* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Rapporteur 4: Theory summary (30) Larry McLerran
Quantum gravity wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Old quantum theory wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
Perturbation theory (quantum mechanics) wikipedia , lookup
Future Circular Collider wikipedia , lookup
Grand Unified Theory wikipedia , lookup
Mathematical formulation of the Standard Model wikipedia , lookup
Nuclear structure wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Technicolor (physics) wikipedia , lookup
Electron scattering wikipedia , lookup
Light-front quantization applications wikipedia , lookup
AdS/CFT correspondence wikipedia , lookup
Quantum chaos wikipedia , lookup
History of quantum field theory wikipedia , lookup
Scalar field theory wikipedia , lookup
Topological quantum field theory wikipedia , lookup
Renormalization wikipedia , lookup
Standard Model wikipedia , lookup
Elementary particle wikipedia , lookup
Theory of everything wikipedia , lookup
Topological string theory wikipedia , lookup
ALICE experiment wikipedia , lookup
Renormalization group wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Yang–Mills theory wikipedia , lookup
Theory Summary* QM 2006 Shanghai, China * Not comprehensive Art due to Tetsuo Hatsuda and Steffen Bass (with some artistic interpretation) CGC Initial Singularity Glasma sQGP Hadron Gas Strong correspondence with cosmology. How can ideas be tested? What are the new physics opportunities? The Initial Wavefunction for High Energy Baryon: 3 quarks 3 quarks 1 gluon ….. 3 quarks and lots of gluons Density of Gluons Grows becomes weak Color Glass Condensate Successes: Geometric scaling in DIS Diffractive DIS Shadowing in dA Multiplicity in AA Limiting fragmentation Long range correlations Total cross section Pomeron, reggeon, odderon Break down of factorization of pp to ep? Saturated hot spots? The Initial Singularity and the Glasma The hadrons pass through one another: Before the collision only transverse E and B CGC fields Topological charge density is maximal: Anomalous mass generation Color electric and magnetic monopoles In cosmology: Almost instantaneous phase change to longitudinal E and B Anomalous Baryogenesis Production of gluons and quarks from melting colored glass The Initial Singularity and the Glasma Before collision, stability After collisions, unstable Quantum fluctuations can become as big as the classical field Quantum fluctuations analogous to Hawking Radiation Interactions of evaporated gluons with classical field is g x 1/g ~ 1 is strong Thermalization? Growth of instability generates turbulence => Kolmogorov spectrum Analogous to Zeldovich spectrum of density fluctuations in cosmology Topological mass generation Fluctuations in The Initial Singularity During inflation: Fluctuations on scale larger than even horizon are made Late times: Become smaller than even horizon => Seeds for galaxy formation Fluctuations over many units in rapidity in initial wavefunction Instabilities driven by momentum anisotropy The sQGP Energy density is high enough: Good agreement of “well thought out” hydro computations with radial and elliptic flow data Very large energy loss of jets The evidence is strong that one has made a system of quarks and gluons which is to a good to fair approximation explained by a Quark Gluon Plasma More evidence: Is its lower bound ? Conclusion depends on initial conditions? Coalesence models reproduce v2 at intermediate pt. Do they work too well? Energy conservation? Has led some to suggest that we live in the best of all possible worlds! Water Do we really need huge cross sections in transport to reproduce flow data? Hydro plus CGC Initial Conditions Good description of multiplicity and pT distributions Hydro +CGC + Jet quenching: good description of jets (except for heavy quarks!) Good description of v_2 when dissipative effects in hadronic matter are included CGC Initial conditions without viscosity in QGP do less well Can and will do better: We do not yet properly treat: Thermalization. Initial conditions. Viscosity in QGP not yet treated in fully consistent way Hadronization and coalesence not fully self consistent Next generation of hydro, e. g. Spherio: Fully 3-d with viscosity Need more than just running codes and fitting data! How Perfect is the sQGP? CGC Initial Conditions allow for higher hydro limit. LHC? CGC Initial Conditions? Large parton cross sections not required for flow. Thermalization through mutligluon interactions? Plasma Instabilities? Viscosity effects are unknown, computation is theoretical challenge. Viscous Hydrodynamics: Becoming practical Jet Correlations: Mach cones one of earliest proposals for heavy ion collisions: Greiner, Stocker and Frankfurt group Cherenkov radiation and Mach cones possible, but devil in the details Possible explanation as Sudakov form factor for jet emission by Salgado et. al? Deflected jets al a Vitev? Au+Au central 0-12% ZDC Mach Cone: Radiation and scattering: No cone Δ2 Cerenkov: Wide angles Δ1 Heavy Quark Energy Loss: Charm to bottom ratio consistent with expectation. QCD total cross sections off from data by factor of 2-5 What is the basic energy loss mechanism: Radiation? Elastic scattering? First principles computations are hard: Results depend on low density region Jet quenching computations not strictly perturbative. String Theory and the sQGP. Bad Side: Good Side: Results are for N=4 SUSY Yang Mills Many proponents are shamelessly enthusiastic No running coupling constant No particle masses Can generate new ways of thinking about old problems Strict infinite coupling limit May or may not have any qualitative relationship to QCD No limit where theory is QCD Brian Greene: “data now emerging from the Relativistic Heavy Ion Collider at BNL appear to be more accurately described using string theory methods than with more traditional approaches” Was derived from string but has simple interpretation: Mean free path must be bigger than De Broglie wavelength <<< Is it true? String vs Conventional Computation of Energy Density and Pressure Perturbation Theory: Conventional method is Lattice Gauge Theory: Errors of order several % 25% off from ideal gas value Naïve perturbation theory not good String Theory: About 10% off for energy density (scaled by number of degrees of freedom) But……… AdSCFT Result > Perturbative computations can be fixed. Good agreement for relatively weak coupling above Tc Difference between strongly interacting and strong coupling. String computations require coupling limit. Is the coupling large? Lattice Monte Carlo .81 2.3 .90 1.8 1.02 .7 1.5 .4 2.0 .3 Intermediate to weakly coupled, but strongly interacting. AdsCFT MUST be accountable to the same scientific standards as are other computations, or else it is not science. Theoretical Issues: Many problems of deep significance. Conceptual and computational. Issues must be scientific: Controlled approximation A result must be falsifiable. “Theoretical physics must be done with passion and enthusiasm”