Download Chapter 12: Bioenergetics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Basal metabolic rate wikipedia , lookup

Thylakoid wikipedia , lookup

Microbial metabolism wikipedia , lookup

Mitochondrion wikipedia , lookup

Light-dependent reactions wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

Electron transport chain wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup

Nicotinamide adenine dinucleotide wikipedia , lookup

Glycolysis wikipedia , lookup

Biochemistry wikipedia , lookup

Adenosine triphosphate wikipedia , lookup

Metabolism wikipedia , lookup

Oxidative phosphorylation wikipedia , lookup

Citric acid cycle wikipedia , lookup

Transcript
Chemistry 506
Dr. Hunter’s Class
Chapter 20.
1
Chemistry 506: Allied Health Chemistry 2
Chapter 20: Bioenergetics
Energy Generation in the Cell
Introduction to General, Organic & Biochemistry, 5th Edition by
Bettelheim and March: Chapter 20, Pages 641-664
Outline Notes by Dr. Allen D. Hunter, YSU Department of
Chemistry, 2000.
Outline
1A SECTION(S) 20.1/2 INTRODUCTION & MITOCHONDRIA .......................................................................................... 2
1B SECTION(S) 20.3 COMMON CATABOLIC MOLECULES ............................................................................................ 6
1C SECTION(S) 20.4 CITRIC ACID CYCLE ........................................................................................................................ 12
1D SECTION(S) 20.5/6/7 ATP SYNTHESIS ........................................................................................................................... 14
1E SECTION(S) 20.8 USES OF ENERGY IN CELLS ........................................................................................................... 15
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
1A Section(s)
20.1/2
Chapter 20.
2
Introduction & Mitochondria
Metabolism
All of the chemical reactions in a cell
Catabolism
The chemical reactions in the cell that break complex
molecules down
Anabolism
The chemical reaction in the cell that build complex
molecules
Complexity
Thousands of interrelated compounds, reactions, and
enzymes
All under detailed feedback and control
Ultimately governed by the DNA and the cell’s responses to
the environment
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
Chapter 20.
Energy Generation in the Cell
General Process
Overall Catabolic Pathway
Figure 20.1 on page 643
CO2
multiple
pathways
citric
acid
cycle
C2 &
C4
NADH
FADH2
membrane
pumps
ATP
generation
H+ returns
ATPase
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
high [H+]
intermembrane
3
Dr. Hunter’s Class
Chemistry 506
Chapter 20.
Structure of Mitochondrion
Figures 20.2 and 20.3 on pages 644 and 645
Outer
Membrane
Inner
Membrane
High [H+]
Low [H+]
H+ Pumps
ATPase
Inter-membrane
region
Folds called Crista
Central region
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
4
Dr. Hunter’s Class
Chemistry 506
Chapter 20.
5
Summary of Process
Multiple “food” molecules get converted into a small number of
common C2 and C4 molecules
These C2/C4 molecules enter the center of the mitochondria
where they are “processed” by the citric acid pathway
The citric acid pathway gives H+ and e- which are used to
generate NADH and FADH2
These are e-, H+, and energy carrier molecules
These are used by proteins on the inner mitochondrial
membrane to pump H+ ions from the center to the intermembrane region
This gives a proton gradient
This proton gradient drives protein reactions on the inner
membrane which allow them back into the center of the
mitochondrion which simultaneously using their energy
to generate ATP from ADP
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
1B Section(s)
20.3
Chapter 20.
Common Catabolic Molecules
Pi-AMP-ADP-ATP Path
Inorganic Phosphate, Pi, H2PO4- (charge depends on pH)
Adenosine Monophosphate, AMP
Adenosine Diphosphate, ADP
Adenosine Triphosphate, ATP
ATP is the highest energy
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
6
Dr. Hunter’s Class
Chemistry 506
Chapter 20.
Structure of ATP Molecule
Page 646 of the text
Adenine, Ribose, Adenosine, and Phosphate moieties
ADP and AMP structures
Adenosine
NH 2
N
N
-
N
O
O
O
P
O
O
P
O
-
O
P
-
O
O
CH 2
OH
Adenine
O
H
H
H
OH
Phosphate groups
N
OH
Ribose
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
7
Dr. Hunter’s Class
Chemistry 506
Chapter 20.
Phosphate Bonds
ATP is “energy currency” of the cell
“high energy bonds” vs. convertible energy
Adenine
-
O
O
O
P
O
O
P
O-
O
P
O-
O
CH 2
O-
Ribose
Hydrolysis
Hydrolysis of ATP
ATP + H2O  ADP + Pi + Energy
Hydrolysis of ADP
ADP + H2O  AMP + Pi + Energy
Normally ADP not hydrolyzed by cells
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
8
Dr. Hunter’s Class
Chemistry 506
Chapter 20.
9
Nicotinamide Adenine Dinucleotide, NAD
Figure 20.6 on page 648
Often Referred to as NAD+ to reflect the charge on the
Nicotinamide base
Is a Coenzyme
Contains ADP, Ribose, and a Nicotinamide Base
O
C
NH 2
N
O
ADP
CH 2
H
O
Nicotinamide
H
H
H
OH
OH
Ribose
NAD+ + H+ + 2e-  NADH
 Thus NADH carries 2e-, a proton, and energy to where it
is needed
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
Chapter 20. 10
Flavin Adenine Dinucleotide, FAD
Figure 20.6 on page 648
Is a Coenzyme
Contains ADP, Ribitol (a straight chain sugar), and Flavin
The latter two groups making up Riboflavin (the vitamin)
O
ADP
OH
CH
C
H2
N
CH
CH
CH 2
Flavin
OH
OH
Ribitol
Riboflavin
FAD + 2H+ + 2e-  FADH2
