* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Very brief introduction to Conformal Field Theory
Ferromagnetism wikipedia , lookup
Higgs mechanism wikipedia , lookup
Many-worlds interpretation wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Quantum computing wikipedia , lookup
Quantum teleportation wikipedia , lookup
Quantum chromodynamics wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Quantum key distribution wikipedia , lookup
Hydrogen atom wikipedia , lookup
Orchestrated objective reduction wikipedia , lookup
Quantum machine learning wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Spin (physics) wikipedia , lookup
Renormalization wikipedia , lookup
Quantum entanglement wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Quantum field theory wikipedia , lookup
EPR paradox wikipedia , lookup
Quantum state wikipedia , lookup
Bell's theorem wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Hidden variable theory wikipedia , lookup
Ising model wikipedia , lookup
Renormalization group wikipedia , lookup
Vertex operator algebra wikipedia , lookup
Quantum group wikipedia , lookup
History of quantum field theory wikipedia , lookup
Scalar field theory wikipedia , lookup
Scale invariance wikipedia , lookup
Topological quantum field theory wikipedia , lookup
Canonical quantization wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Germán Sierra Instituto de Física Teórica CSIC-UAM, Madrid Talk at the 4Th GIQ Mini-workshop February 2011 -String theory -Critical phenomena in 2D Statistical Mechanics -Low D-strongly correlated systems in Condensed Matter -Fractional quantum Hall effect -Quantum information and entanglement s-channel t-channel p1 p2 p3 p4 Mandelstam variables Scattering amplitude u-channel s ( p1 p2 ) 2 t (p p ) 1 2 3 u ( p1 p4 ) 2 A A(s,t,u) ( (s))( (t)) A(s,t) ( (s) (t)) dx x (s)1 (1 x) (t )1 0 (s) s (0) Regge trayectory 1 q q s-t duality q q String action dx ( ) 2 S particle d Sstring d 0,1, D 1 dx ( , ) 2 dx ( , ) 2 d d d d where D= space-time dimension A(s,t) D x( , )e Sstring d e i p1 x ( 1 ,) 1 d e i p 4 x ( ,) 4 x ( , ) is a 1+1 field that satisfies the equations of motion d 2 d 2 2 2 x ( , ) 0 x ( , ) x R ( ) x L ( ) d d Open dx ( , ) 1 0, 0, x ( , ) x p i n ei n cos n d n n Closed 1 x (0, ) x (2 , ) x ( , ) x p i ( n e2i n ( ) n e2i n ( ) ) n n Quantization x , p i , n n m , , n m,0 , , , n n m n m,0 , , n ,m 0 String=zero modes (x,p)+infinite number of harmonic oscillators Vertex operators: insertions of particles on the world-sheet (Fubini and Veneziano 1970) i k x(0, ) i n i k(x p ) i n :e :expk n e e expk n e n1 n n1 n The energy-momentum tensor Generator of motions on the string world-sheet Tab (, ) (a,b 0,1) T is a symmetric, conserved and traceless tensor Tab Tba , a Tab 0, ab Tab 0 For closed string T splits into left and right components In light cone variables 1 , ( ) 2 1 T (T00 T01) x x 2 1 T (T00 T01) x x 2 Virasoro operators Make the Wick rotation , z i , z i Fourier expansion of the energy momentum tensor T Tzz (z) L n2 z n n T Tz z (z ) n2 L z n n Where Ln , Ln (n Z) are called the Virasoro operators Ln 1 1 , L nm m , nm m n 2 m 2 m Virasoro algebra The Virasoro operators satisfy the algebra Ln ,Lm (n m) Ln m c 3 (n n)n m,0 12 where c = central charge of the Virasoro algebra Classical version of the Virasoro algebra n , m (n m) n m , n z n 1 z This contains the conformal transformations of the plane: 1 z translations 0 z z dilatations 2 z z 1 special conformal z z az b , cz d ad bc 1 In 2D the conformal group is infinite dimensional !! n (n