileavoidingareasoflowlandscapeintegrity(e.g.,roads, agriculturalareas,urbanareas),andminimizingmajorchangesintemperaturealongtheway(e.g., crossingovercoldpeaksordippingintowarmvalleys).Thenorthernextentofthisanalysisfallsjust northofKamloops,BC. c) Okanagan-KettleConnectivityAssessment:ConnectivityFocusAreas.20Thismapshows connectivityfocusareas(CFAs)identifiedfortheOkanagan-Kettleregion.CFAs(inpurple)used connectivityvalueanddevelopmentriskmodelstoidentifythoseplaceswithintheOkanagan-Kettle regionwherewildlifewouldlikelymovewhenmigratingormakingdispersalmovementsandthat arealsothemostthreatenedbypotentialdevelopment.ThismapshowsacompositeofCFAsfor shrub-steppespecies,montanespecies,andlandscapeintegritymodels;CFAsmovefrompinkto purplewithincreasingnumberofoverlappingmodels. x Fordetailedmethodologyanddatalayersseehttp://www.waconnected.org. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 13 Shrub-steppe AppendixL.1a.WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 14 Shrub-steppe AppendixL.1a.WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 15 Shrub-steppe AppendixL.1a.WHCWGStatewideAnalysis:LandscapeIntegrityCorridorNetwork iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 16 Shrub-steppe AppendixL.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+ LandscapeIntegrity) i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 17 Shrub-steppe AppendixL.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+ LandscapeIntegrity) ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 18 Shrub-steppe AppendixL.1b.WHCWGStatewideAnalysis:Climate-GradientCorridorNetwork(Temperature+ LandscapeIntegrity) iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 19 Shrub-steppe AppendixL.1c.Okanagan-KettleConnectivityAssessment:ConnectivityFocusAreas Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 20 Shrub-steppe Appendix L.2. Conceptual Model of Habitat Connectivity Toidentifypotentialclimateimpactsontransboundaryshrub-steppehabitatconnectivity,project partnerscreatedaconceptualmodelthatidentifiesthekeylandscapefeaturesandprocessesexpected toinfluenceshrub-steppehabitatconnectivity,whichofthoseareexpectedtobeinfluencedbyclimate, andhow.Simplifyingcomplexecologicalsystemsinsuchawaycanmakeiteasiertoidentifyspecific climateimpactsandadaptationactions.Forthisreason,conceptualmodelshavebeenpromotedas usefuladaptationtools,andhavebeenappliedinavarietyofothersystems.6Theshrub-steppe conceptualmodelwasdevelopedusingpeer-reviewedarticlesandreports,projectparticipantexpertise, andreviewbyspeciesexperts.Thatsaid,theresultingmodelisintentionallysimplified,andshouldnot beinterpretedtorepresentacomprehensiveassessmentofthefullsuiteoflandscapefeaturesand processescontributingtoShrub-steppehabitatconnectivity. Conceptualmodelsillustratetherelationshipsbetweenthekeylandscapefeatures(whiteboxes), ecologicalprocesses(roundedcornerpurpleboxes),andhumanactivities(roundedcornerblueboxes) thatinfluencethequalityandpermeabilityofcorehabitatanddispersalhabitatforagivenspecies. Climaticvariablesforwhichdataonprojectedchangesareavailablearehighlightedwithayellow outline.Greenarrowsindicateapositivecorrelationbetweenlinkedvariables(i.e.,asvariablex increasesvariableyincreases);notethatapositivecorrelationisnotnecessarilybeneficialtothe species.Redarrowsindicateanegativerelationshipbetweenvariables(i.e.,asvariablexincreases, variableydecreases);again,negativecorrelationsarenotnecessarilyharmfultothespecies. Expertreviewersfortheshrub-steppeconceptualmodelincluded: • CarmenCadrin,BritishColumbiaConservationDataCentre. • AlisonPeatt,RPBio,EnvironmentalplannerforSouthOkanagan-Similkameencommunities • KirkSafford,BCMinistryofEnvironment Keyreferencesusedtocreatetheshrub-steppeconceptualmodelincluded: Bradley,B.A.2009.Regionalanalysisoftheimpactsofclimatechangeoncheatgrassinvasionshows potentialriskandopportunity.GlobalChangeBiology15:196–208. Case,M.,andLawler,J.J.2012.Unpublishedclimaticnichemodeldatafortreespeciesandvegetation systems.UniversityofWashington,Seattle,WA. D’Antonio,C.M.,andVitousek,P.M.1992.Biologicalinvasionsbyexoticgrasses,thegrass/firecycle,and globalchange.AnnualReviewofEcologyandSystematics23:63–87. Daubenmire,R.1970.SteppevegetationofWashington.TechnicalBulletin.WashingtonAgricultural ExperimentStation. Diamond,J.M.,Call,C.A.,andDevoe,N.2009.Effectsoftargetedcattlegrazingonfirebehaviorof cheatgrass-dominatedrangelandinthenorthernGreatBasin,USA.Int.J.WildlandFire18:944–950. Giblin2012.ArtemisiatridentatainCCSD(ClimateChangeSensitivityDatabase):Acollaborationofthe UniversityofWashington,TheNaturalConservancy,andstateandfederalresourceagenciesinthe PacificNorthwest.Availableonline:www.climatechangesensitivity.org.AccessedAugust,2013. Harte,J.,andShaw,R.1995.ShiftingDominancewithinaMontaneVegetationCommunity:Resultsofa Climate-WarmingExperiment.Science267:876–880. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 21 Shrub-steppe Heyerdahl,E.K.,Miller,R.F.,andParsons,R.A.2006.HistoryoffireandDouglas-firestablishmentina savannaandsagebrush–grasslandmosaic,southwesternMontana,USA.ForestEcologyand Management230:107–118. Knapp,P.A.1996.Cheatgrass(BromustectorumL)dominanceintheGreatBasinDesert:History, persistence,andinfluencestohumanactivities.GlobalEnvironmentalChange6:37–52. Kolb,K.J.,andSperry,J.S.1999.Differencesindroughtadaptationbetweensubspeciesofsagebrush (Artemisiatridentata).Ecology80:2373–2384. Loik,M.E.2007.Sensitivityofwaterrelationsandphotosynthesistosummerprecipitationpulsesfor ArtemisiatridentataandPurshiatridentata.PlantEcology191:95–108. McArthur,E.D.,Freeman,D.C.,Graham,J.H.,Wang,H.,Sanderson,S.C.,Monaco,T.A.,andSmith,B.N. 1998.Narrowhybridzonebetweentwosubspeciesofbigsagebrush(Artemisiatridentata:Asteraceae). VI.Respirationandwaterpotential.CanadianJournalofBotany76:567–574. Melgoza,G.,Nowak,R.S.,andTausch,R.J.1990.SoilWaterExploitationafterFire:Competitionbetween Bromustectorum(Cheatgrass)andTwoNativeSpecies.Oecologia83:7–13. Perfors,T.,Harte,J.,andAlter,S.E.2003.Enhancedgrowthofsagebrush(Artemisiatridentata)in responsetomanipulatedecosystemwarming.GlobalChangeBiology9:736–742. Tirmenstein,D.1999.Artemisiatridentataspp.tridentata.In:FireEffectsInformationSystem,[Online]. U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation,FireSciences Laboratory(Producer).Available:http://www.fs.fed.us/database/feis/[2013,August28]. VanderHaegen,W.M.,Dobler,F.C.,andPierce,D.J.2000.ShrubsteppeBirdResponsetoHabitatand LandscapeVariablesinEasternWashington,U.S.A.ConservationBiology14:1145–1160. Ziska,L.H.,Reeves,J.B.,andBlank,B.2005.TheimpactofrecentincreasesinatmosphericCO2on biomassproductionandvegetativeretentionofCheatgrass(Bromustectorum):implicationsforfire disturbance.GlobalChangeBiology11:1325–1332. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 22 Shrub-steppe AppendixL.2.ConceptualModelofShrub-SteppeConnectivity Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 23 Shrub-steppe Appendix L.3. Climatic Niche Models Climaticnichemodels(CNM)mathematicallydefinetheclimaticconditionswithineachspecies’current geographicdistribution,andthenapplyprojectedclimatechangestoidentifywhereonthelandscape thoseclimateconditionsareprojectedtobelocatedinthefuture.ThesemapsshowCNMresultsbased onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.xi BothmodelsusetheA2(high)emissionsscenario.xiiCNMsarebasedonclimateconditionsaloneanddo notaccountfordispersalability,geneticadaptation,interspeciesinteractions,orotheraspectsof habitatsuitability.Onceprojectedrangeshiftsweremodeled,currentlandusesandprojected vegetationtypes(identifiedusingShaferetal.2015xiii)thatareunlikelytosupportspeciesoccurrence wereremoved.Forexample,areascurrentlydefinedasurbanwereremovedforspeciesunabletolivein urbanlandscapes,andgrasslandhabitatswereremovedforforest-dependentspecies.Bothwouldbe shownasunsuitable. Darkgrayareasindicateareasofthespecies’currentrangethatareprojectedtoremainclimatically suitablebybothGCMs(i.e.,rangeisexpectedtoremain“stable”).Darkpinkareasareprojectedto becomelessclimaticallysuitablebybothGCMs(i.e.,rangeisexpectedto“contract”).Lightpinkareas areprojectedtobecomelesssuitableunderonemodelbutremainstableundertheother.Darkgreen areasareareasthatarenotwithinthespecies’currentrangebutareprojectedtobecomeclimatically suitablebybothGCMs(i.e.,therangeisexpectedto“expand”).Lightgreenareasareprojectedto becomeclimaticallysuitablebyoneGCM,butnottheother. xi 21,22 CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs) whicheachprojectdifferent potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet” futurewithinthePacificNorthwest. xii Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregional climate-relatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinue st toriseuntiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativeto 23 pre-industriallevels. xiii Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe northwestUnitedStatesandsouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759 Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 24 Shrub-steppe AppendixL.3.Shrub-SteppeClimaticNicheModel i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 25 Shrub-steppe AppendixL.3.Shrub-SteppeClimaticNicheModel ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 26 Shrub-steppe AppendixL.3.Shrub-SteppeClimaticNicheModel iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 27 Shrub-steppe Appendix L.4. Projected Changes in Vegetation Twotypesofmodelsareavailablethatprojectfuturechangesinvegetationthatcouldaffectaspecies’ habitatconnectivity:climaticnichemodelsandmechanisticmodels.Climaticnichevegetationmodels mathematicallydefinetheclimaticconditionswithinagivenvegetationtype’scurrentdistributionand thenprojectwhereonthelandscapethoseconditionsareexpectedtooccurinthefuture.Thesemodels donotincorporateotherimportantfactorsthatdeterminevegetationsuchassoilsuitability,dispersal, competition,andfire.Incontrast,mechanisticvegetationmodelsdoincorporatetheseecological processes,aswellasprojectedclimatechangesandthepotentialeffectsofcarbondioxidefertilization. However,mechanisticmodelsonlyprojectchangestoverygeneralvegetationtypes(e.g.,coldforest, shrubsteppe,orgrassland).Bothtypesofmodelsincludedbelowshowvegetationmodelresultsbased onresultsfromtwoCMIP3GlobalCirculationModels(GCMs):CGCM3.1(T47)andUKMO-HadCM3.xiv BothmodelsalsousetheA2(high)emissionsscenario.xv a) BiomeClimaticNicheVegetationModel.xviThisclimaticnichevegetationmodelshowsthe projectedresponseofbiomesorforesttypestoprojectedclimatechange. b) MechanisticVegetationModel.xviiThismechanisticvegetationmodelshowssimulated vegetationcompositionanddistributionpatternsunderclimatechange. xiv 21,22 