Download Properties of ATP - BioWiki

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Proteolysis wikipedia , lookup

Enzyme wikipedia , lookup

Biosynthesis wikipedia , lookup

Peptide synthesis wikipedia , lookup

Multi-state modeling of biomolecules wikipedia , lookup

Mitochondrion wikipedia , lookup

Basal metabolic rate wikipedia , lookup

Metalloprotein wikipedia , lookup

Photosynthesis wikipedia , lookup

Luciferase wikipedia , lookup

Thylakoid wikipedia , lookup

Electron transport chain wikipedia , lookup

Microbial metabolism wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

Light-dependent reactions wikipedia , lookup

Metabolism wikipedia , lookup

Glycolysis wikipedia , lookup

Biochemistry wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

Citric acid cycle wikipedia , lookup

Oxidative phosphorylation wikipedia , lookup

Adenosine triphosphate wikipedia , lookup

Transcript
4/7/2015
Properties of ATP - BioWiki
Sign In
Forgot Password
Register
username
username password
password
Sign In
If you like us, please share us on social media.
The latest UCD Hyperlibrary newsletter is now complete, check it out.
ChemWiki
BioWiki
GeoWiki
StatWiki
PhysWiki
MathWiki
SolarWiki
BioWiki: The Dynamic Biology E-textbook > Biochemistry > Oxidation and Phosphorylation > ATP and Oxidative Phosphorylation > Properties of
ATP
Properties of ATP
ATP contains two phosphoanhydride bonds (connecting the 3 phosphates together) and one phosphoester bond (connecting a phosphate to the ribose
ring). The pKa's for the reactions HATP3- ---> ATP4- + H+ and HADP2- ---> ADP3- + H+ are about 7.0, so the overall charges of ATP and ADP at
physiological pH are -3.5 and -2.5, respectively.
Each of the phosphorous atoms are highly electrophilic and can react with nucleophiles like the OH of water or an alcohol. As we discussed earlier,
anhydrides are thermodynamically more reactive than esters which are more reactive than amides. The large negative ΔGo (-7.5 kcal/mol) for the
hydrolysis (a nucleophilic substitution reaction) of one of the phosphoanhydride bonds can be attributed to a relative destabilization of the reactants
(ATP and water) and relative stabilization of the products (ADP = Pi). Specifically
The reactants can not be stabilized to the same extent as products by resonance due to competing resonance of the bridging anhydride O's.
The charge density on the reactants is greater than that of the products.
Theoretical studies show that the products are more hydrated than the reactants.
The ΔGo for hydrolysis of ATP is dependent on the divalent ion concentration and pH, which affect the stabilization and the magnitude of the charge
states of the reactants and products.
Jmol: ATP / ADP
Figure: STRUCTURE AND HYDROLYSIS OF ATP
http://biowiki.ucdavis.edu/Biochemistry/Oxidation_and_Phosphorylation/ATP_and_Oxidative_Phosphorylation/Properties_of_ATP
1/5
4/7/2015
Properties of ATP - BioWiki
Carboxylic acid anhydrides are even more unstable to hydrolysis than ATP (-20 kcal/mol), followed by mixed anhydrides (-12 kcal/mol), and
phosphoric acid anhydrides (-7.5 kcal/mol). These molecules are often termed "high energy" molecules, which is somewhat of a misnomer. They are
high energy only in relation to the energy of their cleavage products, such that the reaction proceeds with a large negative ΔGo.
Figure: HIGH ENERGY MOLECULES
How can ATP be used to drive thermodynamically unfavored reaction? First consider how the hydrolysis of a carboxylic acid anhydride, which has a
ΔGo = -12.5 kcal/mol, can drive the synthesis of a carboxylic acid amide, with a ΔGo= + 2-3 kcal/mol. The link below shows the net reaction,
(anhydride + amine --> amide + carboxylic acid), which can be broken into two reactions: hydrolysis of the anhydride, and the synthesis of the
amide.
