• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
The sums of the reciprocals of Fibonacci polynomials and Lucas
The sums of the reciprocals of Fibonacci polynomials and Lucas

PPT
PPT

1 Introduction and Preliminaries
1 Introduction and Preliminaries

... the Seventeen or Bust project are actually Sierpiński numbers. One can easily check that none of these 8 values is of the form `r where r > 1, and it seems likely to us that the following revision of Conjecture 1 holds. Conjecture 10 . If k is a Sierpiński number that is not of the form `r for som ...
On Powers Associated with Sierpinski Numbers, Riesel Numbers
On Powers Associated with Sierpinski Numbers, Riesel Numbers

4th ASU 1964 problems
4th ASU 1964 problems

Advanced Problems and Solutions
Advanced Problems and Solutions

Chapter 6: Decimals (Lecture Notes)
Chapter 6: Decimals (Lecture Notes)

The Fibonacci Numbers
The Fibonacci Numbers

Elementary Real Analysis - ClassicalRealAnalysis.info
Elementary Real Analysis - ClassicalRealAnalysis.info

TRAPEZOIDAL APPROXIMATION OF FUZZY NUMBERS
TRAPEZOIDAL APPROXIMATION OF FUZZY NUMBERS

Extremely Abundant Numbers and the Riemann Hypothesis
Extremely Abundant Numbers and the Riemann Hypothesis

Untitled
Untitled

A Transition to Advanced Mathematics
A Transition to Advanced Mathematics

Mathematical Reasoning: Writing and Proof
Mathematical Reasoning: Writing and Proof

Mathematical Reasoning: Writing and Proof
Mathematical Reasoning: Writing and Proof

104 Number Theory Problems
104 Number Theory Problems

... Providing the product of the chosen numbers is equivalent to telling the product of the two unchosen numbers. The only possible products that are achieved by more than one pair of numbers are 12 ({3, 4} and {2, 6}) and 6 ({1, 6} and {2, 3}). But in the second case, the sum of the two (unchosen) numb ...
5 model theory of modal logic
5 model theory of modal logic

Relevant and Substructural Logics
Relevant and Substructural Logics

... I will end with one smaller section Loose Ends, sketching avenues for further work. The major sections, then, are structured thematically, and inside these sections I will endeavour to sketch the core historical lines of development in substructural logics. This, then, will be a conceptual history, ...
MATH ACTIVITY 6.1
MATH ACTIVITY 6.1

... 3. The two Decimal Squares shown at the left illustrate .6 5 .60 because both squares have the same amount of shading. In the deck of Decimal Squares there are three squares whose decimals equal .6. Sort your deck of Decimal Squares into piles so squares with the same shaded amount are in the same p ...
LANDAU`S PROBLEMS ON PRIMES 1. Introduction In his invited
LANDAU`S PROBLEMS ON PRIMES 1. Introduction In his invited

ppt - UNSW
ppt - UNSW

Grade 7/8 Math Circles Continued Fractions A Fraction of
Grade 7/8 Math Circles Continued Fractions A Fraction of

... prices of discounted items. It may be ironic to hear that at one point in history, fractions were not even consider numbers! They were treated as a way to compare whole numbers. In fact, fractions that we use in school today were not used until the 17th century! However, fractions were a crucial fir ...
Floating point numbers in Scilab
Floating point numbers in Scilab

Intuitionistic and Modal Logic
Intuitionistic and Modal Logic

Pengantar Organisasi Komputer
Pengantar Organisasi Komputer

1 2 3 4 5 ... 158 >

Infinitesimal

In mathematics, infinitesimals are things so small that there is no way to measure them. The insight with exploiting infinitesimals was that entities could still retain certain specific properties, such as angle or slope, even though these entities were quantitatively small. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the ""infinite-th"" item in a sequence. It was originally introduced around 1670 by either Nicolaus Mercator or Gottfried Wilhelm Leibniz. Infinitesimals are a basic ingredient in the procedures of infinitesimal calculus as developed by Leibniz, including the law of continuity and the transcendental law of homogeneity. In common speech, an infinitesimal object is an object which is smaller than any feasible measurement, but not zero in size; or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective, ""infinitesimal"" means ""extremely small"". In order to give it a meaning it usually has to be compared to another infinitesimal object in the same context (as in a derivative). Infinitely many infinitesimals are summed to produce an integral.Archimedes used what eventually came to be known as the method of indivisibles in his work The Method of Mechanical Theorems to find areas of regions and volumes of solids. In his formal published treatises, Archimedes solved the same problem using the method of exhaustion. The 15th century saw the work of Nicholas of Cusa, further developed in the 17th century by Johannes Kepler, in particular calculation of area of a circle by representing the latter as an infinite-sided polygon. Simon Stevin's work on decimal representation of all numbers in the 16th century prepared the ground for the real continuum. Bonaventura Cavalieri's method of indivisibles led to an extension of the results of the classical authors. The method of indivisibles related to geometrical figures as being composed of entities of codimension 1. John Wallis's infinitesimals differed from indivisibles in that he would decompose geometrical figures into infinitely thin building blocks of the same dimension as the figure, preparing the ground for general methods of the integral calculus. He exploited an infinitesimal denoted 1/∞ in area calculations.The use of infinitesimals by Leibniz relied upon heuristic principles, such as the law of continuity: what succeeds for the finite numbers succeeds also for the infinite numbers and vice versa; and the transcendental law of homogeneity that specifies procedures for replacing expressions involving inassignable quantities, by expressions involving only assignable ones. The 18th century saw routine use of infinitesimals by mathematicians such as Leonhard Euler and Joseph-Louis Lagrange. Augustin-Louis Cauchy exploited infinitesimals both in defining continuity in his Cours d'Analyse, and in defining an early form of a Dirac delta function. As Cantor and Dedekind were developing more abstract versions of Stevin's continuum, Paul du Bois-Reymond wrote a series of papers on infinitesimal-enriched continua based on growth rates of functions. Du Bois-Reymond's work inspired both Émile Borel and Thoralf Skolem. Borel explicitly linked du Bois-Reymond's work to Cauchy's work on rates of growth of infinitesimals. Skolem developed the first non-standard models of arithmetic in 1934. A mathematical implementation of both the law of continuity and infinitesimals was achieved by Abraham Robinson in 1961, who developed non-standard analysis based on earlier work by Edwin Hewitt in 1948 and Jerzy Łoś in 1955. The hyperreals implement an infinitesimal-enriched continuum and the transfer principle implements Leibniz's law of continuity. The standard part function implements Fermat's adequality.Vladimir Arnold wrote in 1990:Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.↑ ↑ ↑ ↑
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report