* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Triacylglycerol Metabolism Gone Bad: A major cause of disease
Genetic code wikipedia , lookup
Lipid signaling wikipedia , lookup
Nicotinamide adenine dinucleotide wikipedia , lookup
Peptide synthesis wikipedia , lookup
Oligonucleotide synthesis wikipedia , lookup
Basal metabolic rate wikipedia , lookup
Mitochondrion wikipedia , lookup
Proteolysis wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup
Microbial metabolism wikipedia , lookup
Butyric acid wikipedia , lookup
Oxidative phosphorylation wikipedia , lookup
Amino acid synthesis wikipedia , lookup
Metalloprotein wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Biosynthesis wikipedia , lookup
Biochemistry wikipedia , lookup
Citric acid cycle wikipedia , lookup
Glyceroneogenesis wikipedia , lookup
VLDL formation Apolipoprotien B-100 has a repeating -helix/-sheet structure: Lipids are packaged as apolipoprotein B-100 is being synthesized: From Shelness & Sellers (2001) Curr Opin Lipidology 12:151-157 VLDL formation • VLDL stands for Very Low Density Lipoprotein • As it is synthesized, VLDL contains: • • • • One molecule of apoliprotein B-100 Triacylglycerol Phospholipid Cholesterol ester • Microsomal Triacylglycerol Transfer Protein(MTP) assists in the formation of the VLDL • Other components are added to the VLDL in the blood. VLDL formation • Apolipoprotein B-100 synthesis is required for the transport of lipid out of the liver – If protein synthesis is reduced (e.g. by malnutrition) fat droplets accumulate in the liver. – If the rate of lipid synthesis is greatly elevated with respect to protein synthesis (e.g. in type I diabetes or glucose 6-phosphatase deficiency) fat droplets accumulate in the liver. Triacylglycerol Oxidation Triacylglycerol Lipases 3 fatty acids + glycerol •During starvation adipose tissue does not release triacylglycerol. It releases fatty acids and glycerol (produced by adipose lipases). •In the fed state triacylglycerol is transported in the blood as a lipoprotein complex. In the blood the triacylglycerol is hydrolyzed to produce fatty acids and glycerol (lipoprotein lipase or hepatic lipase). Triacylglycerol Oxidation • Glycerol can be converted to glucose – Glycerol kinase is present in liver but not normally present in adipose H2C-OH | HOCH O | | H2C-O-P-O || O- H2C-OH | HOCH | H2C-OH Glycerol Glycerol kinase ATP H2C-OH | O=C O | | H2C-O-P-O || Glycerol-3Ophosphate dehydrogenase Glycerol-3-Phosphate DHAP NAD+ NADH + H + ADP + Pi Triacylglycerol Oxidation • Fatty acids must be activated to Acyl-CoA Fatty acid + CoA + ATP Acyl-CoA + AMP + PPi Acyl-CoA synthetase PPi + H2O 2 Pi Pyrophosphatase Triacylglycerol Oxidation Regulation • Fatty acid oxidation takes place in the mitochondria. • Transport into the mitochondria is the primary rate limiting step of fatty acid oxidation. • The maximum rate of fatty acid oxidation is transcriptionally regulated by PPARα. – Unsaturated fatty acids increase PPARα activity – Fibrates, a class of triacylglycerol lowering drugs, increase PPARα activity. – Note PPAR will be persented in Thursday’s lecture Triacylglycerol Oxidation • Carnitine Shuttle Inhibited by Malonyl-CoA Acyl-CoA + Carnitine Acyl-Carnitine + CoA CAT-I CAT-II CAT-II Acyl-CoA + Carnitine Acyl-Carnitine + CoA Mitochondrion Inner membrane CAT - Carnitine Acyl-CoA Transferase Outer membrane Triacylglycerol Oxidation • β-oxidation of acyl-CoA – Two carbons at a time are oxidized and removed as acetyl-CoA – For each two carbons removed, 1 FADH2 and 1 NADH + H+ are produced – For palmitoyl-CoA, the reaction is: Palmitoyl-CoA + 7FAD + 7NAD + 7CoA + 7H2O 8Acetyl-CoA + 7FADH2 + 7NADH + 7 H + Triacylglycerol Oxidation • The first step of the oxidation is catalyzed by Acyl-CoA dehydrogenase. – There are three types, differing in chain length specificity • LCAD - Long chain • MCAD - Medium chain • SCAD - Short chain – In New York State, all newborns are screened for MCAD deficiency – This disorder is covered in the “Baby Ian” case study on the MGB web site. Triacylglycerol Oxidation • Oxidation of unsaturated fatty acids occurs by the beta oxidation pathway, but with two additional enzymes that isomerize (from cis to trans) and reduce the double bond(s). • Very long chain fatty acids chain fatty acids gre oxidized in peroxisomes to long chain amd medium chain acyl-CoA which enter the mitochondria via the carnitine shuttle. Adrenoleukodystrophy (ALD) is an Xlined disorder in which the entry of very long chain fatty acids into the peroxisome is blocked. Ketone Bodies Ketone Bodies • Ketone body synthesis - LIVER (mitochondria) O || CH3-C-S-CoA O || CH3-C-S-CoA CoA O O Acetyl-CoA || || CH3-C-CH2-C-S-CoA 2 Acetyl-CoA Acetoacetyl-CoA OH O | || CH3-C-CH2-C-S-CoA | CoA CH 2 | COO - HMG-CoA mitochondrial! Acetyl-CoA OH | O || NAD+ CH3-C-CH2-CO - -hydroxybutyrate NADH+H+ O O || || CH3-C-CH2-CO - Acetoacetate Ketone Bodies • Acetyl-CoA can be converted into ketone bodies: O O || || – Acetoacetate: CH3-C-CH2-CO – -hydroxybutyrate: OH | O || CH3-C-CH2-CO - • These are exported by the liver and used as fuel by other tissues • In a non-enzymatic side reaction, small amounts of acetone are produced from acetoacetate O || CH3-C-CH3 Ketone Body Use OH | O || NAD+ NADH+H+ O O || || CH3-C-CH2-CO - CH3-C-CH2-CO - -hydroxybutyrate NOT present in liver O || CH3-C-S-CoA Acetoacetate CoA transferase (thiphorase) 2 Acetyl-CoA Succinyl-CoA Succinate Acetoacetyl-CoA thiolase CoA