* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The Immune System
Inflammation wikipedia , lookup
Major histocompatibility complex wikipedia , lookup
Hygiene hypothesis wikipedia , lookup
Gluten immunochemistry wikipedia , lookup
Lymphopoiesis wikipedia , lookup
DNA vaccination wikipedia , lookup
Complement system wikipedia , lookup
Immune system wikipedia , lookup
Monoclonal antibody wikipedia , lookup
Adoptive cell transfer wikipedia , lookup
Molecular mimicry wikipedia , lookup
Psychoneuroimmunology wikipedia , lookup
Adaptive immune system wikipedia , lookup
Cancer immunotherapy wikipedia , lookup
Innate immune system wikipedia , lookup
The Immune System Chapter 21 Immune System functional system rather than organ system Hematopoetic Vasculature Lymphatic Fig 21.1 Innate vs. Adaptive Immune System – Introduction Innate: structural defenses; responds to nonspecific foreign substances First line: external surface epithelium & membranes Second line: inflammatory processes – antimicrobial proteins, phagocytes, etc. Fig 21.1 Innate vs. Adaptive Immune System – Introduction Adaptive: responds to specific foreign substances Fig 21.1 Innate & adaptive mechanisms work together Innate, Surface Defenses Skin Mucosa physical barrier & produces a variety of protective chemicals Gastric mucosa physical barrier to microbes Keratin resistant to most bacterial enzymes & toxins secretions are acidic pH 3-5 very acidic & produces proteolytic enzymes Saliva & lacrimal fluid contain lysozyme Mucous traps bacteria & moves them away from epithelial surface Innate, Internal Defenses Based on recognition of surface carbohydrates (glycocalyx) Glycocalyx is recognized as “self” or “non-self” Figure 3.3 Innate, Internal Defenses Phagocytes Macrophages: derived from monocytes Free Macrophages: roam through tissues Fixed Macrophages: Kupffer cells (liver) & microglia (brain) Ingest cellular debris, foreign material, bacteria, fungi Neutrophils: ingest pathogens Eosinophils: weakly phagocytic of pathogens. Attack parasites (degranulation) Mast Cells: phagocytic of various bacteria Innate, Internal Defenses Phagocytic mechanisms: Adherence: Aided by opsonization (a chemical process that enhances binding via complement & antibodies) Ingestion: cell binds to invader formation of phagolysosomes Respiratory Bursts: merge phagosome with lysosome & flood phagolysosome with free radicals (macrophage) Defensins: proteins that crystallize out of solution & pierce pathogen membranes (neutrophils) Mechanism of Phagocytosis Figure 21.2 Innate, Internal Defenses Natural Killer Cells: Small population of large granular lymphocytes Non specific for “non-self” Not phagocytic: attack is by release of perforins that perforate the target cell plasma membrane. Shortly after perforation the target nucleus disintegrates. Release chemicals that enhance the inflammatory response Innate, Internal Defenses: Inflammation tissue response to injury Triggered by injury – trauma, heat, chemical irritation, infection, etc. Beneficial effects Prevents spread of injury Disposes of cellular debris & pathogens Promotes repair Innate, Internal Defenses: Inflammation cardinal signs of inflammation Redness Heat Swelling Pain (functional impairment Rigor) Weapons of the Spanish Inquisition Innate, Internal Defenses: Inflammation Inflammatory response: signs are associated with vasodilation & increased vascular permeability Dilation: redness, heat Permeability: edema, (increased pressure) pain Pain also associated with bacterial toxins & some mediators (kinins, PGs) Innate, Internal Defenses: Inflammatory Response Mechanisms causing vasodilation & vascular permeability Injured cells release inflammatory mediators Histamines Kinins Prostaglandins Complement Cytokines (also activated by receptors on macrophages in response to microbial glycocalyx) Innate, Internal Defenses: Inflammatory Response Edema Dilutes harmful substances Provides nutrients (& O2) for repair Enhances entry of clotting protein Epithelial breaches also stimulate b-defensin release from epithelial cells Events in Inflammation Figure 21.3 Innate, Internal Defenses: Inflammatory Response