Download MSc in Biochemistry Dissertation Project – 2nd Cycle Student´s

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Magnesium transporter wikipedia , lookup

G protein–coupled receptor wikipedia , lookup

Secreted frizzled-related protein 1 wikipedia , lookup

Biochemistry wikipedia , lookup

Gene expression wikipedia , lookup

Interactome wikipedia , lookup

Signal transduction wikipedia , lookup

Protein wikipedia , lookup

Biochemical cascade wikipedia , lookup

Expression vector wikipedia , lookup

QPNC-PAGE wikipedia , lookup

Paracrine signalling wikipedia , lookup

Protein purification wikipedia , lookup

Protein structure prediction wikipedia , lookup

Western blot wikipedia , lookup

Protein–protein interaction wikipedia , lookup

Two-hybrid screening wikipedia , lookup

Proteolysis wikipedia , lookup

Transcript
MSc in Biochemistry
Dissertation Project – 2nd Cycle
Student´s Name:
Student email address:
Supervisor(s): Filipa Marcelo
Supervisor(s) email address: [email protected]
Lab/Institution: Lab 302 and 106 FCT-UNL
TITLE: Deciphering the secrets of GalNAc O-glycosylation.
No.
BACKGROUND
Glycosylation is the most complex and widespread process of posttranslational modification of
proteins and lipids, with an unsurpassed capacity to generate a wide array of structures (Annu. Rev.
Biomed. Eng. 2007, 9, 121–167). The large polypeptide GalNAc-transferase (GalNAc-Ts) family catalyzes
the transfer of N-acetylgalactosamine (GalNAc) from a sugar donor UDP-GalNAc to Ser/Thr side chains
of many cell-surface proteins (Figure 1A) (Glycobiology 2012, 22, 736-756). GalNAc-Ts show distinct,
although partly overlapping, kinetic properties and acceptor substrate specificities, and the available
repertoire of GalNAc-Ts therefore determine which and where proteins are O-glycosylated (Trends in
Cell Biology 2011, 21, 149-158). In this context, mucin-type proteins are the main templates catalysed
by GalNAc-Ts. In addition, aberrant glycosylation is a universal feature of cancer (Figure 1B) and
alterations in cell expression of GalNAc-Ts also occur during malignant transformation (Nat. Rev.
Cancer 2015, 15, 540-555). With this project, we aim to develop a structural based discovery protocol,
to unveil GalNAc-Ts family specificities and dynamics of mucin MUC1 protein upon O-glycosylation,
vitally needed to understand GalNAc-Ts mechanism of action in health and to develop inhibitors for
diseases like cancer.
GalNAc-Ts
A.
B.
Mucin protein
Figure 1. A. Schematic view of GalNAc-Ts O-glycosylation process. B. Glycan structure in normal and cancer cells.
OBJECTIVES
The access to the structural knowledge of MUC1 O-glycosylation features will permit to understand
GalNAc-Ts binding specificities.
Specific objectives for project:
a) To determine the order and kinetics of MUC1 O-glycosylation by GalNAc-T2 and T4.
b) To elucidate the effects on MUC1 conformation upon GalNAc addition during Oglycosylation process.
c) Unravel GalNAc-T2 and T4 specificities.
1
MSc in Biochemistry
Dissertation Project – 2nd Cycle
PROJECT DESCRIPTION
The project focuses on the application of NMR methods to follow the glycosylation process of mucins
by GalNAc-Ts, unveiling new structural, conformational and dynamic insights at atomic level of this
biological event from the receptor (GalNAc-Ts) and protein acceptor (Mucin MUC1) viewpoint. MUC1
tandem repeats consisting of 20 amino acids each have 5 acceptor sites. Concerning GalNAc-Ts, we
select GalNAc-T2, and T4 isoforms to probe the MUC1 O-glycosylation pathway. T2 will glycosylate 3 of
the 5 potential O-glycosylation sites in MUC1 tandem repeat while T4 transferred GalNAc to the 2
remaining sites in the MUC1 sequence.
The present master project is organized in 3 tasks:
Task 1: Expression of 15N and 13C isotopically labelled MUC1 containing 4 tandem repeats MUC1
domains (MUC1-4TR). GalNAc-T2 and GalNAc-T4 are currently available in the lab.
Task 2: Fast heteronuclear NMR experiments of MUC1-4TR will be carried out in presence of T2 and T4
to monitor the chemical shift displacements of MUC1 resonances until complete glycosylation,
determining the order and kinetics of glycosylation process and if possible the conformational
alteration of MUC1 structure upon glycosylation.
Task 3: Study of the intermolecular interactions of selected peptides substrates with GalNAc-T2 and T4
will be carried out by NMR, namely STD-NMR and trNOESY. STD-NMR experiments will be performed
to monitor the interaction and identify the binding epitopes in the substrates while trNOESY
experiments will be accomplished to determine the bioactive conformation.
Therefore, the student will have contact with distinct NMR techniques in the context of protein and
glycoconjugates structure and recognition using well-defined methodologies implemented and
currently used in the NMR group (Curr. Protein Pept. Sci. 2012, 13, 816-830; J. Am. Chem. Soc. 2013,
135, 16418 – 16428; Chem. Eur. J. 2014, 20, 16147-16155; J. Am. Chem. Soc. 2015, 137, 12438-12441).
In this sense, with this project the student will be educated and trained to setup and analyse distinct
NMR experiments as well as to deduce the glycosylation pathway and specificity of MUC1 Oglycosylation by specific GalNAc-Ts.
TIMELINE (use fill tool for the cells)
Month 1
Month 2
Month 3
Month 4
Month 5
Month 6
Month 7
Month 8
Month 9
Month 10
Task 1
Task 2
Task 3
Thesis
2