Download Biology Questions p

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Cytoplasmic streaming wikipedia , lookup

Extracellular matrix wikipedia , lookup

Cell encapsulation wikipedia , lookup

Cell cycle wikipedia , lookup

Cell membrane wikipedia , lookup

Cellular differentiation wikipedia , lookup

Cytosol wikipedia , lookup

Cell wall wikipedia , lookup

Cell culture wikipedia , lookup

Programmed cell death wikipedia , lookup

Amitosis wikipedia , lookup

Cell growth wikipedia , lookup

Mitosis wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

Cytokinesis wikipedia , lookup

Endomembrane system wikipedia , lookup

List of types of proteins wikipedia , lookup

Transcript
Biology Questions p. 64 1-5
1)
ATP is the energy unit of the cell. It is produced during respiration and it
allows the cell to grow, repair, divide, move, and perform chemical reactions.
(ATP=Adenosine TriPhospate)
2)
Two reasons ATP is needed:
 ATP can be stored for later use
 ATP releases just the right amount of energy for the cell.
Glucose can’t be stored if it is burned, and it releases too much energy for the
cell.
3)
The electron transport chain (ETC) is very important to organisms because it
produces most of the ATP from glucose during aerobic respiration. Without
this process, the cell would only gain 2 ATP from 1 glucose—it gains 36 with
the ETC.
4)
34 ATP.
5)
In order to show that the products have less energy than the reactants you
must observe energy being released. For example, when wood burns we see
fire (light energy) and feel heat (heat energy). We could measure that heat
using a thermometer. The energy from respiration is coming from breaking
the chemical bonds in glucose.
p. 67 1-3
1)
During anaerobic respiration only 2ATP are produced. 36 are produced during
aerobic. This is because oxygen allows more energy to be released from
glucose.
2)
Advantages and disadvantages of anaerobic and aerobic:
Aerobic
Anaerobic
More energy (36 ATP)
Less energy (2ATP)
Some energy not released.
Slower
Faster
Requires oxygen
Doesn’t require oxygen
Does not produce toxic chemical
Does produce toxic chemicals (alcohol,
lactic acid)
3)
Lactic acid is a bigger molecule (has more bonds) and therefore has more
potential energy than water.
8-14 p. 70
8) a) Facilitated diffusion does not require energy and active transport does. Both of these
processes move molecules using transport proteins.
b) diffusion occurs on its own, active transport requires a cell. They can both occur across
a cell membrane.
c) Exo—out of the cell, endo—into the cell. Both of these are types of active transport.
9) If a plant takes in too much fertilizer, then it creates a hypertonic solution in the plants
xylem and a hypotonic solution in the cells surrounding the xylem. Water will move from
the cells into the xylem to try and make the solution isotonic. This causes the plant to
wilt.
10) No, it will not burst because of the cell wall.
11) If a red blood cell is placed in distilled water, then it will expand and maybe explode.
This is because it is in a hypotonic solution, meaning the [water] is higher outside the cell
than in and will move into the cell.
12) The features of the cell membrane that allow them to close quickly are the properties
of the phospholipid bilayer. The hydrophobic tails, will quickly move away from the
water and the hydrophilic heads will quickly move towards the water, closing the
opening.
13) Turgor pressure is created in plant cells by the large central vacuole that holds lots of
water. Animal cells do not have a large central vacuole so don’t have turgor pressure.
14) a) A salt solution would create a hypertonic environment for the bacterial cells. This
would cause them to lose water and dry out—making them harmless.
b) If your skin/blood cells are put into a hypertonic solution, they will lose water. This
water may flush out the bacteria.
p. 71 26, 27
26) a) How does [salt] effect osmosis?
b) Independent = [salt], dependent is water movement.
c) beaker A has distilled water because water has moved into the carrot as it is a
hypotonic solution.
d) Rate of osmosis would be distance travelled up/down tube divided by 10 minutes.
e) The higher the [salt], the faster the water will move out of the carrot.
27) a) The cells take in water, because they are permeable to water and it is moving from
[high] to [low].
b) Use 2, 4, 6, 8, 10% as levels of treatment and 0% as a control.
Place a red blood cell in the 2% solution and after 10 minutes observe any changes in size
of the cell.
Repeat for all levels of treatment and control.
p. 74 1-3, 5, 8-10, 12, 19, 20, 21, 37, 38, 39, 40, 46, 47.
1)
answer C
2)
answer C
3)
answer A
5) answer A
8) answer D
9) answer C
10) answer C
12) a) Lysosome—vesicle that contains digestive enzymes; breaks down food
particles.
b) Golgi Apparatus—Creates transport vesicles which then fuse with cell membrane
during exocytosis.
c) Cell Membrane—controls the movement of materials into and out of the cell.
d) Golgi Apparatus—Creates transport vesicles which then fuse with cell membrane
during exocytosis.
19) The water contained within the plant (celery) cell has evaporated leaving the
celery soft and wilted. To fix this, one could put the celery into some water.
20) Salt should only be added at the end of cooking to ensure the roast doesn’t dry
out. This would happen because salt is a hypertonic solution, and water would move
out of the roast cells to try and create an isotonic solution.
21) The nerves must use active transport to create nerve signals. This requires
energy—energy supplied by sugar. If blood sugar levels go down, then the nerves
won’t get any sugar. No sugar = no energy; no energy = no signals from the brain to
the rest of the body.
37)






The microscope is not powerful enough (the mitochondria is too small)
The microscope is not in focus.
There is no stain added to the cell.
The stain doesn’t stick to the mitochondria.
The cell contains no mitochondria.
The cell has been damaged—lost its mitochondria.
38) a) How does temperature effect osmosis?
b) The higher the temperature the further the dye will move up the celery.
c) Independent = temperature
Dependent = distance dye moves up celery.
d) Distance moved up celery divided by time it took to move.
e) The beaker with 40oC will have the greatest movement of dye. This will happen
because at higher temperatures diffusion occurs faster as molecules move faster.
f)
 The levels of treatment should be evenly spaced—20, 25, 30, 35, 40, etc.
 Each level of treatment should be tested more than once.
 Celery stalks should all be the same length.
40) a) Mitochondria are important for energy production. This cell is taking in lots of
sugar—it is probably making energy with it.
b) The cell is involved in movement of some kind. It needs lots of energy in order to
continue moving.
c) The glucose would stop being transported into the cell and would become higher on
the outside.
46) A = no change, because there is only water—no carbon dioxide.
B = Blue to yellow. Snail produces carbon dioxide during cellular respiration.
C = no change. Plant produces CO2, but also removes it for photosynthesis.
D = no change. Snail produces carbon dioxide and plant removes it.