Phagocyte mobilization: infiltration of damaged area by neutrophils & macrophages Innate, Internal Defenses: Inflammatory Response Leukocytosis: leukocytosis inducing factors released by injured cells promote rapid release of WBCs from marrow Margination: increased vascular permeability causes decreased fluid in vessels; blood flow slows & neutrophils are able to move to vessel margins. Here endothelial markers (CAMs) allow neutrophils to cling to vessel walls (pavementing). Innate, Internal Defenses: Inflammatory Response Diapedesis: neutrophils migrate through capillary walls Chemotaxis – inflammatory chemicals attract neutrophils to move up the chemical concentration gradient (neutrophils respond first) As the process continues, monocytes diapedes into the area & become macrophages. With chronic inflammation, macrophages predominate Inflammatory Response: Phagocytic Mobilization Figure 21.4 Innate, Internal Defenses: Inflammatory Response Macrophages clean up cellular debris & pathogens If pathogens were associated with the injury, activation of the complement cascade occurs & elements of adaptive immunity join the process Innate, Internal Defenses Viral replication – (viruses lack metabolic processes) Viruses release nucleic acid (RNA or DNA) into cytoplasm. The information on the nucleic acid is incorporated into the cell’s DNA. Normal cellular mechanisms then produce viral structural components. Multiple new viral particles are produced & released from the cell (sometimes killing the cell) Innate, Internal Defenses Antiviral proteins: interferon & complement Interferon: some cells produce & release interferons (IFNs) when invaded by virus Released interferons stimulate nearby cells to produce proteins (PKR) that interfere with viral replication by disrupting protein synthesis & the ribosome Not virus specific. Interferon (IFN) Figure 21.5 Innate, Internal Defenses Complement – a group of plasma proteins (20) that are activated in the presence of foreign substances Complement activation enhances & amplifies inflammation Bacteria & some other cell types are lysed by complement activation Complement activation enhances both innate & adaptive defenses Innate, Internal Defenses Complement activation pathways Classical pathway: requires antibodies Antibodies bind to target (antigen) Complement protein C1 binds to the antibodyantigen complex (complement fixation) Alternative pathway: complement factors interact with microorganism glycocalyx Both pathways lead to a cascade of protein activation, leading to activation of C3 Innate, Internal Defenses C3 is the start of the; Final Common Pathway C3 cleaves to form C3a & C3b C3a (& C5a) enhance inflammation by increasing histamine release, increasing vascular permeability & stimulating chemotaxis C3b coats bacterial membrane supplying adhesion points (opsonization) C3b initiates the cascade forming the membrane attack complex (MAC) The MAC forms a hole in the cell membrane & enhances Ca2+ influx cell lysis Innate, Internal Defenses; Complement Figure 21.6 Innate, Internal Defenses C-reactive proteins (CRP) produced by the liver in response to inflammatory molecules can activate the classical pathway by binding to membrane & activating C1. Also participates in opsonization. Fever – a systemic response to infection. Leukocytes & macrophages release pyrogens that raise the hypothalamic “set point” for temperature ADAPTIVE DEFENSES ADAPTIVE DEFENSES Innate & adaptive mechanisms work together in a cohesive fashion Adaptive Defenses: Characteristics Specificity: directed at specific targets Systemic: not restricted to initial site of infection / invasion Memory: after initial exposure & activation, a more rapid & more vigorous response is made to subsequent exposures to pathogens (secondary response) Adaptive Defenses: Components Humoral Immunity: (antibody mediated immunity) provided by antibodies floating free in body fluids Cell mediated immunity: lymphocytes directly attack specific invaders by lysis or indirect attack by initiating inflammation and/or activating other lymphocytes & macrophages Adaptive, Humoral Immunity Antigen = any substance that