Download Consultative Draft, V5 November, 2016

Document related concepts

Sea wikipedia , lookup

El Niño–Southern Oscillation wikipedia , lookup

Atlantic Ocean wikipedia , lookup

Challenger expedition wikipedia , lookup

Marine debris wikipedia , lookup

Future sea level wikipedia , lookup

Blue carbon wikipedia , lookup

Pacific Ocean wikipedia , lookup

History of research ships wikipedia , lookup

Southern Ocean wikipedia , lookup

Deep sea fish wikipedia , lookup

Anoxic event wikipedia , lookup

Abyssal plain wikipedia , lookup

Arctic Ocean wikipedia , lookup

Marine biology wikipedia , lookup

Indian Ocean Research Group wikipedia , lookup

Marine pollution wikipedia , lookup

Marine habitats wikipedia , lookup

Indian Ocean wikipedia , lookup

Global Energy and Water Cycle Experiment wikipedia , lookup

Ocean acidification wikipedia , lookup

Ocean wikipedia , lookup

Effects of global warming on oceans wikipedia , lookup

Ecosystem of the North Pacific Subtropical Gyre wikipedia , lookup

Physical oceanography wikipedia , lookup

Transcript
Consultative Draft, V5
November, 2016
A GOOS Project
Contributing Authors & Affiliations
(to be added)
Physical/Climate
GregoryC.Johnson
PatrickHeimbach
BernadetteSloyan
Carbon/Biogeochemistry
TosteTanhua
RikWanninkhof
Biodiversity/Ecosystems
AntjeBoetius
LisaA.Levin
MyriamSibuet
TheDOOSConsultativedraftisavailabletoallmembersofthe
deep-oceanscientificandregulatorycommunityforreview,and
weencourageinput.
TheReporthasalsobeenpostedonlineforyourreviewand
comment:http://www.deepoceanobserving.org
Weaskthatyouprovidethefollowinginyourresponses:
•
Nameand/oraffiliation(pleasemakeanoteifyouprefer
toremainanonymous)
•
Linereferencenumberalongwithcommentorsuggested
change
•
Generalcommentsonthereportcontentand/orstructure
•
Contactinformationshouldyourcommentsrequirefurther
discussion
By4October2016weaskthatyouemailyourcommentsto:
[email protected]
Thiscommunityinputwillbeusedtoguidetheagendaand
discussionsattheGlobalDOOSWorkshop7-9December2016.
TableofContents
INTRODUCTION..................................................................................................................................0
WhyDeepOceanObserving?...........................................................................................................0
ClimateChange......................................................................................................................................1
GrowingHumanPresence.....................................................................................................................2
MethodologyandStructureofReport..............................................................................................4
PARTONE:SocietalRationaleandScienceChallenges........................................................................7
ClimateandPhysicalObservations...................................................................................................7
High-LevelMandates.............................................................................................................................8
ScienceChallenges.................................................................................................................................8
CarbonandBiogeochemistryObservations....................................................................................10
High-LevelMandates...........................................................................................................................10
ScienceChallenges...............................................................................................................................11
BiodiversityandEcosystemObservations.......................................................................................13
High-LevelMandates...........................................................................................................................13
ScienceChallenges...............................................................................................................................14
PARTTWO:RequirementsSetting....................................................................................................16
ClimateandPhysicalEOVs..............................................................................................................17
MaturePhase......................................................................................................................................17
PilotPhase...........................................................................................................................................18
ConceptPhase.....................................................................................................................................18
CarbonandBiogeochemistryEOVs.................................................................................................18
MaturePhase......................................................................................................................................18
BiodiversityandEcosystemEOVs...................................................................................................20
MaturePhase......................................................................................................................................20
PilotPhase...........................................................................................................................................20
ConceptPhase.....................................................................................................................................21
PARTTHREE:DeploymentandMaintenance....................................................................................23
Programs,Platforms,Networks......................................................................................................24
Mature.................................................................................................................................................24
Concept................................................................................................................................................26
Sensors,ProcessesandTechniques................................................................................................26
PhysicalandClimateObservations......................................................................................................27
CarbonandBiogeochemistryObservations........................................................................................28
BiodiversityandEcosystemObservations...........................................................................................29
PARTFOUR:DataandInformationProducts....................................................................................30
BenefitsofanOpenDataPolicy.............................................................Error!Bookmarknotdefined.
DataandInformationProducts..............................................................Error!Bookmarknotdefined.
TheRoleofModels........................................................................................................................33
PARTFIVE:StrategicRoadmap........................................................................................................34
Page
1
References....................................................................................................................................36
AppendixA:AuthorsandContributors.............................................................................................46
AppendixB:ReportMethodology....................................................................................................47
AppendixC:DraftStrategyTimeline.................................................................................................49
AppendixD:DraftEOVTemplate.....................................................................................................50
AppendixE:Sustainedobservatoriesandobservingstations(SeeSeparateTable)...........................51
AppendixF:OpenDataPolicyStatement.........................................................................................52
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1
INTRODUCTION
2
Deep Ocean Observing Strategy
3
Objective
4
5
6
7
8
9
10
11
12
13
Thisreportisdesignedtodevelopforcommunityconsiderationastatementofrequirementsandaninitial
strategyforsustainedglobaldeepoceanobservations.TheDeepOceanObservingStrategy(DOOS)isbeing
developedundertheauspicesoftheGlobalOceanObservingSystem(GOOS),andwillembraceobservations
below200m.Thisdefinitionofdeepembracesthevariedneeds(andgaps)ofthephysical,chemicaland
biologicalscientificcommunities.Inparticularitrecognizestheecosystemchangesthatoccurbelow200m