http://biowiki.ucdavis.edu/Biochemistry/Oxidation_and_Phosphorylation/ATP_and_Oxidative_Phosphorylation/Properties_of_ATP
2/5
4/7/2015
Properties of ATP - BioWiki
Figure: MECHANISM: COUPLED SYNTHESIS OF A CARBOXYLIC AMIDE
Now consider the reaction of glucose + Pi to form glucose-6-P. In this reaction a phosphoester is formed, so the reaction would proceed with a
positive ΔGo = 3.3. Now if ATP was used to transfer the terminal (gamma) phosphate to glucose to form Glc-6-P, the reaction proceeds with a ΔGo
= -4 kcal/mol. This can be calculated since ΔG is a state function and is path independent. Adding the reactions and the ΔGo's for:
glucose + Pi ------> glucose-6-P
and
ATP + H2O -----> ADP + Pi
gives the resultant reaction and ΔGo,
glucose + ATP -----> Glucose-6-P + ADP, ΔGo= -4.
In most biological reactions using ATP, the terminal P of ATP is transferred to a substrate using an enzyme called a kinase. Hence, hexokinase
transfers the gamma phosphate from ATP to a hexose sugar. Protein kinase is an enzyme which transfers the gamma phosphate to a protein substrate.
ATP is also used to drive peptide bond (amide) synthesis during protein synthesis. From an energetic point of view, anhydride cleavage can provide
the energy for amide bond formation. Peptide bond synthesis in cells is accompanied by cleavage of both phosphoanhydride bonds in ATP in a
complicated set of reactions that is catalyzed by ribosomes in the cells. The figure below is a grossly simplified mechanism of how peptide bond
formation can be coupled to ATP cleavage.
Figure: MECHANISM: ATP-DEPENDENT PEPTIDE BOND SYNTHESIS
http://biowiki.ucdavis.edu/Biochemistry/Oxidation_and_Phosphorylation/ATP_and_Oxidative_Phosphorylation/Properties_of_ATP
3/5
4/7/2015
Properties of ATP - BioWiki
Phosphorylation reactions using ATP are really nucleophilic substitution reactions which proceed through a pentavalent intermediate. The rest of the
ATP molecule is then considered the leaving group, which could be theoretically ADP or AMP as well. If water is the nucleophile, the reaction is
also a hydrolysis reaction. These reactions are also called phosphoryl transfer reactions.
One last note: ATP exists in cells as just one member of a pool of adenine nucleotides which consists of not only ATP, but also ADP and AMP
(along with Pi). These constituents are readily interconvertible. We actually break down an amount of ATP each day equal to about our body weight.
Likewise we make about the same amount from the turnover products. When energy is needed, carbohydrates and lipids are oxidized and ATP is
produced, which can then be immediately used for motility, biosynthesis, etc. It is very important to realize that although ATP is converted to ADP in
a thermodynamically spontaneous process, the process is kinetically slow without an enzyme. Hence ATP is stable in solution. However, its
biological half-life is not long since it is used very quickly as described above. This recapitulates a theme we have seen before. Many reactions (like
oxidation with dioxygen, denaturation of proteins in nonpolar solvent, and now ATP hydrolysis) are thermodynamically favored but kinetically slow.
This kinetic slowness is a necessary, but of course insufficient, condition for life.
Contributors
Prof. Henry Jakubowski (College of St. Benedict/St. John's University)
© Copyright 2015 BioWiki
UC Davis GeoWiki by University of California, Davis is licensed under a Creative
http://biowiki.ucdavis.edu/Biochemistry/Oxidation_and_Phosphorylation/ATP_and_Oxidative_Phosphorylation/Properties_of_ATP
Powered by MindTouch ®
4/5
4/7/2015
Properties of ATP - BioWiki
Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at [email protected].
Terms of Use
http://biowiki.ucdavis.edu/Biochemistry/Oxidation_and_Phosphorylation/ATP_and_Oxidative_Phosphorylation/Properties_of_ATP
5/5