can mobilize the immune system & provoke an immune response* *Humoral and/or cell mediated Adaptive, Humoral Immunity Complete antigens (proteins, nucleic acids, lipids, polysaccharides): Immunogenicity: the ability to stimulate specific lymphocytes & specific antibodies Reactivity: the ability to react with activated lymphocytes & antibodies Hapten (an incomplete antigen): a smaller molecule that is not immunogenic until attached to proteins Adaptive, Humoral Immunity Antigenic determinants: sites on an antigenic molecule that are immunogenic Epitope Figure 21.7 Major Histocompatibility Complex (MHC): cell surface glycoproteins associated with self recognition Adaptive Immune System: Cells Lymphocytes T-cells B-cells Antigen Presenting Cells (APCs) Adaptive Immune System: Cells Lymphocytes: initially uncommitted T-cells: are sorted in the Thymus Positive selection: recognize MHC survive Negative selection: react against to self-antigens on MHC killed 2% of initial T-cell precursors T-cells manage the immune response B-cells: are sorted in the marrow by an incompletely understood process Figure 21.9 Adaptive Immune System: Cells Immunocompetence: as T- or B-cells mature they become immunocompetent, they display receptors on their cell membrane for a specific antigen. All of the receptors on one cell are identical; immunity depends upon genetic coding for appropriate receptors. Adaptive Immune System: Cells Antigen Presenting Cells (APCs) APCs ingest foreign material, then present antigenic fragments on their cell surface where they are recognized by T-cells T-cells: respond to antigen only if it is displayed on plasma membrane. APCs: Macrophages & B lymphocytes Interactions between APCs & lymphocytes & lymphocyte-lymphocyte interactions are critical to immune response Adaptive, Humoral response Humoral response (clonal selection) B-cells: Antigen challenge to naïve immunocompetent B-cell Antigen binds to B-cell receptors & form crosslinks between receptors Cross linked antigen-receptor complex undergoes endocytosis; B-cell presents to T-cell Humoral Immunity Active humoral immunity: B-cells encounter & respond to antigen to produce an antibody Passive humoral immunity: Introduced “non-native” antibody Active Humoral Immunity Naturally acquired: natural exposure to antigen (i.e. infection) Artificially acquired: vaccines; dead/attenuated or fragmented pathogen injected to elicit an immune response Bestow immunity without disease; primary response Booster shots (secondary response); intensify response Shortcomings – adverse reactions & the immunity is less durable (poor memory) & has less cell mediated component Passive Humoral Immunity Natural: maternal antibody crosses the placental barrier conferring temporary immunity to the baby (degrades after a few months) Artificial: antibodies harvested from an outside source given by injection protect from immediate threat but no memory is formed (antitoxins, antivenins , gamma globulin, etc.) Antibodies A.K.A Immunoglobulins & gamma globulins Structure variable hypervariable constant Figure 21.13a Antibodies Constant (C) region defines antibody class determines chemical & cellular interactions determines how class functions to eliminate antigens Antibody Classes Antibody Classes: IgM, IgG, IgA, IgD, IgE (Ig = immunoglobulin) Antibody Classes IgG: the most abundant circulating Ig. The dominant circulating Ig of the primary & the secondary response. Crosses the placenta. Complement binding (Monomer). IgA: the Ig of secretions. Helps prevent antigen penetration of membranes (Dimer). IgD: the Ig of B-cell activation. Found on B-cell surface (Monomer). Antibody Classes IgM: occurs as a monomer & a pentamer Occurs The on the B-cell surface (Monomer). Ig of early primary plasma cell response, circulating antibody; a potent agglutinator. Complement binding (Pentamer). Antibody Classes IgE: the Ig associated with allergies. Stem binds to mast cells & basophils. Receptor binding results in histamine release & inflammation. Found mostly in mucosa of respiratory & GI tract (Monomer). Antibody Targets & Functions Immune complex formation = antigen-antibody