Z) Ln (n Z) Classical generators of conformal transformations Quantum generators of conformal transformations “c” represents an anomaly of conformal transformations Physical meaning of “c” Bosonic string: X-fields + Faddev-Popov ghost c = D - 26 Superstring: X-fields + fermionic fields + Faddev Popov ghost c = D + D/2 - 26 + 11 = 3D/2 -15 String theory does not have a conformal anomaly!! c = 0 -> D = 26 (bosonic string) and 10 (superstring) c gives a measure of the total degrees of freedom in CFT c= 1 (boson) c= 1/2 (Majorana fermion/Ising model) c= 1 (Dirac fermion/1D fermion) c= 3/2 (boson+Majorana or 3 Majoranas) c=…. Fractional values of c reflect highly non perturbative effects The Belavin-Polyakov-Zamolodchikov (1984) Infinite conformal symmetry in two-dimensional quantum field theory Conformal transformations z w f (z), z w f (z ) Covariant tensors are characterized by two numbers h, h Conformal weights h h (z,z )(dz)h (dz )h hh (w,w)(dw)h (dw)h A (x) dx A( x ) dx Az (z)dz (h 1,h 0) Az (z )dz (h 0,h 1) Dilation zz wwz,z, zz wwzz ( (: :real) real) General framework of CFT -T is a symmetric, conserved and traceless tensor with central charges c c (no need of an action) - There is a vacuum state |0> which satisfies Ln 0 Ln 0 0, n 1,0,1,2, -There is an infinite number of conformal fields in one-to-one correspondence with the states (z,z ) lim ( , ) 0 lim z 0 (z,z ) 0 -There are special fields (and states) called primary satisfying L0 h,h h h,h , L0 h,h h h,h Ln h,h 0, Ln h,h 0, n 0 T (x)dx dx T ( x )dx dx Tzz (z) (dz)2 (h 2,h 0) Tz (z )dz (h 0,h 2) -The remaing fields form towers obtained from the primary fields acting with the Virasoro operators (they are called descendants) h L1 h Verma module: L21 h ,L2 h L31 h ,L1L2 h ,L3 h L0 h h 1 h2 h3 -The primary fields form a close operator product expansion algebra For chiral (holomorphic fields) OPE i k j i (z) j (w) Cijk hi h j hk constants k (w) (z w) c /2 2T(w) T(w) T(z) T(w) 4 2 (z w) (z w) (z w) k - Fusion rules (generalized Clebsch-Gordan decomposition) c c a b N ab k , N ab 0,1, k - Rational Conformal Field Theories (RCFT): finite nº primary fields - Minimal models c 1 6 , m 3,4, m(m 1) (m 1)r ms 2 hr,s 4m(m 1) 1 , 1 r m, 1 s r A well known case is the Ising model c=1/2 (m=3) I 1,1 or 2,3, h0 0 2,1 or 1,3, h 1/2 2,2 or 1,2, h 1/16 I I - Conformal invariance determines uniquely the 2 and 3-point correlators i (z1 ) j (z2 ) i (z1 ) j (z2 ) k (z3 ) ij normalization hi h j 12 z Cijk hi h j hk 12 z hi hk h j 13 z z h j hk hi 23 - Higher order chiral correlators: their number given by the fusion rules Conformal blocks for the Ising model Fusion rules (I ) (I ) I 2 (2) There are four conformal blocks: FI (z1) (z4 ) I 2 1/ 2 z 1/ 8 ab z13 z24 z14 z23 z13 z24 z14 z23 1/ 2 ab F (z1) (z4 ) 2 1/ 2 z 1/ 8 ab 1/ 2 ab The non-chiral correlators (the ones in Stat Mech) (z1,z1) (z4 ,z4 ) FI z1, z4 FI* z1, z4 F z1, z4 F* z1, z4 Must be invariant under Braiding of coordinates z1 z2 z3 z4 Conformal blocks give a representation of the Braid group Fp zi zi1 B p,q Fq zi1 zi q Yang-Baxter equation Related to polynomials for knots and links, Chern-Simon theory, Anyons, Topological Quantum Computation, etc Characters and modular invariance a Conformal tower of a primary field a ( ) TrH qL c / 24 qc / 24 da (n) 0 a n0 da (n) : number of states at level n=0,1,2,… q ei , Upper half of the complex plane Moduli parameter of the torus 0 1 1 states propagation Modular group Fundamental region a b a b , Sl(2,Z) : c d c d Generators T : 1 S : 1/ Characters transforms under modular