Thus FADH2 carries 2e-, two protons, and energy to where it is
needed
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
Chapter 20. 11
Acetyl CoA
Figure 20.7 on page 649
Transports C2 units (acyl groups)
 Often written as CH3-CO-S-CoA or Acyl-CoA
O
CoA
S
C
CH 3
O
N
H
O
Phosphorylated
ADP
Pantothenic
Acid
H2C
H2
C
Mercaptoethylamine
S
C
CH 3
Acyl
Group
CoEnzyme A
Notice the overall similarity in the structures of ATP, NADH,
FADH2, and Acetyl CoA
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
1C Section(s)
20.4
Chapter 20. 12
Citric Acid Cycle
Also known as Krebs Cycle and Tricarboxylic Acid Cycle
Figure 20.8 on page 650
Overall Molecular Flow
8 different chemicals
8 different sets of enzymes
Takes place in the center of the mitochondrion
C2 fragments enter the cycle as Acetyl CoA
C2 (Acetyl CoA)
NADH
C4
C6
NAD+
C6
NAD+
C4
NADH + CO2
C4
C5
FADH2
C4
NAD+
C4
FAD
GTP
NADH + CO2
GDP
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
Chapter 20. 13
Overall Energy Flow
Produces two CO2, three NADH, one FADH2, and one GTP per
cycle
GTP is Guanidine Triphosphate (ATP like)
3 NADH  9 ATP
1 FADH2  2 ATP
1 GTP  1 ATP
Thus: Acetyl CoA  12 ATP
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
1D Section(s)
20.5/6/7
Chapter 20. 14
ATP Synthesis
Proton Pumps
Flavo Protein, FeS Protein, Quinone Enzyme Complex
Sited on the inner mitochondrial membrane
Use NADH and FADH2 to pump H+ into the inter-membrane
space
This generates the proton gradient
ATPase
An enzyme on the inner mitochondrial membrane
Allows H+ to flow back into the central membrane cavity
H+ flow mechanically coupled to ATP generation
ADP + Pi (ATPase)  ATP
Net Results
Each NADH  3 ATP
Each FADH2  2 ATP
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Dr. Hunter’s Class
Chemistry 506
1E Section(s)
20.8
Uses of Energy in Cells
Molecular Synthesis
Anabolic Pathways
 To Generate Gradients via Active Pumps
H+, K+, etc.
Mechanical Energy
Muscles
Molecular motors
Heat
Problems: 20.1 to 20.49
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Chapter 20. 15
Chemistry 506
Dr. Hunter’s Class
Chapter 20. 16
Index of Topics and Vocabulary
A
Acetyl Co .......................................................................... 13
Acetyl CoA ................................................................. 11, 12
acyl groups........................................................................ 11
Acyl-CoA.......................................................................... 11
Adenine............................................................................... 7
Adenosine ........................................................................... 7
Adenosine Diphosphate ...................................................... 6
Adenosine Monophosphate ................................................. 6
Adenosine Triphosphate ..................................................... 6
ADP ............................................................ 5, 6, 7, 9, 10, 14
AMP ............................................................................... 6, 7
Anabolic Pathways ........................................................... 15
Anabolism........................................................................... 2
ATP ................................................................ 5, 6, 8, 11, 14
ATP like............................................................................ 13
ATP Synthesis .................................................................. 14
ATPase ............................................................................. 14
B
break complex molecules down .......................................... 2
build complex molecules .................................................... 2
C
C2 fragments..................................................................... 12
C2 units............................................................................. 11
Catabolic Pathway .............................................................. 3
Catabolism .......................................................................... 2
central membrane cavity ................................................... 14
CH3-CO-S-CoA ................................................................ 11
chemical reactions in a cell ................................................. 2
Citric Acid Cycle .............................................................. 12
CO2 ................................................................................... 13
Coenzyme ..................................................................... 9, 10
Common Catabolic Molecules ............................................ 6
Complexity ......................................................................... 2
convertible energy .............................................................. 8
Flavin ............................................................................... 10
Flavin Adenine Dinucleotide............................................ 10
Flavo Protein .................................................................... 14
food molecules ................................................................... 5
G
Gradients via Active Pumps ............................................. 15
GTP .................................................................................. 13
Guanidine Triphosphate ................................................... 13
H
H+ .......................................................................... 5, 14, 15