CGCM3.1(T47)andUKMO-HadCM3aretwoGlobalCirculationModels(GCMs) whicheachprojectdifferent potentialfutureclimatescenarios.TheUKMO-HadCM3modelprojectsamuchhotteranddriersummer,whilethe CGCM3.1(T47)projectsgreaterprecipitationincreasesinspring,summerandfall.Forthesereasons,theUKMOHadCM3couldbeconsidereda“hot-dry”future,whiletheCGCM3.1(T47)couldbeconsidereda“warm-wet” futurewithinthePacificNorthwest. xv Emissionsscenariosweredevelopedbyclimatemodelingcentersforuseinmodelingglobalandregional climate-relatedeffects.A2isahigh,“businessasusual”scenarioinwhichemissionsofgreenhousegasescontinue st toriseuntiltheendofthe21 century,andatmosphericCO2concentrationsmorethantripleby2100relativeto 23 pre-industriallevels. xvi Rehfeldt,G.E.,Crookston,N.L.,Sánez-Romero,C.,Campbell,E.M.2012.NorthAmericanvegetationmodelfor land-useplanninginachangingclimate:asolutiontolargeclassificationproblems.EcologicalApplications22:119141. xvii Shafer,S.L.,Bartlein,P.J,Gray,E.M.,andR.T.Pelltier.2015.Projectedfuturevegetationchangesforthe NorthwestUnitedStatesandSouthwestCanadaatafinespatialresolutionusingadynamicglobalvegetation model.PLoSONE10:e0138759.doi:10.1371/journal.pone.0138759. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 28 Shrub-steppe AppendixL.4a.BiomeClimaticNicheModel i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 29 Shrub-steppe AppendixL.4a.BiomeClimaticNicheModel ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 30 Shrub-steppe AppendixL.4a.BiomeClimaticNicheModel iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 31 Shrub-steppe AppendixL.4b.MechanisticVegetationModel i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 32 Shrub-steppe AppendixL.4b.MechanisticVegetationModel ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 33 Shrub-steppe AppendixL.4b.MechanisticVegetationModel iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 34 Shrub-steppe Appendix L.5. Projected Changes in Relevant Climate Variables Thefollowingprojectionsoffutureclimatewereidentifiedbyprojectpartnersasbeingmostrelevantto understandingandaddressingclimateimpactsonshrub-steppeconnectivity.xviiiFutureclimate projectionsweregatheredfromtwosources,exceptwhereotherwisenoted:1)theIntegratedScenarios ofthePacificNorthwestEnvironment,9whichislimitedtotheextentoftheColumbiaBasin;andthe PacificClimateImpactsConsortium’sRegionalAnalysisTool,10whichspansthefulltransboundary region.Formanyclimaticvariables,noticeabledifferencesinthemagnitudeoffuturechangescanbe seenattheUS-Canadaborder;thisartifactresultsfromdifferencesoneithersideoftheborderinthe numberofweatherstations,thewaytemperatureandprecipitationweremeasured,anddifferencesin theapproachusedtoprocessthesedatatoproducegriddedestimatesofdailyweathervariations. a) DayswithHighFireRisk(EnergyReleaseComponent,ERC>95thpercentile).xixThismapshows theprojectedchangeinthenumberofdayswhentheERC–acommonlyusedmetrictoproject thepotentialandriskofwildfire–isgreaterthanthehistorical95thpercentileamongalldaily values. b) Spring(April1st)Snowpack.Thismapsnowsthepercentchangeinsnowwaterequivalent (SWE)onApril1st.April1stistheapproximatecurrenttimingofpeakannualsnowpackin Northwestmountains.SWEisameasureofthetotalamountofwatercontainedinthe snowpack.ProjecteddecreasesinSWEaredepictedbytheyellowtoredshading. c) TotalSpringPrecipitation,March-May.Thismapshowstheprojectedchange,inpercent,in totalspring(March-May)precipitation.Projectedchangesintotalspringprecipitationare depictedbytheyellowtogreenshading. d) SoilMoisture,July-September.Thismapshowstheprojectedchange,inpercent,insummer