andthegrowingimportanceofthe200-2000mmesopelagic/bathyalzone.ThestrategyconsidersallEssential
1
OceanVariables(EOVs ),regions,andtechnologies;andinitsfinalformwillidentifyhighpriorityandfeasible
actionsforthenext5-10yearsinthedeepsea.Ultimatelythisdocumentisintendedtoprovideaconsensus
reportthataidsinindividualandnationalfundraisingeffortsforelementsinsupportofadeepocean
observingstrategy.
14
WhyDeepOceanObserving?
15
16
17
18
19
20
21
Thankstotheadvancesintechnologyandobservingtechniquesthedeepoceanisnolongerconsidereda
homogeneous,dark,staticenvironmentorevenarealmofrelic,“fossillike”fauna.Keytechnical
developmentshavefacilitatedtheinvestigationofdeep-sealife,inparticular,thediscoveryofnew
ecosystemsandthefindingofhighlydiversedeepseafloorhabitats(Ramirez-Llodraetal.2010;RexandEtter
2010).Throughdirectandtargetedobservations,deep-seasubmersibles,remotelyoperatedvehicles(ROVs),
autonomousunderwatervehicles(AUVs),towedinstruments,andfree-vehicle‘landers’equippedwith
camerasandbiogeochemicalsensorshavechangedourviewandunderstandingofthediversityandactivityof
22
thedeep-searealm(LevinandSibuet2012).
23
Overthepastthreedecades,wehavebeenable
24
tostudycoldseeps,deep-watercoraland
25
associatedreefs,canyons,upwellingmargins,
26
oxygenminimumzones,organicfalls,
27
hydrothermalvents,basalticridges,seamounts,
28
nodulefields,trenchesandothertypesof
29
environments.Developmentsinmarineimaging
30
andacousticshavedramaticallyrevisedour
31
understandingofthediversityandabundanceof
32
lifeatmidwaterdepths(Robison2009,Irigoien
33
etal2014).Someofthebenthicfeatureshave
34
showncharacteristicsofdistinctivespatial
35
heterogeneityatscalesofmeterstokilometers
36
(Levinetal.2010).
37
Thedeep-seaisnotstaticorevenstable.Avarietyofenvironmentalfactorscontributetostructuringdeep-sea
geological,physical,andchemicalfeatures,aswellasbiologicalcommunities.Process-basedecologicalstudies
38
39
1
EOVs are defined by the Global Ocean Observing System Framework as effective in effective in addressing
the overall GOOS Themes – Climate, Real-Time Services, and Ocean Health. variables must be capable of
being observed or derived on a global scale, and must be technically feasible using proven, scientifically
understood methods. Generating and archiving data on the variable must be affordable, mainly relying on
63
Climate Change
64
65
66
67
68
69
70
71
72
Theoceanisthememoryoftheclimatesystem.Forthesametemperaturechangeandsamevolume,itstores
onethousandtimesmoreheatthantheatmosphere.Thedeepocean(definedhereas>200m)contains50
timesmorecarbonthantheatmosphere.Oceanseafloorsedimentsserveasanarchiveofpastproductivity
andclimateregimes,bothonlandandinthesea.Deepoceantracerdistributionsprovideoneoftheveryfew
meansofunderstandingpastoceanicflowfieldsandassociatedclimatehistories.Informationaboutthedeep
oceanisrequiredforthescientificunderstandingoftheEarthSystemandimproveddecisionsbypolicy
makerssuchasorganizedundertheWorldClimateResearchProgramme(WCRP),WorldMeteorological
Organization(WMO),andUnitedNationsFrameworkConventiononClimateChange(UNFCCC)andits
associatedsciencebody,theIntergovernmentalPanelonClimateChange(IPCC).
73
74
75
76
77
78
79
Theoceanshavetakenupabout93%oftheenormousamountofthermalenergyaccumulatingintheEarth's
climatesystemoverthelastfourdecades(IPCC,2013;Rheinetal.2013).Thesparsearrayofglobalrepeat
hydrographicdatacollectedbyCLIVARandGO-SHIPsuggeststhatthedeepoceanbelowthe2000-msampling
depthofcoreArgo,isanappreciablecontributortothatthermalenergystoragesincethe1990s,whenWorld
OceanCirculationExperiment(WOCE)establishedahigh-qualitybaselinefromwhichchangescanbe
measured.Understandinghowmuchheattheglobeistakingupandwhere(howdeepintheocean)isvitalto
understandinghowmuch-andhowfasttheEarthwillwarmwithincreasedgreenhousegasconcentrations.
80
81
82
83
84
85
86
87
Deepoceansalinityisalsovariable,withobservedfresheninginthebottomwatersaroundAntarcticain
recentdecades(PurkeyandJohnson2013),possiblyreflectingincreasedratesofglacialmeltandperhaps
changesinthesouthernlimboftheglobalMeridionalOverturningCirculation(MOC).Measuringand
understandingchangesinthisglobalcirculationfeatureisachallengethatisbeingundertakenintheNorth
Atlantic,butdatacollectedoutsidethatoceanbasinsuggestssubstantialvariationsintheportionsaround
Antarctica.Wealsoneedtocaptureshort-termcomponentsofthesechangeswhichreflectorinducemajor
shiftsinthecirculationregime,suchasextremedensewaterconvectionevents,largestormsandhurricane
effectsonverticalmixing.
1
overthepastthreedecadeshavedemonstratedthatthedeep-seaisfarfrombeingadormant,buffered
system,itrespondsimmediatelyintimeandspacetoarangeofpowerfuldriversandpressures.Theseinclude
pulsesofsinkingorganicmatter,pollutionbyhydrocarbonsandlittering,hydrothermalemissionsdrivenby
volcanicactivityormantle-rockalteration,gasescapeandmudextrusionfromburiedmethanereservoirsand
hydrates,largeorganicfallssuchascarcassesandmassivewooddebris,turbiditycurrents,shiftsin
hydrography,stratification,ventilationandoceancurrents,,changesintemperature,oxygen,pH/CO2and
salinityconditions(Gloveretal.2010,LevinandLeBris2015).Today,wearefarfromunderstandingthese
changesandtheresultingtypeanddegreeofphysicalandbiologicalturnover.Neitherdoweunderstandthe
spatialandtemporalscalesthatjustbegintobemademoreaccessiblebytheuseofnewtechnologies.
ScientificevidencenowsupportsthehypothesisthatEarth’sdynamics,includingglobalchange,areaffecting
thedeepsea,andthatthedeep-searealmshouldbeobservedasacomponentoftheEarthsystem,asare
surfaceenvironments.Furthermore,scientificprinciplesofecosystemassessmentandclimateobservations
shouldbeimplementedcompletewithaconceptofoceanobservationthatincludesthedeepsea.
Understandingofthisvastrealmunderpinsourabilitytoaddresskeychallengessuchassustainable
managementofmarineresources,understandingoceanecosystemservicesinachangingclimate,and
improvingearlywarningforgeo-hazards.
Thedeepseaisimpactedbyabroadrangeofprocesseswhicharecausedbynatural,direct,andindirect
anthropogenicdrivers.Thereismuchtolearninunderstandingtherelativerolesofthedifferentphysical,
chemical,andbiologicaldriversandprocessesinducingchangesinthedeepocean.Recentstudiessuggest
thatratherthanviewingthedeepseaasonevastecosystem,wehavetocomprehendthedimensionsofits
hydrographical,biogeochemical,andthebiogeographicalprovincesoforganismsandtheirhabitats.
Page
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
109
110
111
112
113
114
115
116
117
Oceanwarminginducesdeclinesinoxygensolubility,increasesthermalandsalinitystratificationwhich
reducesventilation,andincreasesrespiration.Togethertheseareproducingoceandeoxygenationglobally
(Keelingetal.2010)thisismostsevereinintermediatewatersof100-1000m(Strammaetal.2010;Helmet
al.2011).Furthermore,warmingandfresheningofseawatercausesariseinsealevels.Hencethedeepocean
temperatureandsalinitychangesoriginatingintheNorthAtlanticandSouthernOceancontributetosealevel
variations,globallyandregionally.Tofullyunderstandsealevelriseandthesealevelbudget,itisnecessaryto
routinelyandgloballymeasuretemperatureandsalinitythehalfoftheoceanvolumenotcurrentlysampled
bycoreArgo;theoceandeeperthan2000m.Measurementsofoxygenandthecarbonatesystematthese
deptharealsocriticalforunderstandingdeepoceanmitigationofandadaptationtoclimatechange.
118
119
120
121
122
Geo-hazardsandavarietyofgeological‘events’thattakeplaceinthedeepoceancanposehazardsto
humans.Manyofthesearisefromtectonicactivitythattriggersearthquakes,massiveslidesandturbidity
currents,volcaniceruptions,andtsunamis.Methanedissociationandmudvolcanoeruptionscandestabilize
marginsediments,initiatedebrisandliquefiedsandflowswhichmayposehazardstodeepinfrastructure(oil
andgasrigs,cables)(Maslinetal.2010).
123
Growing Human Presence
124
125
126
127
128
129
130
131
132
133
134
135
136
Duetotheoverexploitationofresourcesonlandandtherisingcostsassociatedwiththeiruse,therearean
emergingnumberofpotentialeconomicopportunitiesforindustriesfocusedontheuseofdeep-searesources
(Ramirez-Llodraetal.2011).Asthesevaryinscopeandfeasibility,theirimpactneedstobemonitored
througharangeofobservationtechniques.Amongtheseactivitiesaremarinecapturefisheries,bioprospecting,oilandgasextraction,andminingforseabedminerals(Mengerinketal.2014):
MarineCaptureFisheries:Deep-waterfisherieswereestablishedinthe1960sand1970s,withthe
developmentofnewandmorerobustfishinggear.Sincethattime,fishingdepthshaveincreasedand
itisnowroutinetocollectfishbelow1000mdepth(WatsonandMorato2013).Thesefisheriesare
concentratedinareasthathavesomeofthegreatestbiologicalsignificanceinthedeepsea.
Seamounts,coldwatercoralreefs,continentalslopesincludingcanyons,areamongthedeep-sea
habitatswherecurrentsandhighsurfaceproductivityinsureanattractivefoodsupply.Thisconstant
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
2
TheDeepWesternBoundaryCurrents(DWBCs)oftheMOCarepartofaglobal-scaledeepoceancurrent
system.RoughlyequivalentvolumesofdensewatersinkintheNorthAtlanticandAntarcticlimbsoftheMOC
