Download Genes and Evolution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Quantitative trait locus wikipedia , lookup

Genomic imprinting wikipedia , lookup

Mutation wikipedia , lookup

Behavioural genetics wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Gene wikipedia , lookup

Heritability of IQ wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

Pharmacogenomics wikipedia , lookup

Public health genomics wikipedia , lookup

Point mutation wikipedia , lookup

Gene expression programming wikipedia , lookup

Epistasis wikipedia , lookup

Genetic engineering wikipedia , lookup

Group selection wikipedia , lookup

History of genetic engineering wikipedia , lookup

Inbreeding wikipedia , lookup

Genome (book) wikipedia , lookup

Designer baby wikipedia , lookup

Polymorphism (biology) wikipedia , lookup

Koinophilia wikipedia , lookup

Human genetic variation wikipedia , lookup

Hardy–Weinberg principle wikipedia , lookup

Dominance (genetics) wikipedia , lookup

Genetic drift wikipedia , lookup

Population genetics wikipedia , lookup

Microevolution wikipedia , lookup

Transcript
Genes and Evolution:
Genetics of Populations
1 December, 2003 Text Chapter 23
Vocabulary
A species is a group of individuals with the potential to interbreed to
produce fertile offspring.
A population is a localized group of individuals of the same
species.
The collection of all existing alleles for all genes is the gene pool
for the population. Remember that each gene can exist as a
number of different alleles.
For each gene, the proportion of the total alleles represented by
any given allele is the allele frequency for that allele.
Allele frequency example.
Population: 500 diploid individuals (1000 total alleles for gene A)
Gene A : Two possible alleles
In our population,
A (dominant, pink flowers)
a (recessive, white flowers)
20 individuals are aa
160 individuals are Aa
320 individuals are AA
The allele frequency for A is ((320)(2)+160)/1000 = 800/1000 = .8
The allele frequency for a is ((20)(2)+160)/1000 = 200/1000 = 0.2
For an idealized, sexually reproducing population, these allele
frequencies will remain constant over successive generations.
If all individuals reproduce to give the same number of offspring,
and mating is random, then the allele frequencies in the F1 generation
will be the same as the allele frequencies in the parental generation.
This is like taking all of
the alleles in the
population and drawing
them two at a time to
determine the genotype
for each F1 individual.
p2 + 2pq + q2 = 1
Hardy-Weinberg Criteria
This situation where succeeding generations have the same allele
frequencies is called Hardy-Weinberg equilibrium. In order to have no
genetic change over time, five conditions must be met.
The population must be large.
The population must be isolated.
Mutations may not occur.
Mating must be random.
All individuals must have equal reproductive success.
If all of these criteria are not met, then the genetic structure of the
population will change over time. Microevolution is occurring.
The five agents of microevolution, genetic drift, gene flow, mutation,
sexual selection, and natural selection represent departure from the five
conditions for equilibrium.
Genetic drift is microevolution caused by changes in the gene
pool of a small population due to chance.
Population bottlenecks are an example of genetic drift.
The founder effect is a related agent of genetic change.
Gene flow occurs when a population gains or loses alleles in
exchange with another population.
This effect tends to reduce genetic differences between
populations that were previously isolated.
Mutation (heritable changes to DNA occur constantly in every
cell of every individual. In humans, a mutation rate of about 1 per
locus per 1,000,000 gametes is typical.
Mutation cannot lead to large changes in allele frequency unless it
is accompanied by selection.
Selection can take the form of nonrandom mating, or Unequal
reproductive success (natural selection). Of all of the agents of
microevolution, only natural selection is adaptive.
Genetic variation, the substrate for selection, occurs both within and
between populations. In Drosophila populations, about 30% of loci have
more than one allele, and each fly is heterozygous at about 12% of its
genes. Variation between populations is even greater.
Diploidy and Balanced Polymorphism
Preserve Variation.
Frequency-dependent Selection
Selection may be stabilizing, directional, or disruptive.
Sexual Reproduction is
Disadvantageous.