transformations as a ( 1) e i(h a c / 24) a ( ) a (1/ ) b Sab b ( ) Partition function of CFT must be modular invariant L 0 c / 24 L 0 c / 24 Z( ) Tr q q M ab a ( ) a () H a,b Z( ) Z( 1) Z(1/ ) Verlinde formula (1988) Fusion matrices and S-matrix and related!! * S S S c N ab am bm cm S1m m Example: Ising model 1 1 2 1 S 1 1 2 2 0 2 2 Check N I 2 2 1 2 2 01 4 Axiomatic of CFT Moore and Seiberg (1988-89) - Algebra: Chiral antichiral Virasoro left right ( c ) + others - Representation: primary fields a , - Fusionrules: c N ab ha ,ha - B and F matrices : BBB =BBB (Yang-Baxter) FF = FFF (pentagonal) - Modular matrices T and S Sort of generalization of group theory-> Quantum Groups Wess-Zumino-Witten model (1971-1984) CFT with “colour” Field is an element of a Group manifold SW ZW k 16 2 1 d x Tr g g Conformal invariance-> ik 24 g(z,z ) G 3 1 1 1 1 1 1 d y Tr g g g g gg g(z,z ) f (z) f (z ) B Currents J a (z) k z g g1 J na zn1 n J a (z ) k g1z g J na z n1 n a 1, ,dim G OPE of currents k ab J c (w) J (z) J (w) i f abc 2 (z w) zw c a b Kac-Moody algebra (1967) a b c J ,J i f J n m abc n m k n ab n m,0 k= level (entero) c Sugawara construction (1967) T(z) Ln 1 J a (z) J a (z) 2(k g) a 1 a : Jnm Jma : 2(k g) a m c k dim G kg g: dual Coxeter number of G Primary fields and fusion rules (Gepner-Witten 1986) 1 k j 0, , , 2 2 G=SU(2) j j 1 2 min j1 j 2 ,k j1 j 2 j j j1 j 2 Knizhnik- Zamolodchikov equations (1984) N Si S j (k g) zi ji zi z j j1 (z1 ) j (zN ) 0 N Heisenberg-Bethe spin 1/2 chain H Sn Sn 1 n Low energy physics is described by the WZW SU(2)@k=1 Si S j (1) i j log i j i j But the spin 1 chain is not a CFT (Haldane 1983) Si S j (1) i j e i j / -> Haldane phase and gap FQHE/CFT correspondence Laughlin wave function (z1, zN ) (zi z j ) m e zk 2 / 4 i j i quasihole -> (z)e 2 2 (z) Basis for Topological Quantum Computation (braids -> gates) electron = (z)e i 2 (z) The entanglement entropy in a bipartition A U B scales as SA log (1D area law) In a critical system described by a CFT (periodic BCs) c SA log L c1 3 hence one needs very large matrices to describe critical systems N , (c) Another alternative is to choose infinite dimensional matrices: MPS state iMPS state physical degrees auxiliary space (string like) Example 5: level k=2, spins =1/2 and 1, D=2 SU(2)@2 = Boson + Ising c=3/2 = 1 + 1/2 spin j=1 field spin j=1/2 field 1,1(z) e i (z) , 1,0 (z) (z), 1/ 2,1/ 2 (z) (z)e i (z)/ 2 1 h1 h 2 1 , h , 16 3 h1/ 2 16 The chiral correlators can be obtained from those of the Ising model (general formula Ardonne-Sierra 2010) N spins 1 s1,, ,sN s i j zi z j si s j 1 Pf 0 z z i j The Pfaffian comes from the correlator of Majorana fields Similar chiral correlators have been considered in the Fractional Quantum Hall effect at filling fraction 5/2. This is the so called Pfaffian state due to Moore and Read. FQHE/CFT correspondence electron = (z)e i 2 (z) i quasihole -> (z)e 2 2 (z) Quasiholes are non abelian anyons because their wave functions (chiral correlators) mix under braiding of their positions. Computation Basis for Topological Quantum (braids -> gates) An analogy via CFT FQHE CFT Spin Models Electron Quasihole Majorana field spin 1 spin 1/2 Braid of quasiholes Monodromy of correlators Adiabatic change of H Then if Holonomy = Monodromy one could get Topological Quantum Computation in the FQHE and the Spin Models. Bibliography Applied Conformal Field Theory Paul Ginsparg, arXiv:hep-th/9108028 Non-Abelian Anyons and Topological Quantum Computation C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, arXiv:0707.1889