andaretransportedtodistantoceanbasins.Despitetheirimportance,long-termrepeateddirectvelocity
observationsoftheDWBCsintheAtlanticexistonlyinafewlocationsintheNorthAtlantic.Adecadeofdata
fromatrans-Atlanticmooredarrayat26.5°NrevealssignificantvariabilityoftheMOCandDWBCfromweekly
todecadaltime-scalesincludinganoverallreductionintheMOCwithtime(SrokoszandBryden2015).The
strongDWBCtransportvariabilityandthesignificantvariabilitythatstillexistsinthedeepoceanevenwhen
integratedacrosstheentirewesternbasinouttotheMid-AtlanticRidge,demonstratesclearlythatthedeep
layerisquiteenergetic(Drijfhoutetal.2011)andreinforcestheconceptthatthebasin-scaleMOC-salt
feedbackdetermineswhetherthethermohalinecirculationisstableorunstable.Morerobustestimatesof
MOC-trendscanbemadebycombiningsectionsintheNorthandSouthAtlantic,thesignofsaltfluxat35°S
canbeusedtodeterminethestabilityoftheMOC;slightchangesinpositionofdeepboundarycurrentscan
havelargeimpacts.Forexample,warmingduetoshiftsintheGulfStreamovertheNWAtlanticmarginmay
bedissociatingburiedgashydratesandreleasingmassivequantitiesofmethane(PhrampusandHornbachet
al.2012)withconsequencesformicrobialandanimalproduction(BoetiusandWenzhoffer2013).Drawdown
NorthAtlanticdeepwaterwithdecliningpHandsubsequenttransportbyboundarycurrentsexposesdeepwatercoralsandotherecosystemstooceanacidification(Gehlenetal.2015).Conversely,calcifyingorganisms
arefoundinareasbelowtheirmineralsaturationstate(Lebratoetal.2016)andsomayprovidecluestothe
limitsofpossibleadaptation.Inthisregard,deepbasinsofsemi-enclosedseasmaybeconsideredatthe
leadingedgeofclimatechange-drivenmajorecologicalshifts(e.g.BalticSea,CariacoSea,MediterraneanSea)
andleadtounexpectedsynergies.
Page
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
3
supplyoffoodresultsinlargefishaggregationsthathaveconsequentlyattractedfishers.Deep-water
trawlingleavesamassiveenvironmentalfootprint,andnowcoversnearlyone-fifthofthecontinental
slopes.Itisespeciallydestructiveinareasofvulnerablehabitatssuchascoralsandspongereefs.
Deep-seafishoftenhavelifespansof100yearsormore(Norseetal.2012)whereascoralsmaylive
forthousandsofyears,makingrecoveryfromfisherydisturbanceexceedinglyslow.Asearlyas1997,
MerrettandHaedrich(1997)consideredsomedeep-seafishstocksasnonrenewableresources.
Additionally,theseareasarealsocharacterizedasrichbenthicfaunahabitats(Buhl-Mortensenetal.
2010),wherevideo,photographic,andacousticsurveyshaverevealedevidenceofdamagetothese
fragilehabitatsduetofishing(Puigetal.2012).
Bioprospecting:Thehighdegreeofbiodiversityfoundintheoceanscreatesopportunitiesfor
collectingmarineorganismsforasuiteofpharmaceutical,healthandindustrialapplications.The
deepsearepresentsavastgeneticreservoir,offeringmanyavenuesforindustrialandpharmaceutical
interestandpotentialexploitationasthissectorhasbeengrowing(Arnaud-Haondetal.,2011;
Broggiatoetal.,2014a).Majoropportunitiesinthedeepseastemfromthediversepopulationsof
microbesinhabitatswhichhaveadaptedtoextremeenvironmentalconditionssuchashydrothermal
vents(hot,acidorstronglyalkaline,basic,highconcentrationofcoldwaters)andpolarwaters
(freezing),wherethesephysiologicaladaptationshaveresultedinnovelpropertiesthatmayproveto
bearesourceforindustrialbiotechnologyandevenclimateremediation(Mahoneetal.2015).The
potentialfortheharvestofbiologicallyformedcompoundsandgeneticresourcesoccursinareas
suchascold-watercoralreefs,spongegardens,seamounts,coldseeps,organicfallsand
hydrothermalvents.Thereisalsothepotentialfordiscoveryofnovelbiomaterialswithmilitaryand
industrialapplications,(e.g.,Yaoetal.2010).
OilandGasExtraction:Theextractionofhydrocarbonenergyfromtheoceanshasmoved
progressivelydeeperinrecentdecades(Merrieetal.2014).Oilandgasexploitationisroutineindeep
watersto3000m,andextractionfromreservoirsdeepbelowtheseabedwillcontinuetoincrease.
Whiletheexplorationofgashydratedepositsmayoffernewresearchopportunities,higherpricesfor
ocean-basedenergyareexpectedtomakeexploitationoftheseresourcesindeeperareas
economicallyviable.However,asshownbytheDeepWaterHorizonaccident,alongwithdeep-sea
drillingaresignificantsafety,technological,andenvironmentalrisks(Merrieetal.2014,Cordesetal.
2016).
WasteDisposal:Thedeep-oceanisnowtherecipientofmanydifferentformsofhumanwaste.
Terrestrialminetailingsfulloftoxicmetalsandcompoundsareroutinelydisposedofondeep
margins(at500-1000mordeeper).Thisactivityoccursat14locationsin6countries,andoftengoes
unmonitored(Ramirez-Llodraetal.2015).Plasticsarepresentthroughoutmuchofthedeepseain
manysizesandconfigurations,andorganicandpharmaceuticalcontaminantsarerecordedindeepseaspecieswhenmeasured(Ramirez-Llodraetal.2011).Earthquakesandtsunamis,typhoonand
hurricanesreleaselargeamountsofterrestrialandcoastaldebristhatoftenendupinthedeep
ocean.Theseaccidentalinputsaddtothemostpersistentfractionofpollutants(e.g.POP,plastics)
thataccumulateindeepwaters.Majoraccidentsthatreleaseradioactivewaste,oilspills,andother
contaminantsincreasinglythreatendeep-waterecosystems.
EmergingEnergySources:Intandemwiththeexploitationofoilandgasreservescomesincreased
pressuretofindalternativesourcesofenergy,andtoremovefossilfuel-derivedgreenhousegases
fromtheatmosphere.Theoceanoffersthepotentialforrenewableoceanenergies,suchaswave,
geothermal,andocean-thermalsources.OptionssuchasOTEC(OceanThermalEnergyConversion)
involvethegenerationofthermalgradientscreatedbybringingupcolddeepoceanwatersintowarm
surfacewaters.Duetothecreationoffoodandfreshwaterasbyproductstheseapplicationsgrowing
ininterestintropicalandsubtropicalwaters(Fujitaetal.2011).
Page
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
198
199
200
201
202
203
204
205
206
207
208
209
MiningforSeabedMinerals:Mineralsoccurontheseabedinavarietyofformsthatincludemetals
(Mn,Ni,Co,Cu,Zn,Pb,Ag,Au,Ptandrareearths)increasinglyvaluedforindustrialandsocietaluses.
Amongthese,polymetallicnodules,seafloormassivesulfides(SMS),andcobaltcrustsarebeing
targetedforexplorationininternationalwaters(Levinetal.2016).TheInternationalSeabed
Authority(ISA)hasawarded27contractsto19countriesforexplorationintheAtlantic,Pacificand
IndianOceans,howeverin2016thereisnocommercialexploitationyetunderway.Otherrelevant
mineralsofpotentialcommercialinterestincludephosphoritesfoundinpresentorpastupwelling
zones,metalliferoussludgeintheRedSea,andrareearthmetals,whichhavebeenfoundinthe
sedimentsandnodulesofthecentralPacificOcean.Numerousquestionsexistaboutthe
environmentalimpactoflargescale,andcommercialminingandhowtomanagethese(Leetal,
2016);answeringmanyofthesewillrequirelong-termobservations.
210
211
212
213
214
215
216
217
218
219
220
221
222
Thenextgenerationoftoolsandtechniquesforobservingthedeepoceanwillneedtobedevelopedto
addressexistinguncertaintiesaboutpatternsofdiversity,deepoceanresponsestoclimatechange,and
humanimpact.Speciescompositionandthestructureofdeep-seacommunitiesareinfluencedbymany
factorssuchasshorttermnaturaleventslikepulsesoforganicmatter(influencingrecruitmentsperiods),by
longtermchangesofdecadalandinterdecadalscalesinoceanicpatterns(PDO,NAO,andElNiñoSouthern
Oscillation(ENSO),e.g.Smithetal.2009)whichcauselargescalechangesintemperatureandfoodsupply,
andbydrasticchangesduetotectonicorgeologicalprocesses(suchasunderwaterearthquakesandundersea
volcanoes).Inaddition,uncertaintiesassociatedwithindirectanddirecthuman-induceddriversofchangein
thedeepseaalsoneedtobetakenintoconsideration.Theseincludeconsequencesofoceanwarmingon
circulation,chemicalcontent(e.g.,O2,nutrients,pH,CO2),andproductivityandexportfluxes,andlocal
hydrodynamicconditions,alongwiththeimpactsofresourceextraction(e.g.fish,gasandoil,minerals),waste
disposal,lightandnoise(e.g.associatedwithshiptraffic,energyandminingoperations),orotherpotential
risks(e.g.seabedCO2storage).
223
MethodologyandStructureofReport
224
225
226
227
228
229
230
Thisreportdevelopsastatementofrequirementsdesignedtoleadtoaninitialstrategyforsustainedglobal
deepoceanobservations;consideringoceanvariables,regions,andtechnologieswhichwillextracthigh
impactandfeasibleactions.ThestatementisframedinalignmentwiththeFrameworkforOceanObserving
(Lindstrometal.2012).TheFrameworkapproachcontendsthattomaintainaglobaloceanobservingsystem
thatisfit-for-purpose,theoutputsofthesystemmustproperlyaddresstheissuesthatdrovetheoriginalneed
tomeasureanoceanvariable,andestablishafeedbackloopofassessmentthatmustbemaintainedby
communityagreed-uponprocesses.
231
232
233
234
Inordertoestablishthisconcertedcommunityeffort,theFrameworkalsorecommendsthatoceanobserving
activitiesbeorganizedaroundcommunity-definedandselectedEssentialOceanVariables(EOVs).AnEOVis
definedasavariableoraspectoftheoceanthattheoceanobservingcommunityagreesmustbemeasuredin
ordertofurtherscientificunderstandingoftheoceanandEarthsystemsandtheirimpactonsociety.
235
236
Animportantcaveatrelatedtotheuseoftheterm“essential”:InthecontextofEOVs“essential”isnottobe
confusedwith“minimal,”ashasbeenusedindefiningbaselinerequirementsforsomeobservingprojects,
