* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Operaciones de Números Reales
Law of large numbers wikipedia , lookup
Georg Cantor's first set theory article wikipedia , lookup
Infinitesimal wikipedia , lookup
Positional notation wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Hyperreal number wikipedia , lookup
Surreal number wikipedia , lookup
Large numbers wikipedia , lookup
Location arithmetic wikipedia , lookup
Real number wikipedia , lookup
Division by zero wikipedia , lookup
Sección 1.2 Operaciones con Números Reales Copyright © 2013, 2010, 2006, 2003 Pearson Education, Inc. La Recta Numérica A number line is a line on which each point is associated with a number. –5 –4 –3 –2 –1 – 4.8 Negative Numbers 0 1 2 3 4 1.5 Positive Numbers 5 La Recta Numérica (cont) Smaller numbers are on the left. – 5 – 4– 3 – 2 – 1 –4<–1 “less than” 0 1 2 3 4 5 2>–1 “greater than” Valor Absoluto The absolute value of a number is the distance between that number and zero on a number line. | – 4| = 4 Símbolo para valor absoluto |5| = 5 Distancia de 4 Distancia de 5 –5 –4 –3 –2 –1 0 1 2 3 4 5 Definición del Valor Absoluto Absolute value of x: x, if x 0 x x, if x 0 Example Evaluate. a. |2| = 2 b. |10| = 10 c. |0| = 0 d. |8 – 4| = |4| = 4 Regla 1.1 To add two real numbers with the same sign, add their absolute values. The sum takes the common sign. Ejemplo Add (–3) + (–11). 3 + 11 = 14 Suma los valores absoluto de 3 y 11. (–3) + (–11) = –14 Se usa el signo negativo porque sumamos dos números negativos. Ejemplo Suma 1 1 2 3 1 1 3 2 5 2 3 6 6 6 Regla 1.2 To add to real numbers with different signs, find the difference between their absolute values. The answer takes the sign of the number with the larger absolute value. Ejemplo Suma: 5 + (–9). 5 – 9 = –4 Subtract the absolute values of the numbers 5 and 9. A negative sign is used because the sign of the larger number is negative. Example Add (–24) + (38). 38 – 24 = 14 Subtract the absolute values of the numbers 24 and 38. The answer is positive because the sign of the larger number is positive. Example Add. a. 2.8 + (–1.3) = 1.5 2 3 8 15 b. 5 4 20 20 23 3 or 1 20 20 Example Add (–56) + 6 + (–14). Because addition is commutative, the numbers can be added in any way. (–56) + 6 + (–14) – 50 + (–14) – 64 or (–56) + (–14) + 6 – 70 +6 – 64 Números Opuestos Opposite numbers (or additive inverses) have the same magnitude but different signs. The opposite of 4 is – 4. –5 –4 –3 –2 –1 0 1 2 4 + (–4) = 0 3 4 5 The sum of a number and its opposite is zero. Regla 1.3 To subtract b from a, add the opposite (additive inverse) of b to a. Thus, a – b = a + (–b). Ejemplo 6 – (–14). Resta: The opposite of 14 is 14. 6 – (–14) =6 + (+14) Change the subtraction to addition. = 20 Perform the addition of the two positive numbers. Ejemplo Resta = –6 – 14. The opposite of 14 is 14. –6 – (14) –6 + (–14) Change the subtraction to addition. = –20 Perform the addition of the two negative numbers. Ejemplo Resta. 5 1 11 5 5 1 5 1 11 5 11 5 Subtraction changed to addition. 5 5 1 11 11 5 5 11 The LCD is 55. 25 11 55 55 Multiply the fractions. 14 55 Add the fractions. Ejemplo Resta: –21 – (–13) The opposite of –13 is 13. –21 + (13) Change the subtraction to addition. = –8 Perform the addition. Ejemplo Subtract. a. 8 2 8 (2) 10 b. 23 28 23 (28) 5 c. 5 ( 3) 5 3 8 Regla 1.4 When you multiply or divide two real numbers with different signs, the answer is a negative number. Ejemplo Evaluar. a. –6(4) = –24 When multiplying two numbers with different signs, the result is a negative number. b. 12(–9) = –108 Ejemplo Evaluar. a. –6 ÷ 2 = –3 When dividing two numbers with different signs, the result is a negative number. b. 120 ÷ (–10) = –12 Ejemplo Evaluar. 12 2 5 3 6 12 2 12 3 5 3 5 2 1 18 3 or 3 5 5 Regla 1.5 When you multiply or divide two real numbers with like signs, the answer is a positive number. Ejemplo Evaluar. a. –75 × (–3) = 225 When multiplying two numbers with the same sign, the result is a positive number. 1 b. 5 2 5 2 5 12 3 12 3 18 6 Ejemplo Evaluar. a. –75 ÷ (–3) = 25 When dividing two numbers with the same sign, the result is a positive number. 1 b. 5 3 5 2 5 12 2 12 3 18 6 Orden de Operaciones Numéricas If addition, subtraction, multiplication, and division are written horizontally, do the operations in the following order. 1. Do all multiplications and division from left to right. 2. Do all additions and subtractions from left to right. Ejemplo Evaluar. 24 2 4 2 24 2 4 2 12 4 2 12 8 4 Ejemplo Evaluar. 20 (4) 3 2 6 5 20 (4) 3 2 6 5 5 3 2 6 5 15 2 6 5 15 2 30 13 30 17 Ejemplo Evaluar. 13 ( 3) 5( 2) 6( 3) 13 ( 3) 13 3 5( 2) 6( 3) 10 18 16 8 2 Ejemplo 3 Evaluar. 4 3 1 5 4 3 4 1 5 4 3 3 1 3 4 5 4 3 3 4 20 15 3 20 20 15 3 20 20 18 9 20 10 To perform the division, invert and multiply the second fraction. Multiply. The LCD of the fractions is 20. Change the subtraction to addition. Add and simplify.