soilmoisture.Projectedchangesinsoilmoisturearedepictedbythebrowntogreenshading. e) DrySpellDuration.Thismapshowstheprojectedchange,inpercent,inthemaximumnumber ofconsecutivedayswithlessthan1mmofprecipitation.Projectedchangeindryspellduration isdepictedbythebrowntogreenshading. f) NumberofFrostDays.Thismapshowstheprojectedchange,inpercent,inthenumberoffrost days,definedastheannualcountofdayswhenthedailyminimumtemperatureislessthan0 degreesCelsius.Projectedchangesinthenumberoffrostdaysaredepictedbytheyellowtored shading. xviii Allprojectionsbut“DayswithHighFireRisk”areevaluatedforthe2050s(2040-2069)andthe2080s(207024,25 2099),basedon3globalclimatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(CCSM4)), undera 26 highgreenhousegasscenario(RCP8.5). DayswithHighFireRisk’isevaluatedforthe2050s,basedon3global 24,25 climatemodels(ahigh(CanESM2),median(CNRM-CM5),andlow(MIROC5)) usingtheRCP8.5(high)emissions 26 scenario. xix Abatzoglou,J.T.2013.Developmentofgriddedsurfacemeteorologicaldataforecologicalapplicationsand modeling.InternationalJournalofClimatology33:121-131. Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 35 Shrub-steppe AppendixL.5a.DayswithHighFireRisk i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 36 Shrub-steppe AppendixL.5a.DayswithHighFireRisk ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 37 Shrub-steppe AppendixL.5a.DayswithHighFireRisk iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 38 Shrub-steppe AppendixL.5b.Spring(April1st)Snowpack i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 39 Shrub-steppe AppendixL.5b.Spring(April1st)Snowpack ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 40 Shrub-steppe AppendixL.5b.Spring(April1st)Snowpack iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 41 Shrub-steppe AppendixL.5c.TotalSpringPrecipitation,March-May i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 42 Shrub-steppe AppendixL.5c.TotalSpringPrecipitation,March-May ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 43 Shrub-steppe AppendixL.5c.TotalSpringPrecipitation,March-May iii)Extent:Washington-BritishColumbiaTransboundaryRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 44 Shrub-steppe AppendixL.5d.SummerSoilMoisture,July-September i)Extent:OkanaganNationTerritory Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 45 Shrub-steppe AppendixL.5d.SoilMoisture,July-September ii)Extent:Okanagan-KettleRegion Appendix L: Washington-British Columbia Transboundary Climate-Connectivity Project 46 Shrub-steppe AppendixL.5d.SoilMoisture,July-September iii)Extent:Washington-BritishColumbiaTransboundaryRegion Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject 47 Shrub-steppe AppendixL.5e.DrySpellDuration i)Extent:OkanaganNationTerritory Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject 48 Shrub-steppe AppendixL.5e.DrySpellDuration ii)Extent:Okanagan-KettleRegion Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject 49 Shrub-steppe AppendixL.5e.DrySpellDuration iii)Extent:Washington-BritishColumbiaTransboundaryRegion Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject 50 Shrub-steppe AppendixL.5f.NumberofFrostDays i)Extent:OkanaganNationTerritory Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject 51 Shrub-steppe AppendixL.5f.NumberofFrostDays ii)Extent:Okanagan-KettleRegion Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject 52 Shrub-steppe AppendixL.5f.NumberofFrostDays iii)Extent:Washington-BritishColumbiaTransboundaryRegion Washington-BritishColumbiaTransboundaryClimate-ConnectivityProject 53