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
4
GeoengineeringandCarbonStorage:TherapidriseinatmosphericCO2anditsmanyconsequences
haveledsocietytoconsiderahostofdirectinterventionslooselytermedgeoengineering.Some
involveusingofthedeep-seaasastoragevenue(e.g.forCO2).Deep-seadepositionofbio-carbonlike
agriculturewasteandcharcoalisalsocurrentlyunderconsideration.Others,suchassolarradiation
managementwouldaffectthedeepsealessindirectlybutwouldeventuallydosothroughchangesin
MOCaswellastheorganicandinorganicbiologicalpumps.Retro-actionsonclimatehoweverrequire
thoroughinvestigations.Togetherwithadverseeffectsonbiotacomesapotentialreductionofyet
overlookeddeep-seacarbonpumps(e.g.Rothetal.2014;Higgsetal.2014);thereleaseof
greenhousegassessuchasmethaneandN2Odeservecarefulattention.
Page
189
190
191
192
193
194
195
196
197
TheFrameworkfurthersuggeststhecommunityneedstoengageinongoingdialogtodefinethe
measurementrequirementsofanEOV,aswellastheobservationalelements(technologiesandtechniques),
andthedataandinformationproductsrequiredtomeetuserneeds.Inmakingtheseassessments,the
communityisaskedtoevaluatetherequirements,observationalneeds,anddataanddataproductsaccording
totheirreadinesslevels.
AssuggestedaccordingtotheFrameworkorsystemsapproach,thecriteriaforevaluatingnewcomponents
forpossibleinclusionintotheglobaloceanobservingsystemwillbeintermsoftheirreadinesslevel.These
levelsareaddressedinthreebroadcategories:concept,pilotandmature.Duringtheconceptphase,ideasare
articulatedandpeer-reviewed.Duringthepilotphase,aspectsofthesystemaretestedandmadereadyfor
globalscaleimplementation.Atmaturity,theybecomeasustainedpartoftheglobaloceanobservingsystem.
Foreachcomponentofthesystemrequirements,observations,anddataprojectswillneedtobematured
basedonoceansciencecommunitypeer-review,testing,andagreementonbestpractices.
Thisreportexaminestheneedsofthree
broadandinteractingdisciplineswithin
oceanobservingcommunities,theglobal
climateandphysicalprocesscommunity,the
carbonandbiogeochemicalcommunity,and
theecosystemsandbiodiversitycommunity.
Itarticulatescommonareasofneedand
addressrelevantobservationscalesthat
requireintegrationacrossthese
communities.Itexploresstrategiesand
tacticsforfurthercoordinationandpotential
collaboration.Byaligningneedsaccordingto
acommonnomenclatureandagreeingto
thetermsthatwillresultinanoptimally
functioningsystem,thecommunityisbetter
abletoexamineandagreeonareaswhere
sustainedactivitiesarejustified,andwhere
actionsforimprovementormaturationareneeded.
InPartOneofthisreporteachofthecommunities,listedabove,exploresthesocietalissuesthatdrivethe
needforsustaineddeepoceanobserving.Thereportthenprovidesanoverviewofthescientificquestions
thathavebeenformulatedinrelationtotheseissues.
PartTwopresentstheinitialarticulationofEOVsforeachofthethreecommunities.Thisdiscussionisframed
inthecontextofthereadinessleveloftheRequirementsandwherethereisaneedforfurthercommunity
buy-inand/orfurtherdefinitionorrefinementoftheEOV.
PartThreeprovidesanoverviewoftheobservingelements(sensors,platforms,andnetworks)currentlyin
place,whereplatformsandtechnologiesaremeetingtheneedsofthesystem,andwherethereisaneedfor
improvementordevelopment.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
5
programs,missions,platforms,andnetworks.Intheseinstancestheuseoftheterm“minimal”andinsome
cases“essential”referstothemeasurementsrequiredtomeetthescientificgoalsofageographicand/or
oceanphenomenonfocused-system.Hereweaddresswhatthesciencecommunityagreesare“essential”
oceanvariables(EOVs)tobemeasuredinordertoaddresssocietalandenvironmentalpressures.Basedon
thisrationalethescientificanddecision-making-communityagreethattheseshouldbeapartofaglobal,
sustainedoceanobservingsystem.
Page
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
6
PartFourdiscussesguidelinesforadeep-oceandataandinformationpolicyandmanagementphilosophy.This
sectionexplorestheimpactandbenefitoftheopenandfreeexchangeofdatatoinformationproductsand
models.Itprovidesexamplesofhowshareddatabenefitsthescientificcommunitiesandgeneratesan
opportunityforsynergisticdiscoveriesacrossthesystem.
PartFiveWillberedraftedaftertheDecember2016DOOSworkshoptobeheldatScrippsInstitutionof
Oceanography.Itwillexplorestrategiesforachievingintegrationthroughtheidentificationoftheexpert
panelsandimplementationteamsthataremindfuloftheneedsofthedeep-oceanobservingsystemoverall.
Recommendationswillbemadeinthecontextofwheresciencequestionsandsocietalneedsarecurrently
beingmetandwherethereareneedsforexpansionandimprovement,includingneededredundancyand
resilienceofobservingelements.
Page
289
290
291
292
293
294
295
296
297
298
299
300
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
303
Introduction
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
TheunderstandingandmonitoringofnaturalandanthropogenicEarthprocessesthatcontributetoclimate
cannotbeaccomplishedbyasingleprogram,agency,orcountry.Onlythroughinternationalcooperationcan
wecollectandsharedataandknowledgeessentialforincreasingourunderstandingofEarth’sclimateandthe
ecosystemsadaptedtoit.Theseactionsareessentialtoprovidetheclimateinformationrequiredbythe
UnitedNationsFrameworkConventiononClimateChange(UNFCCC),withtheobjective“tostabilize
greenhousegasconcentrationsintheatmosphereatalevelthatwouldpreventdangerousanthropogenic
interferencewiththeclimatesystem”.
Inmostregionsoftheworld’socean(muchlessthedeepocean),seafloorhabitats,currents,waterproperties,
mixingrates,andtheirvariationsarenotwellknown.Increasedspatialandtemporalcoverageforaccurate
measurementsofthevelocity,
temperature,andsalinityofthe
deepoceanwillincreaseour
understandingoftheocean’s
circulationsystemofsurface
anddeepcurrentsconnecting
oceanbasinssometimestermed
theMOC.Muchistobelearned
abouttheMOC,itsimpacton
thelong-termvariabilityof
warmingandfreshening,its
contributiontosealevelrise,to
deeppatternsofmixing,and
theinfluenceofdeep-ocean
geothermalprocessesonthe
MOCanddeep-water
properties.Anincreased
understandingofthiscirculation
systemwillplayanimportant
roleinourabilitytoconstrain
climatemodels.Modelsrequireknowledgeoftransportandmixingprocessesathighregionalandtemporal
resolutionandatalldepths.Theirpredictionsareacriticalprerequisitetotestinghypothesesrelatedtopast,
present,andfutureclimatechange.Thesemodeloutputsarevitaltoimproveddecadal-to-century,globaland
regionalprojectionsofvariationsintemperature,precipitation,andsealevel.
339
ClimateandPhysicalObservations
340
341
342
343
344
345
346
347
Deep-oceancurrents,deep-reachingmesoscaleeddies,aswellasdeepmixingcontributetotheMOCandthe
globalredistributionoftemperature,salinity,andotherwaterpropertiesincludingnutrients,oxygen,and
carbon.Deep-oceanwarmingandfresheningareimportantconsequences(andpredictors)ofclimatechange,
andinfluencepatternsofsealevelrise.Theunderstandingofclimatevariabilityandoceanphysicssets
stringentrequirementsforupperoceanobservations.Theserequirementsareevenmoreexactinginthe
deeperocean;understandingdeepcirculation,waterproperties,andtheirvariabilityrequiresknowledgeof
spatialpatternsofmixingincludingtheinfluenceofseafloortopography,andeventheinfluencesof
geothermalenergyfluxesattheseafloor.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
302
7
PART ONE
Societal Rationale and Science Challenges
301
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
Informationabouttheinfluenceoftheoceanonclimateisattheheartofwhatareoftenreferredtoas
climateservices.Improvementoftheseservicesrequiresinformationregardingchangesinthedeepocean
circulation,itsimpactonsealevel,oxygen,andtheup-takeofCO2,heat,andfreshwater.Todayobservations
arecriticalforthegenerationofclimateinformationandthecreationofafoundationforeffectivedecisionmakingandsubsequentpolicy.Sealevelriseisoneofthemostimmediateandinexorableresultsofclimate
variabilityandchange,andmayposeseverethreatsformanynations.Criticaltothemitigationofthese
threatsareaccurateglobalandregionalprojectionsofsealevel.Policymakersrelyonclimatescenario
informationcompiledbythesciencecommunity.Todaydecision-makersregularlyrelyonprojectionsfromthe
sciencecommunity’scoupledclimatemodels.Researchersarecurrentlydevelopingseasonaltodecadal
forecastsusingthesemodelsinitializedwithcurrentconditionsandincreasinglyincludingbaroclinicinternal
tidalforcing.
Sustainedobservationandanalysisofthedeepoceananditschangesarenecessaryforclimateresearch.
Deepoceanstudiesarecentraltoourunderstandingoftheclimatesystem.Ongoingresearchisrequired
regardingtheEarthsystem’senergyimbalance,sealevelrise,theglobalhydrologicalcycle,icecover,dust
input,transportoflandmaterials,andotherinteractionssuchasthoseamongtheoceans,atmosphere,and
land,andthecryosphere.Centraltoseveralofthesetopicsaretheoceantransportofheatandfreshwater,
deep-watermassformation,andoceantransports.
Temperature,salinity,carbonspecies,oxygen,andotheroceanmeasurementsareinsufficientinspatialand
temporalcoverage.Manyoftheseparametersarepresentlysparselyandinfrequentlymeasuredonaglobal