H2PO4- ................................................................................ 6
Heat .................................................................................. 15
high energy bonds .............................................................. 8
Hydrolysis .......................................................................... 8
Hydrolysis of ADP ............................................................. 8
Hydrolysis of ATP ............................................................. 8
I
inner membrane .................................................................. 5
inner mitochondrial membrane..................................... 5, 14
Inorganic Phosphate ........................................................... 6
inter-membrane region ....................................................... 5
inter-membrane space ...................................................... 14
Introduction & Mitochondria ............................................. 2
K
K+ .................................................................................... 15
Krebs Cycle ...................................................................... 12
M
DNA ................................................................................... 2
Mechanical Energy........................................................... 15
mechanically coupled to ATP generation ......................... 14
Metabolism......................................................................... 2
mitochondrion .................................................................. 12
Mitochondrion .................................................................... 4
Molecular Flow ................................................................ 12
Molecular motors ............................................................. 15
Molecular Synthesis ......................................................... 15
Muscles ............................................................................ 15
E
N
e-
NAD ................................................................................... 9
NAD+ ................................................................................. 9
NADH .............................................................. 5, 11, 13, 14
Nicotinamide Adenine Dinucleotide .................................. 9
Nicotinamide base .............................................................. 9
Nicotinamide Base ............................................................. 9
D
............................................................................. 5, 9, 10
energy ........................................................................... 9, 10
Energy................................................................................. 8
energy carrier molecules ..................................................... 5
energy currency .................................................................. 8
Energy Flow ..................................................................... 13
Energy Generation in the Cell............................................. 3
enzyme .............................................................................. 14
enzymes ............................................................................ 12
F
P
Phosphate ........................................................................... 7
Phosphate Bonds ................................................................ 8
Pi ................................................................................ 6, 14
Problems........................................................................... 15
proton ........................................................................... 9, 10
proton gradient ............................................................. 5, 14
FAD .................................................................................. 10
FADH2 ........................................................ 5, 10, 11, 13, 14
feedback and control ........................................................... 2
FeS Protein ....................................................................... 14
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University
Chemistry 506
Dr. Hunter’s Class
Proton Pumps .................................................................... 14
pump H+............................................................................ 14
pump H+ ions ...................................................................... 5
Chapter 20. 17
S
Q
similarity in the structures ................................................ 11
Structure of ATP Molecule ................................................ 7
sugar ................................................................................. 10
Quinone Enzyme Complex ............................................... 14
T
R
Tricarboxylic Acid Cycle ................................................. 12
Ribitol ............................................................................... 10
Riboflavin ......................................................................... 10
Ribose ............................................................................. 7, 9
U
Uses of Energy in Cells .................................................... 15
V
vitamin ............................................................................. 10
2000, Dr. Allen D. Hunter, Department of Chemistry, Youngstown State University