binding. All the following events are initiated by antigen-antibody binding. Complement fixation: Neutralization: Agglutination: Precipitation: Inflammation & phagocytosis prompted by debris Antibody Targets & Functions Complement fixation: cells & bacteria. Immune complex formation exposes a complement binding site on the C region of the Ig. Complement fixation results in cell lysis. Neutralization: immune complex formation blocks specific sites on virus or toxin & prohibit binding to tissues Agglutination: cells are crosslinked by immune complexes & clump together Precipitation: soluble molecules (such as toxins) are crosslinked, become insoluble, & precipitate out of the solution Inflammation & phagocytosis prompted by debris Figure 21.14 Antibody Targets & Functions Monoclonal antibodies: antibodies produced by descendants of a single cell Pure antibody preparations that are specific for a single antigenic determinant Research / diagnostic / therapeutic use Cell Mediated Immune Response T-cell activation: involves recognition of PM surface antigens only Antigen is combined with MHC & displayed on PM T-cell receptors: bind to the MHC & are stimulated by the associated antigen The addition of a co-stimulator (cytokines, interleukins, etc) prompts the T-cell to form a clone In the absence of a co-stimulator the T-cell becomes tolerant to antigen (anergy) Cell Mediated: MHC MHC occurs as two classes MHC I on virtually all tissue cells MHC II only on PM some immune system cells Cell Mediated: MHC display properties Figure 21.16a MHC I on virtually all tissue cells Display only proteins produced inside the cell Endogenous antigens = foreign proteins produced by the cell (viral / cancer) Stimulate the CD8* cell population form cytotoxic T-cells (Killer T, TC) *formerly T8 cells Cell Mediated: MHC display properties Figure 21.16b MHC II found only on PM of B-cells, some T-cells & APCs Display proteins derived from a phagocytized target Exogenous antigen: foreign protein from outside the cell – presented to PM surface Stimulates the CD4* cell population form Helper T-cells (TH) *formerly T4 cells Cell Mediated: T-cell roles Helper T-cells (TH) stimulate B-cells & other T-cells to proliferate Figure 21.18 Cell Mediated: T-cell roles Activated TH cells interact with Bcells displaying antigen & produce cytokines that prompt the B-cell to mature & form antibody Figure 21.18 Cell Mediated: T-cell roles TH cells also produce cytokines that promote TC cells TH cells recruit other WBCs & amplify innate defenses (inflammatory) Subpopulations of TH cells specialize in specific sets of activations Figure 21.18 Cell Mediated: T-cell roles Cytotoxic T-cells (TC, Killer T): directly attack & kill cells with specific antigen Activated TC cells are co-stimulated by TH cells Cell Mediated: T-cell roles Figure 21.19a TC mechanism (Cytotoxic T-cells, Killer T) TC binds to cell & releases perforin & granzymes In the presence of Ca2+ perforin forms pores in target cell PM Granzymes enter through pores & degrade cellular contents TC then detaches & moves on Macrophages clean up Cell Mediated: T-cell roles Other T-cells *Regulatory T-cells (TReg): release inhibitory cytokines that suppress B-cell & T-cell activity Help to prevent autoimmune events *formerly Suppressor T (TS) Gamma Delta T-cells (Tgd): live in the intestine. Function in surveillance & are triggered much like NK cells Organ Transplants/Rejections Types of Organ Transplants Autograft: tissue graft from one body site to another (same person) Isograft: graft received from a genetically identical donor (identical twin) Allograft: graft received from genetically non-identical donor (same species) Xenograft: graft received from another species of animal Organ Transplants/Rejections Transplant rejection: mediated by the immune system (especially TC, NK, antibodies) Auto/Isograft: MHC compatible Xenograft: most MHC incompatible Allograft: attempt to obtain the best MHC match Organ Transplants/Rejections Immunosuppressive therapy: used to delay/prevent rejection Corticosteroids: suppress inflammation Antiproliferative: prevent/kill rapidly dividing cells Immunosuppressant: prevent/kill rapidly dividing cells Side effects tend to be harsh Increased risk of infection Immunologic Dysfunction Immunodeficiency Congenital/Genetic: varied inborn errors Acquired: Drugs: immunosuppressive / cancer drugs Radiation therapy – marrow Cancer: can be viewed as a failure of immune surveillance Hodgkin’s disease: lymph node cancer AIDS/HIV: kills TH cells Immunologic Dysfunction Autoimmune disease: production of antibody & TH against self tissues Examples & tissue effected Multiple sclerosis: white matter of nervous system Graves disease: thyroid Type I diabetes mellitus: beta cells of pancreas Systemic Lupus Erythrematosis: (anti DNA) kidneys, heart, lungs & skin Rheumatoid Arthritis: destroys joints (cartilage) Glomerulonephritis: impaired renal function (may be secondary to other autoimmune disease) Immunologic Dysfunction Mechanisms of immunologic dysfunction Failure of lymphocyte programming New self antigens Gene mutation Structural change – haptens, infection Foreign antigens that closely resemble self antigen resulting in cross reactivity. Immunologic Dysfunction Hypersensitivities (Allergies): the immune system responds to a harmless substance as if it were a threat. Allergen = antigens of an allergic response Figure 21.21 Hypersensitivities: Types Immediate hypersensitivity (Type I): symptoms within seconds of exposure to an allergen (requires sensitization = previous exposure) Figure 21.21 Hypersensitivities: Type I Anaphylaxis (IgE mediated; mast / basophils) Local: histamine induced vasodilation & increased permeability. Watery eyes, runny nose, itching & redness. Respiratory allergy induced asthma Systemic: anaphylactic shock: associated with allergens that have systemic distribution. Widespread vasodilation, airway swelling Atopy: the tendency to display Type I symptoms to certain environmental antigens without prior sensitization Hypersensitivities: Types II & III Subacute hypersensitivity (IgG & IgM mediated) Cytotoxic reactions (Type II): antibodies bind to cellular antigens promoting complement fixation / inflammation / phagocytosis (transfusion reaction) Immune complex h. (Type III): widely distributed antigen reacts with antibody. Antigen-antibody complexes cannot be cleared; persistent inflammation / tissue damage (farmer’s lung; associated with autoimmune disorders) Hypersensitivities: Type IV Delayed hypersensitivity (cell mediated) takes one to three days to react. Involves TC, TH1 & macrophages. Allergic contact dermatitis (poison ivy, heavy metals, TB tine tests). Agents act as haptens & elicit response after binding to tissue Developmental Aspects of the Immune System Stem cells arise from embryologic liver & spleen Self tolerance develops in Thymus (T-cells) & bone marrow (B-cells) Immunocompetence: the “library” of receptors is genetically determined Immune system degrades with aging Immunocompetent B or T cells Key: Red bone marrow = Site of development of immunocompetence as B or T cells; primary lymphoid organs = Site of antigen challenge & final differentiation to activated B & T cells Immature lymphocytes Circulation in blood = Site of lymphocyte origin 1 1 Lymphocytes destined to become T 1 Thymus Bone marrow cells migrate to the thymus & develop immunocompetence there. B cells develop immunocompetence in red bone marrow. 2 Immunocompetent, but still naive, lymphocyte migrates via blood 2 2 After leaving the thymus or bone marrow as naive immunocompetent cells, lymphocytes “seed” the lymph nodes, spleen, & other lymphoid tissues where the antigen challenge occurs. Lymph nodes, spleen, & other lymphoid tissues 3 Mature (antigen-activated) 3 Activated immunocompetent B & T cells recirculate in blood & lymph 3 immunocompetent lymphocytes circulate continuously in the bloodstream & lymph & throughout the lymphoid organs of the body. Figure 21.8 Primary & Secondary Humoral Responses Figure 21.10 Types of Acquired Immunity Figure 21.11 Major Types of T Cells Figure 21.14 T Cell Activation: Step One – Antigen Binding Figure 21.16 Helper T Cells (TH) Figure 21.17a Helper T Cells Figure 21.17b Summary of the Primary Immune Response Figure 21.19