scale,primarilybyshipbornerepeathydrography(Talleyetal.2016).Thissituationholdsespeciallytrueat
depthsbelow2000m,whichisthecurrentlimitofcoreArgofloats(i.e.thosemeasuringonlytemperature
andsalinityto2000mdepth),althoughtherearenowasmallnumberofDeepArgofloatsthatsampleto6000
m.Thus,despiteadvancesoverthelast20to40years,thebudgetsforglobalsealevelrelatedtocontributions
fromglobalheatcontentchangesandtheadditionofmassthroughmeltingland-icearenotadequately
constrainedbydeepoceanobservations.IftheWorldClimateResearchProgram(WCRP)andsimilar
organizationsaretorespondtosociety’sneedtobetterunderstandchangesinclimateandprovideimproved
estimatesofchangesoverthenextdecade,theexistingobservingsystemmustbeexpandedtoroutinely
samplethefulldepthoftheglobalocean.
379
Science Challenges
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
Thereareseveralchallengesfacingthescientificcommunity,relatedtoimproveddecisionmakingandafitfor-purposeobservingsystemwellequippedtoaddresssocietalneeds.Thefirstchallengeistomeasureand
understanddeep-oceancirculationandventilationanditsvariability.TheMOCiscomprisedofbottomand
deepwatersthatspreadoutfromtheirhighlatitudesources(inthesub-polarNorthAtlanticandaround
Antarctica)andreturnflowsoflessdensewater.NearlyequalvolumesofdensewaterssinkintheNorth
AtlanticandAntarcticlimbsoftheMOC,andaretransportedtodistantoceanbasins.Repeatedhydrographic
sections,mooredinstrumenttime-series,andoceanmodelshaverevealedcirculationvariabilityinthedeep
westernboundarycurrentsandMOC(Kouketsuetal.2011;Cunninghametal.2010),whichsuggestthat
climatevariabilitymayberapidlycommunicatedtotheglobaldeepoceanviaboundarycurrents(Masudaet
al.2010,Heimbachetal.2011).Todaymostofthelong-termobservationsofdeepwesternboundarycurrents
areinthewesternAtlanticOcean;moreobservationsinotheroceansarerequiredtoassessdeepocean
circulationvariability.
Closelyassociatedwithoceancirculationisthemeasurementoftransienttracers(e.g.,CFCsandSF6,tritium,
3
14
He,and C),whichofferanunprecedentedopportunitytostudyoceanventilationanditstimescales(Fine
2011).ThroughtheuseofdirectcarbonobservationsitisdifficulttoseparatethesmallanthropogenicCO componentfromthelargereservoirsofnaturalcarbon.Oceanmeasurementsofnutrients,oxygen,and
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
2
8
High-Level Mandates
Page
348
transienttracersareusefulforthatpurpose.Recent,advancedanalytictechniqueswhichpairtransienttracers
nowallowscientiststoquantifybetteranthropogenicCO inputintothedeepocean.
2
2
ClosingoftheEarth’senergybudget isvitalinordertoquantifyclimatevariabilityandtoaccuratelymonitor,
assess,andpredicthumaninducedclimatechange(e.g.Hansen2005,Wunsch2005,2016,vonSchuckmann
etal.2016).TheglobaloceanisbyfarthelargestheatreservoirintheEarthsystem,asitaccountsforthe
absorptionofanestimated93%oftheincreaseintotalenergyassociatedwithgreenhousegaswarming
(Rheinetal.2013).Recentstudiesbasedonacombinationofobservations(PurkeyandJohnson2010),data
assimilation(Kouketsuetal.2011,WunschandHeimbach2014),andmodelsimulations(Katsmanetal.2011,
Palmeretal.2011)haveallemphasizedtheimportanceofoceanheatcontentchangesatdepthsbelow2000
m.UnderstandingboththeNorthAtlanticDeepWaterandtheAntarcticBottomWaterformationratesand
theirglobalpropertychangesareacriticalformakingassessmentsofglobalheatbudgetdynamicstoinform
climatechangepolicy.
ChangesoffreshwaterinputintothedeepandbottomwaterformationregionsathighlatitudesofNorth
AtlanticandaroundAntarcticareflectchangesintheglobalfreshwaterbalance.Thesechangesdrive
variabilityindeepcirculationbyaffectingthepropertiesofdensewatersinkinginboththenorthernand
southernlimbsoftheglobalMOCaswellastheabyssalcirculationitself.Repeatedhydrographicobservations
indicatethatAntarcticBottomWaterhassignificantlyfreshenedandbecomelessdensesincethelate1960’s
(e.g.Rintoul2007)andNorthAtlanticDeepWaterexhibitslargedecadaltemperatureandsalinityvariations
(e.g.Yashayaev2007).Thesedeepandabyssalvariationsreflectchangesintheprocessesthatcontrol
freshwaterinthehighlatitudes(Carmacketal.2016),namelyevaporationversusprecipitation(Rawlinsetal.
2010),seaiceproductionandexport(Serrezeetal.2006),andglacierandicesheetmelting(Hannaetal.
2013).
Accurateunderstandingandprojectionoffuturesealevelchangewillfirstrequirethequantificationand
analysisofobservedsealevelchanges,includingdeepoceanstericheightvariability(Ponte2012),warming
andfreshening(e.g.,Wunschetal.2007).GlobalMeanSeaLevel(GMSL)riseisalmostcertaintobea
devastatingconsequenceofhumaninducedclimatechange.Seawaterwilllikelycontinuetoexpanddueto
increasedoceanheatcontent,alongwiththemassadditiontotheoceansassociatedwithmeltingoflandbasedice(e.g.Hannaetal.2013).Sealevelrisewillvarybyregionandinsomeareasitmaybemuchlarger
thantheglobalmean,asthereareseveralfactorsinvolved,suchaslateralshiftsinoceancirculation,
gravitationaleffectsduetomassredistributions,andpost-glacialchangesinbasingeometry(e.g.,Milneetal.
2009,Stammeretal.2013).Whiledeepoceanwarmingandfresheningalreadyplayanappreciablerolein
localsealevelvariability(PurkeyandJohnson2010;Kouketsuetal.2011),itisexpectedthatwarmdeep
oceanwaterwillplayanincreasinglyimportantroleinglobalsealevelriseasthewatercolumnwarmsand
expandsovercenturiestomillenniainresponsetochangesinEarth’sradiationbudget(e.g.Meehletal.2005).
VitaltotheclosureoftheglobalMOCisthestudyofthemixingofmass,heat,saltandothercharacteristics,
shiftingupwardacrosswaterpropertyplanesintheabyssalflow(e.g.,FerrariandWunsch,2009,Mashayeket
al.2015).Todaythelimitednumberofturbulentmixingestimatesintheabyssaloceanaretheresultof
observationsfromspecializedship-basedprofilersthatshowenhancedmixingaboveroughseafloor
topography(Polzinetal.1997,St.LaurentandThurnherr,2007).However,inmostinstances,thestrengthof
deep-oceanmixinghasbeenestimatedfromrelativelysparselysampledtemperatureandsalinityprofiles
(Sloyan2005,JingandWu2010).Observingsystemcapacitywouldbegreatlyenhancedthroughthe
Measuring/estimatingallcrossboundaryfluxes,whichthenmustequaltimerateofchangeofinternal
storage(acontrolvolume).Fortheearth/ocean,thesurfaceheatfluxesarenotoriouslydifficultto
measure(atbest10W/m2;weneed0.1W/m2)so,wedependonmeasuringthechangeinthevolume
heatcontentbecauseitis“easier”tomeasureandinferthefluxes.
9
2
Page
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
458
CarbonandBiogeochemistryObservations
459
460
461
462
463
464
465
466
Thevariabilityandchangeoftransport,turnover,andstorageofinorganicandorganiccarbon,andother
elementsinthedeepoceanarecontrolledbyoceanphysics,chemistry,andbiology.Changesincarbon
inventoryandfluxesinthedeepoceancanbesignificantlyslowerthanintheupperwatercolumnduetothe
spatialseparationfrombiogeochemicalandphysicalforcingnearthesurface.However,inpartduetoitsvast
volume,eventhesesmallchangescanhaveanappreciableeffectonglobalbiogeochemicalmassbalances,
andthestorageofanthropogeniccarbon.Improvementinthequantificationofbiogeochemicalchangesinthe
deepoceanisimperativeinordertounderstandtheEarthsystem,particularlyovercentennialandlonger
timescales.
467
High Level Mandates
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
Sustainedobservationofthedeepoceaniscriticalforaplethoraofoperationalactivities,aswellasresearch
programsstudyingclimatevariabilityandprediction,andchangesincarboncontent.National,international,
andorganizationalstudieshavedeterminedtheneedfordeepoceanobservationswithanemphasisplaced
onperiodicobservationsofhydrographicvariables,CO2systemparameters,andchemicaltracersthroughout
thewatercolumn.
Insupportofthis,theUSCarbonCycleSciencePlan(2011)articulatedtheneedforlarge-scale,systematic
observationandstudyoftheinvasionofanthropogeniccarbonintheocean.Thisrequirementhasbeen
recognizedinternationallybyanumberofcountrieswhichoccupyareasofdeepoceanstudywhicharenow
activelyrecommendingrepeatdeephydrographicobservationsintheseareas;amongthemareAustralia,
Canada,France,Germany,Japan,Russia,theUnitedKingdom,andtheUnitedStates.
Respondingtothisneed,astandinginternationalrepeathydrographysciencegrouphasbeenassembled
undertheCLIVARGlobalSynthesisandObservationsPanel(GSOP),theInternationalOceanCarbon
CoordinationProject(IOCCP)andtheSOLAS/IMBERCarbonGroup(SIC).Thisgrouphasadditional
endorsementfromCoordinationGroupoftheIOC-WMOJointTechnicalCommissiononOceanographyand
MarineMeteorology(JCOMM)andtheGCOS-GOOS-WCRPOceanObservationsPanelforClimate(OOPC).The
IOCCPandSIChavejointlycreatedanadvisoryGroupOnSHIP-basedrepeathydrographytheGlobalOcean
Ship-basedHydrographicInvestigationProgram(GO-SHIP).Thisgroupbringstogetherinterestsfromphysical
hydrography,carbon,biogeochemistry,andotherusersandcollectorsofhydrographicdatasuchasArgoand
OceanSITES,todevelopguidelinesandprovideadviceforthedevelopmentofagloballycoordinatednetwork
ofsustainedship-basedhydrographicsectionsdesignedtobecomeanintegralcomponentofthesustained
globaloceanobservingsystem.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
10
