* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Genetics - Garnet Valley School District
Genome evolution wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Site-specific recombinase technology wikipedia , lookup
X-inactivation wikipedia , lookup
Hardy–Weinberg principle wikipedia , lookup
Genetic drift wikipedia , lookup
Gene expression profiling wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Medical genetics wikipedia , lookup
History of genetic engineering wikipedia , lookup
Population genetics wikipedia , lookup
Gene expression programming wikipedia , lookup
Genomic imprinting wikipedia , lookup
Designer baby wikipedia , lookup
Genome (book) wikipedia , lookup
Quantitative trait locus wikipedia , lookup
Genetics Kirsten Adams National Cathedral School AP Biology Figure 14.0x Mendel Figure 14.1 A genetic cross Figure 14.2 Mendel tracked heritable characters for three generations Figure 14.x1 Sweet pea flowers Figure 14.3 Alleles, alternative versions of a gene Table 14.1 The Results of Mendel’s F1 Crosses for Seven Characters in Pea Plants Figure 14.x2 Round and wrinkled peas Figure 14.4 Mendel’s law of segregation (Layer 2) Figure 14.5 Genotype versus phenotype Figure 14.6 A testcross Figure 14.7 Testing two hypotheses for segregation in a dihybrid cross Figure 14.8 Segregation of alleles and fertilization as chance events Problem #1 • In garden peas, tallness is dominant and dwarfness is recessive. A heterozygous tall plant is crossed with a dwarf plant. If 40 offspring are produced, how many will be tall? Problem #2 • In humans, brown eyes are dominant over blue eyes. A brown-eyed man and a blueeyed woman have two blue-eyed children. What are the chances that their next child will have blue eyes? Problem #3 • Cystic Fibrosis is inherited as a simple autosomal recessive. Suppose a woman who carries the trait marries a normal man who does not carry it. What percent of their children would be expected to have the disease? Problem #4 • Classical Albinism is a single-gene disorder caused by the lack of an enzyme necessary for the synthesis of melanin pigments. Enzyme production requires the presence of one normal allele. What progeny and what proportions are expected from a normally pigmented woman who has an albino husband and an albino father? Problem 5 • If two individuals with the genotype A/a B/b C/c D/d mate, what is the probabilty of getting an individual with the genotype A/A B/b c/c D/d? Problem #6 • In watermelons, the genes for green color and for short shape are dominant over alleles for striped color and long shape. A plant that is heterozygous for green color and homozygous for short shape is crossed with a plant that is homozygous for striped color and heterosygous for short shape. What proportion of their offspring will be striped and short? Incomplete Dominance and Codominance Figure 14.9 Incomplete dominance in snapdragon color Figure 14.9x Incomplete dominance in carnations Problem #7 • In snap dragons, flower color and leaf color are both controlled by partial dominance. Pink flowers and light green leaves are the intermediate conditions. Supposed you crossed two plants, both of which had pink flowers and light green leaves. If there were 16 offspring, how many would you expect to have both pink flowers and light green leaves? Multiple Alleles Ex. Blood types Figure 14.10 Multiple alleles for the ABO blood groups Figure 14.10x ABO blood types Problem 7 • A woman takes Mr. X to court for child support, but Mr. X swears he is not the father. The woman is blood type A and the baby is blood type A. Which blood type must Mr. X have to prove that he is not the father? Interactions Between Genes Pleiotropy Epistasis Collaboration Complementation Modifier Genes Multiple Gene Inheritance Pleiotropy Figure 14.15 Pleiotropic effects of the sickle-cell allele in a homozygote Epistasis Figure 14.11 An example of epistasis Collaboration Problem 8 • If the dominant allele K is necessary for hearing, and the dominant allele M of another gene results in deafness no matter what other genes are present, what percentage of the offspring produced by the cross between k/k M/m and K/k m/m will be deaf? Complementation Modifier Genes Multiple Gene Inheritance Figure 14.12 A simplified model for polygenic inheritance of skin color Environment Penetrance Expressivity Figure 14.13 The effect of environment of phenotype Sex linked characteristics Holandric X-linked Figure 15.3 Sex-linked inheritance Figure 15.9 The transmission of sex-linked recessive traits Figure 15.10 X inactivation and the tortoiseshell cat Figure 15.10x Calico cat Pedigrees Figure 14.14 Pedigree analysis Figure 14.16 Large families provide excellent case studies of human genetics Human Disorders Figure 14.17 Testing a fetus for genetic disorders Figure 15.0 Chromosomes Figure 15.0x Chromosomes Figure 15.11 Meiotic nondisjunction Figure 15.12 A tetraploid mammal? Figure 15.x1 Translocation Figure 15.13 Alterations of chromosome structure Figure 15.14 Down syndrome Figure 15.x2 Klinefelter syndrome Figure 15.x3 XYY karyotype Linkage Figure 15.4 Evidence for linked genes in Drosophila Figure 15.5a Recombination due to crossing over Figure 15.5b Recombination due to crossing over Figure 15.6 Using recombination frequencies to construct a genetic map Figure 15.7 A partial genetic map of a Drosophila chromosome Linkage Problem • In rabbits, a dominant gene produces spotted body color. Another dominant gene produces short hair and its recessive allele long hair. Rabbits heterozygous for both characteristics were mated with homozygous recessive rabbits. The results of this cross were as follows: 170 with spotted and short; 30 with solid and short hair; 26 with spotted and long; 174 with solid and long. What is the map distance between these genese? Figure 15.15 Genomic imprinting (Layer 3) Figure 15.16 Cytoplasmic inheritance in tomato leaves