expandeduseofdeepprofilingfloatsandgliders(Wuetal.2011,Beairdetal.2012),conductingmissionsand
measurementsthatbridgethegapbetweentheselimitedship-based,fineandmicrostructureobservationsat
specificoceansites.
Finally,anotherfactorthatdrivesoceancirculationisthattheEarth’sinteriorsteadilyprovidesheattothe
deepoceanthroughtheseafloor.Alongthecrestsofactivemid-oceanridgesystemssuchastheEastPacific
-2
Risethisfluxofheatcanreach0.3Wm (Davies,2013).Whilethisenergyisslightcomparedwithsurfaceairseaheatfluxes,modelsoftheabyssalcirculationinsuchregions(JoyceandSpeer1987,HautalaandRiser
1989)haveshownthatupwardconvectivevelocitiesassociatedwithdeepgeothermalheatingcan
significantlyalterthedeepflowandinducegyresatscalesofoverathousandkilometers.Eventheatypical
-2
abyssalplaingeothermalheatflux,0.05Wm (Davies2013)canhaveaconsiderableeffectontheabyssal
circulationandwaterpropertiesinremoteregions(Joyceetal.1986).Modelingstudiessuggestthat
backgroundgeothermalheatingmakesasubstantialcontributiontothestructureofthelarge-scaleabyssal
circulation,potentiallyalteringthestrengthoftheMOC(Adcroftetal.2001;Emile-GeayandMadec2009)and
impactingabyssalheatcontentestimatesfromglobalstateestimationproducts(Piecuchetal.2015).
Page
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
Despitewidespreadcommunitysupport,todatehydrographicandbiogeochemicalchangesinthedeepocean
below2000mhavenotbeenfullyexplored.Thecompletionofthefirstdecadalsurveyunderauspicesofthe
CLIVAR/CO2repeathydrographyprogramisofferingthefirstobservationalglimpseofchangesin
biogeochemicalparametersinthedeepoceanonthesetimescales.Thisstudyshowsthatanthropogenicand
climatechangesignalsarestartingtomanifestthemselvesatdepth(Talleyetal.2016,Hassounetal.2015).
Thechallengeremainsthatevenwithimprovementsintechnologiesandtechniquesmostchangesindeep
oceansignalsarestilldifficult-evenimpossibletodetect.InordertoassessCO2changes,duetonatural
variabilityversusthosethatarehumaninduced,itisnecessarytofirstobservethenaturallyoccurringchanges
relatedbiogeochemicalparameterssuchasoxygen,chlorofluorocarbon,andnaturaltracerssuchasnoblegas
saturationstatesandisotopicratiosofcarbonandnitrogen,aswellastheelementsofthecarbonatesystem
thatinformonoceanacidification.Observationoftracersandtheoutputofnumericalgeneralcirculation
modelssuggestthatmuchofthechangesobservedarecausedbythepenetrationofanthropogenicCO2into
thedeepoceanprimarilyfollowingthemajorpathwaysoftheMOC.
Generally,modelresultsagreewithobservationstakenabove2000m,howeveratdepththedistributionof
biogeochemicalandanthropogenicperturbationsvariablesoftenshowasystematicbiastoward
underestimation.Thereforeitisimperativeforthescientificcommunitytoincreaseitsunderstandingofdeepoceantransportandventilationprocessesandassesstheirimpactonthefollowingbiogeochemicalprocesses:
• TheamountofanthropogenicCO2storedinthedeepoceanandratesofchange,
• Thesedimentationandburialofparticulatecarbonintheseafloor,
• Theimpactofchangesintemperature,salinity,andcurrentsinthedeepoceanonbiogeochemical
parameters,
• TheimpactofincreasinganthropogenicCO2inthedeepoceanonbiogeochemicalparameters,
• Thechangesinventilationandcirculationtobeassessedwithtransienttracers,
• Thestateanddynamicsofoxygenconsumptionandavailabilityincludingrelativeinfluencesof
biogeochemistryandadvection.
Todateanimportantconclusionofresearchandprojectsisthatseveralofthesemi-empiricalapproaches
usingobservationsandmostmodelingefforts,underestimatethepenetrationofthehuman-inducedclimate
signalsandassociatedanthropogeniccarbonloadintothedeepocean.Underestimationfromobservations
canbeattributedtotheimprecisionofthebiogeochemicalmeasurementscoupledwiththerelativelysmall
signalofCO2,whichleadstoanaprioriassumptionthatdeepwaterdoesnotcontainanthropogeniccarbon.
TransienttracerssuchasCFCscanbemeasuredatrelativelygreateraccuracyastheyarenotimpactedby
biogeochemicaltransformationswhichconfoundtheinterpretationofchangesandtrendsincarboncontent.
However,theutilityoftheseobservationsislimitedbytheiratmosphericreleasehistory,whichtookplace
duringthelastapproximately60years.Meanstoextrapolatethefindingsfurtherbackintimehavebeen
achievedbymethodssuchastransittimedistributionTTD(Khatiwalaetal.2009)buttheyarebasedonbasic
assumptionsoftransportintheoceanthatcannotbevalidated.Furthermore,comparingCFCpenetration
resultsfromnumericalmodelscomparedtoobservationssuggestthesamebiasofalackofdeeppenetration
witnessedinmanymodels.
Eachyearthedeepoceanisrenewedwith2petagramsofcarbonexportedasDissolvedOrganicMatter
(DOM),orabout20%oftotalexportproduction.ThisexportedDOMisonlymoderatelyreactive,suchthatitis
remineralizedtoCO2atdepthwithinafewdecades.Littleisknownabouthowremineralizationmaychange
withtimesincesofewobservationsexist,furtheritisexpectedthattheexportitselfmaybehighlyvariable.
TheinitialaccumulationofexportableDOMinthesurfaceocean,andhencetheamountofmaterialavailable
forexportatoverturn,isafunctionofsurfaceoceanverticalstratification;themorestratifiedthesystemthe
moreofthismaterialthatcanaccumulate.Furthermore,thebiologicalutilizationofDOMatthesurfaceprior
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
11
Science Challenges
Page
491
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
12
todeep-oceanexportsetstheliabilityspectrumofDOMexportedtothedeep-ocean.Theturnovertimeof
DOMatvaryingdepthswillaffectcarbonsequestration.In-situmeasurementsofDOMconcentrationsand
turnoveratin-situtemperatureandpressurearerequiredtoextendunderstandinginthisarea.Theactual
exportofDOMtodepthiscontrolledbythestrengthofoceancirculation;themorewatertransportedto
depththemoreDOMexported,andthedeepertheventilationandthelongertheperiodforcarbon
sequestrationatdepth.Assuch,overturningdynamicsattheoceansurfacehaveastrongimpactonthe
exportofDOM;variabilityofDOMatdepthisadirectreflectionofthechangesinthephysicaloceanatdepth.
Thefluxofparticulateorganiccarbontothedeep-oceanisacrucialparametertounderstandgivenitsroleas
thebiologicalcarbonpumpforatmosphericCO2storageinthedeep-oceanandasaresourcesupplyto
benthicenvironments.ParticulateOrganicMatter(POM)isthemainsourceofenergytomostdeep-sealife,
and-whenburiedintheseafloor-alsorepresentsarelevantcarbonsinkatgeologicaltimescales.This
particulateorganiccarbonfluxwithinthedeepoceanrepresentsanessentialvariabletodetectchangesin
sedimentationandenergyavailabilitytothedeepsea.
GloballyParticulateOrganicCarbon(POC)fluxintothebathypelagicrealm(>1km)spansseveralordersof
-2
-1
magnitude(1-605mmolCm yr )andischaracterizedbyimportantregionaldifferences.Inadditionto
generaldifferencesinmagnitudetherearealsostrongdifferencesintheseasonalityofPOCflux.Thisvarying
degreeandepisodicnatureofbathypelagicPOMfluxesarelikelytobeimportantfactorsinthestructuringof
benthiccommunitiesanddeterminingPOCburialinsediments.Therehavebeennumerouslong-termdeepoceansedimenttrapdeploymentprograms.Animportantfindingfromthesedeploymentsisthatinter-annual
variabilitycanbeequalto-orexceed,regionaldifferences(Smithetal.2013,Hensonetal.2015).Thus
sustainedregionalobservationsappearnecessarytocharacterizethespatial,seasonalandinter-annual
variabilityinbathypelagicfluxcharacteristicsofagivensite.Recentinvestigationsshowthatthecomposition
oftheplanktonintheproductivesurfacelayers,andthefood-webstructure,areimportantfactorsindefining
therelationshipbetweenproductivityandexportflux(Ruhletal.2014,Soltwedeletal.2016).Thetypeof
organismsproducingandgrazingonmattercansignificantlychangethesizesandsinkingspeedsofparticles.
ThedecreaseofParticulateOrganicMatter(POM)withdepthisimportantforbothCO2sequestrationand
providinganenergysupplytotheabyssalocean.DeeperpenetrationofCO2fromremineralizedPOM
increasestime-scalesofsequestrationandisdependentonverticalwatermassstructureanditsventilation
dynamics.RemineralizationofPOMasitsinksthroughthewatercolumnmodifiesboththeconcentrationand
compositionofcarboninsinkingparticles.InadditiontomagnitudeandtimingofPOCarrivalattheseafloor,
the“quality”(composition)ofPOMappearstoberelevantforstructuringthebiomassandturnoverofdeepoceanfauna.AttenuationofPOMwithdepthisfundamentallydrivenbyparticlesettlingvelocitiesand
remineralizationrates.Bothofthesefactorsaredependenttosomedegreeonsurfaceandmesopelagic
planktonandmicrobialcommunities.AnimportantchallengeforthefutureistotryandunderstandhowPOM
inventories,fluxesandremineralizationratesaredistributedacrossdifferentparticlesizeclasses.Following
fromthisistheimportanceofdevelopinganunderstandingofhowclimate-drivenchangesinthediversityand
structureofsurfaceoceanplanktoncommunitiesmightinfluencethediversityofbenthiccommunities.
Specificallytowhatextentchangesinmesopelagic/bathypelagicparticlestructureandremineralizationmay
bufferoraccentuatetheclimatesensitivityofpelagic-benthiccoupling.Particledistributionsandfluxes,and
theirbiologicalandchemicalcompositionareneededtoaddresstheseimportantgoals.
Oxygenisfundamentaltomostofthelifeintheocean,understandingthenatureandcausesofoxygen
variationisnecessarytopredictbiologicalresponsestoclimatechange.Oceanwarminginducedchangesin
solubility,stratification,ventilation,otherwind-drivenlocalhydrodynamicforces,andrespirationareleading
toglobaldeclinesinoceanoxygenation,termeddeoxygenation(Keelingetal.2010).Thisishappeninginthe
openoceanandonthecoastandestuaries(LevinandBreitburg2015).Oxygenishighlysensitivetochangesin
biomassandrespiration;biogeochemicaldriversinteractwithphysicalforcingtoshapetheoxyscape.
Upwellinghasintensified(Sydemanetal.2014)andhypoxicareashaveexpandedatintermediatedepthsin
someareasintheAtlanticandPacificandnotinothers(Strammaetal.2010,Wangetal.2015).Circulation
Page
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
601
BiodiversityandEcosystemObservations
602
603
604
605
606
607
608
609
610
611
612
613
Manyhabitatchangesondeep-seamarginsaretheresultofdestructiveextractionactivities[e.g.,bottom
trawling],however,increasingclimate-inducedchangesinhydrographicproperties(temperature,the
carbonatesystem,andoxygen),circulation,andproductivitywillalterentiredeep-pelagicandseabed
ecosystems(Moraetal.2013,LevinandLeBris,2015).Deep-oceanecosystemsperformkeyregulatory
services(carbonburialandnutrientcycling),andsupportingservices(habitat,trophicsupport),aswellas
provisioningservicesthatcontributefoodresourcescriticalforthehealthandfutureofplanetEarth(RamirezLlodraetal.2011;Thurberetal.2014).Inaddition,theseenvironmentsprovideavaluablesourceofenergy
andholdvastmineral,traceandrareelementreserves.Deep-seaorganisms(mostyettobediscovered)hold
theevolutionarynoveltyandgeneticpotentialthatprovideakeytofutureadaptationbylifeintheocean,and
havebeguntoprovideuswithvaluablemarinegeneticresources(MGR)ofvalueaspharmaceuticals,
enzymaticprocessesandexoticmaterials.Cancertreatments,artificialblood,CO2scrubbers,andnovelarmor
areafewexamplesoftheusesforMGR.
614
615
616
617
618
Aninitialglobalapproachtothebiogeographicclassificationofoceanlifeandtohighlighttheneedfor
targetedanddistributedoceanobservationwasarticulatedbyinthereportonGlobalOpenOceansandDeep
Seabed(GOODs)publishedbytheUnitedNationsEducational,CulturalandScientificOrganization(UNESCO)IntergovernmentalOceanographicCommission(IOC)andtheInternationalUnionforConservationofNature
(IUCN)(UNESCO,2009;Watlingetal.2013).
619
620
621
622
623
Todayitremainsacriticalfuturetasktodevelopconceptsfortheobservationandvaluationofmarine
biodiversityandecosystemservices,andtheirintegrationintonationalaccountingsystems(COP10strategies).
ThisincludesidentificationofEcologicallyandBiologicallySignificantAreas(EBSAs)andthedevelopmentof
scientificandtechnicalsolutionsrelevanttoenvironmentalimpactassessmentsinmarineareas.Theseare
requiredfortheholisticenvironmentalmanagementofdeep-seaecosystems.
624
High Level Mandates
625
626
627
628
629
630
631
632
633
Thesocietalmandateforobservingbiodiversityandotherbiologicalfeaturesinthedeepoceancomesfroma
growingcommitmenttoprotecttheocean’sbiodiversity.Thiscommitmentappearsinmultiple
intergovernmentallegalinstruments,fromUNCLOStotheUNGeneralAssemblyConventionsandSustainable
DevelopmentGoals.AkeyagentistheConventiononBiologicalDiversity(CBD),signedinRioby150nations
in1992.TheCBDisaninternationaltreatydevotedtosustaininglifeonEarthforhumanwell-being.ACBD
sponsoredstrategicplanformarineandcoastalbiodiversity(2011-2020)focusesontheadverseimpactof
climatechangeonmarineandcoastalbiodiversity(e.g.,sealevelrise,oceanacidification,coralbleaching),on
theconservationofmarinehabitatsthroughtheestablishmentofMarineProtectedAreas(MPA),andonthe
needforfurtherresearchtoinvestigatetheroleoftheoceananditsecosystemsinthecarboncycle.
634
635
636
637
638
639
640
Withregardtothedeepocean,theCBDproposesthecarefulmanagementofdeep-seafisheries,consistent
withprecautionaryapproaches,andtheestablishmentofimpactassessmentsthatfurthermarinescientific
research,andusethebestscientificandtechnicalinformationavailabletoidentifyareaswherevulnerable
marineecosystemsareknownorarelikelytooccur.OtherelementsoftheUNbiodiversitymandatesthat
relatetothedeepseaincludetheRegionalSeasConventionsinnationaljurisdictions,aswellasframeworks
thatgobeyondnationaljurisdictionsConventiononMigratorySpecies,CITES,andtheRegionalFisheries
ManagementOrganizations,theInternationalSeabedAuthority(whichhasjurisdictionovertheseafloor),the
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
13
changesalsodriveregionaloxygenloss(Bogradetal.2015,Gilbertetal.2010).Fewlong-termoxygen
measurementsexistfordeepwaters.Long-termobservationsareneededthatdocumentoxygenvariability
overseasonaltodecadaltimescalesandthelonger-termseculartrendsinthedeepocean.Geographic
emphasisonregionsundergoingmajorchange(theexpandingoxygenminimumzones,E.Pacificandsouthern
Ocean)andotherregionsreachingoxygenthresholdsthataffectecosystemservices(e.g.,forfisheries),will
providethemechanisticunderstandingneededtoproperlymodelfutureoxygenchangesandbiological
responses.
Page
594
595
596
597
598
599
600
InternationalMaritimeOrganization,andtheInternationalWhalingCommission(Ardronetal.2014).Thereis
alsoanewUNtreatyonbiodiversitybeyondnationaljurisdiction(BBNJ)thatisinpreparatorymeetingsthis
year(Wrightetal.2016).TogetherwithSustainableDevelopmentGoal14,whichadvocatesconservationand
sustainableuseoftheocean,thesegenerateamandateforobservationofdeep-seabiodiversityand
ecosystems.
646
647
648
649
650
651
Whilethedeepseamayseemaremoteenvironment,farfromtheinfluenceofhumans,thisisnolongerthe
case.Humanpresenceinthedeepseaisgrowingexponentiallywithaccumulatingwaste,increasinglydeeper
fishandshellfishharvesting,fishinggearimpactsandbycatch,deepeningoilandgasextraction,andnew
deep-seaminingactivities(Ramirez-Llodraetal.2011),(Mengerinketal.2014).Despiteitsvalueasa
wildernessareaandassuchanaturalreserveformuchoftheplanet’swildlife,inmanysocietiestodaypublic
acknowledgmentofthedetrimentalhumanimpactonthedeepsearemainslow.
652
Science Challenges
653
654
655
656
657
658
659
660
661
662
663
664
Biologicalresponsetochangesinoceanenvironmentsmaytakemanyforms,onalllevelsfromgenesandmetabolites
tocommunitiesandecosystems:
• Changesinspeciesabundance(biomass/density),composition,diversity,withconsequencesforcommunity
structureandfunctionandhabitatrangesanddistribution,
• Behavioralresponses,afterpreycaptureefficiency,bioturbation(avoidance,swimmingefficiency,preycapture
efficiency),
• Reproductiveresponses(spawning,dispersal,recruitment),
• Physiologicalresponses(growthrates/timing,calcificationrates,ratesofchemoautotrophicCO2fixation,methane
oxidationrates,respirationrates,growthefficiency,tolerancesandthresholds),
• Evolutionaryadaptation,
• Geneticresponses(diversity,mutations,geneexpressionandproducts),and
• Trophicandotherspeciesinteractions(preyavailability,predationrateandsymbioses).
665
666
667
668
669
670
671
672
Concludingin2010,theCensusofMarineLife,adecadalprogramestablishedabaselineforlifeintheocean.
Aspartoftheprogramtherewasafocusondifferentdeep-searealms,frommargins-todeep-sea-basinsand
ridges,andfromdetritus-based-ecosystems,tochemosynthetic-based-ecosystems.Deep-seabiologistsand
geologistshighlightedthegreatvarietyofbenthichabitatsalongwiththeiruniquecharacteristicsincluding
speciesdiversity,communitycomposition,aswellastheabundanceandbiomassoforganisms;frombacteria
tolargefishes.Thestudyalsoidentifiedcriticaldatagapsinobservations,whereknowledgeismuchneeded
includinginthedeeppelagicrealm,thecentraloceangyres,andtheice-coveredpolaroceans.Anothercritical
gapliesinthetemporaldimensionandparticularlyshort-termresponsetotransientevents.
673
674
675
676
677
Thedeepoceanisstilltheplaceofgreatdiscoveries,ofnewhabitats,andnewspecies.Thenumberofspecies
livinginthisremoteenvironmentremainsamystery,withestimatesfrom1-10millionforanimals,andorders
ofmagnitudemoreformicroorganisms(Moraetal.2011).Furthermore,itissuspectedthatspeciesturnover
onverticalandhorizontalspatialscales,aswellasontemporalscales,mayalsobeashighasisseenincoastal
andterrestrialhabitats(Brandtetal.2007;Zingeretal.2011).
678
679
680
681
682
683
684
685
686
687
Theevolutionaryrates,adaptationstophysicalchangeandchemicalstresses,andtheroleofdeep-sealifein
criticalecosystemfunctionssuchasremineralization,carbonsequestration,energytransfer,andprecipitation
ofmineralsisfarfrombeingunderstood.Singlecellorganismslikeprotozoa,bacteria,archaeaandtheir
virusesremainundiscoveredornotdescribed(e.g.Lecroqetal.2011).Mostofthepelagicrealmremains
unstudied(Webbetal.2010).Thebehavioranddomainofcaptivatingdeep-sealifelikejelliesanddeep-sea
sharkshavenotbeenwellobservedanddocumented.Asalmostalldeep-seaanimallifebelow1000mhasin
commonisthatitcannotberecoveredwhilestillalive,studiesoftheirbehaviorandbiologymustbecarried
outin-situorinhigh-pressuredeviceswithlimitedtimeconstraints.Andwhileknowledgeofremote
environmentshasincreasedinthepastdecade,thevastmajorityoftheoceanremainsunsampled,andonly
veryfewdeep-waterobservatorieshavebeenimplemented(Gloveretal.2010).
Page
14
641
642
643
644
645
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Thecombinationofexploratoryandresearch-drivenapproachestowardsobservingunder-sampleddeep
oceanecosystems,andsocietalandclimate-inducedchangeshavegeneratedanewimperativeforstudying,
observingandunderstandingdeep-seaecosystems(LevinandSibuet2012).Thesestudieshavearticulatedthe
informationmostneededtoassess,evaluateandpredictfuturebiologicalresponsesinthedeepocean.For
examplecharacterizationofpopulationconnectivity(exchangeofgenes,larvae,andadultsinspaceandtime)
iscriticalforevaluatingecosystemresilienceandpersistenceinthefaceofdisturbancessuchasmining,
trawling,andhydrocarbonspills.Knowledgeofwhatcontrolscolonizationandcommunitysuccessioncanlead
togreaterunderstandingofresilienceandguideremediation,mitigation,andrestorationactivitiesfollowing
bothnaturalandhuman-induceddisturbances.
697
698
699
700
701
702
703
Theintegrationofmajortheoreticalandconceptualframeworksinthedevelopmentofdeep-waterobserving
goalsandtechnologicalapproachesisdesirable(LevinandDayton2009).Someoftheconceptualissues
relevanttohealthyrolesandfunctionalrelationshipsofecosystemengineersincludetheinteractionsof
animalsandmicrobes,predatorsandprey,parasiteandfacilitator,trophicwebtopology,productivityand
diversityrelationships,andpopulationdispersal,connectivityandresilience.Thesebasicscientific
understandingsareessentialtoestablishconceptsfortheobservationandprotectionofalllevelsof
biodiversity(genetic,species,communitiesandecosystems).
704
705
706
707
708
709
710
711
712
713
714
715
716
Inadditiontotheseconceptualframeworks,importantscientificquestionsmethodologicaltoolsand
approachesastothefunctioningofdeep-seaecosystemsinclude:Dodiverseandnon-diversesystems
respondsimilarlytoperturbation,anddotheydifferinresilience?Howcanareasatriskforlossofbiodiversity
bedetected?Howcanrecoveryfromlossofbiodiversitybedetected?Howcanwereducethethreatsto
deep-seabiodiversitybyimplementingprotectedareas?Howcanweoptimizetheeffectivenessprotection
measureunderclimatechangeinfluence?Howwillchangesintemperature,oxygen,andCO2affect
communitystabilityandresilience?Quantifyingtheconsequencesoftheseresponsesfor
ecological/ecosystemfunctions(respirationrates,remineralizationrates,biomassproduction,trophic
pathways,nutrientfluxes,bioturbationrates,carbonburialrates)becomesahighpriorityifwearetomanage
theoceansustainably.Theabove-mentionedparametersandprocessesareessentialtoselect,implementand
managedeep-seamarineprotectedareas,todevelopecosystembaselinesagainstwhichenvironmental
impactsareassessed,andtomonitorchangeandevenassessfiscaldebtresultingfromthelossofecosystem
services.
Page
15
688
689
690
691
692
693
694
695
696
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
717
718
PART TWO
Setting:
719
Requirements
Proposed Essential
Ocean Variables for the Deep Ocean
720
Introduction
721
722
723
724
725
726
727
ThefollowingsectionintroducesasuiteofdraftEOVsforDeepOceanObserving.EOVscanincludeboth
intrinsicandextrinsicpropertiesaslongastheyaddressthe overall GOOS Themes – Climate, Real-Time
Services, and Ocean Health. The GOOS Framework suggests that EOVs must be capable of being
observed or derived on a global scale, and must be technically feasible using proven, scientifically
understood methods. Generating and archiving data on the variable must be affordable, mainly
relying on coordinated observing systems using proven technology, taking advantage where possible
of historical datasets.
728
729
730
731
732
733
Thedeep-oceanEOVsrecommendedherebuildonandinsomecasesoverlapwith,theshallowwaterEOVs
developedbytheGOOSFramework(see
http://goosocean.org/index.php?option=com_content&view=article&id=14&Itemid=114).However,manyof
thebiodiversityandecosystemEOVsdevelopedforshallowwaterarenotrelevantfordeepwater.Itis
importanttorecognizethatthestatus,maturitylevel,andubiquityofEOVcoveragemaydifferinshallowand
deepwater,dependingonsensordepthratingsandaccessibility.
734
TheseEOVsarepresentedasdrafts.AstheStrategymaturesovertime,theseEOVswillbereviewedaccording
735
toseveralcriteria:
736
737
•
Theircontributiontoscientific
knowledgeand/orsocietalissues,
738
739
740
741
742
743
•
Theirfeasibility,maturityand
sustainability(readiness)ofthe
observingtechnology(refinedby
individualscientists,national
programs,andinternationalpilot
projects),
744
•
Theircosts.
752
753
754
755
756
Tojustifyaglobalobservation,a
requirementmustbequitebroadly
accepted,andtheneedarticulatedat
theinternationallevel.Inorderto
justifyanEOVobservationovera
sustainedperiod,theserequirements
willneedtoberefinedinamanner
independentofspecifictechnologiesorimplementationapproach.Throughthisprocessandovertime,
stakeholderdiscussionsonnewrequirementswilltakeplaceinthecontextofexistingobservationelements;
asanycaseforchangingorcreatinganewrequirementwillincludeanevaluationofitsaddedvalue.This
reportisintendedtobeginthisiterativeandadaptiveprocessinvolvingregularre-evaluationofdeep-ocean
EOVsconstantlyinformedbynewknowledge,technologies,issues,andpriorities.
757
758
759
760
761
InthefollowingsectiontherequirementsforClimateandPhysicalprocessesintheoceanaremostmature,
whiletheCarbonandBiogeochemistry,andtheEcosystemandBiodiversityrequirementsarelessmature.For
theBiodiversityandEcosystemcommunitytherequirement-settingprocessisverymuchintheconceptphase
aslimitedin-situobservationofthedeep-seaenvironmenthastakenplace.Thismakesitdifficulttofully
articulaterequirementsthatrespondtosciencequestionsbornefromrepeatobservationofbaselineactivities
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
16
745
746
747
748
749
750
751
764
ClimateandPhysicalEOVs
765
Mature Phase
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
SeaLevelisinextricablylinkedtodeep-oceancharacteristicsoftemperatureandsalinity.Asthedeepocean
warmsorfreshensitexpands,andcontributestosealevelrise.Inordertoconstructasealevelbudgetitis
necessarytoquantifythecontributionofdeep-oceantemperatureandsalinityvariabilitytochangesinsea
level.Closingthesealevelbudgetisneededforunderstandingchangesandpredictingfuturetendenciesin
sealevelchange(e.g.,Wunschetal.2007).
Temperatureinthedeepocean,inadditiontoitsroleinsealevel,isalsovitalforquantifyingtheglobal
energyimbalance.Withintheclimatesystemtheoceansarethelargestrepositoryoftheaccumulatedheat
fromman-madegreenhousegasincreases,andthedeepoceanplaysacriticalroleinthisstoragesystem.
Understandinghowmuchandwhere,thisheatisstoredintheoceanisvitalforthevalidationofclimate
models,andtheabilitytopredicthowmuchandhowfasttheEarthwillwarmincomingdecades.
Salinityinadditiontoitsroleinsealevel,isavitalvariabilityintheunderstandingofchangesinthedeep
MOC,andocean-cryosphereinteractions.ThefresheningofAntarcticBottomWaterinrecentyearsisthought
tooriginateatleastinpartfrommeltingofglacialice(e.g.,JacobsandGiulivi2010),andmaybecontributing
toacontractionofAntarcticBottom
Waterinrecentdecades(e.g.,Purkeyand
Johnson2012).
Currentsareintrinsicallylinkedto
atmosphericforcingaswellas,water
temperature,salinity,andsealevel;
throughoceandensityandpressure
fields,whichlargelygovernocean
currents.Oceancurrentsarevitalfor
diagnosingchangesinoceancirculationas
wellastheattendantchangesinocean
heat,freshwater,andotherwater
properties(carbon,oxygen,andnutrient),
includingthetransportofpollutants
(hydrocarbonspills,radioactivity,etc.)or
larvae/alienspecies.
TransientTracersareusefulinquantifyingoceanventilation,formationrates,andidentifyinganthropogenic
carbonuptake.Forinstance,CFCinventoriesfromdatacollectedbytheWOCEHydrographicProgram
quantifiedmodernformationratesforAntarcticBottomWater(Orsietal.2002)andNorthAtlanticDeep
Water(LeBeletal.2008),aswellastheirvariability(Huhnetal.2013).Oceantracershavealsoprovenvery
usefulforvalidatingtheperformanceofclimatemodelsinthedeepocean.Whenlocatedclosetothe
seafloor,theycanalsohelpidentifysourcesofsubsurfacefluids,andventingatplacessuchasat
hydrothermalvents,submarinevolcanoes,andcoldseeps.
806
807
808
809
810
Chlorofluorocarbon/SulfurHexafloride:CurrentlymostimportanttransienttracersareCFC-11
and/orCFC-12andSF6.Thedifferenttimehistoriesofatmosphericconcentrationsofthesetracerscan
beexploitedtoestimatethespectrumofage(timesinceventilationattheseasurface)ofinterior
oceanwaters(e.g.Waughetal.2003).Thisinformationhaswideutilityincludingreconstructing
uptakeofCO2,estimatingoxygenutilizationrates,andtestingglobalclimatemodels(Talleyetal.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
17
andchangingconditionsovertime.Muchoftherequirementssetfortharewhatwillberequiredtowitness,
potentiallyforthefirsttime,thislittleknownarenaofscientificexplorationanddiscovery.
Page
762
763
2016).Theseanthropogenicgasesentertheoceanthroughair-seaexchange,anddonothaveany
considerablesinksintheoceaninterior.Theirtransientinputfunctionprovidesameanstoestimate
transporttime-scalesandmixingpatterns.
TritiumandHelium-3:Alargepulseoftritiumintheatmospherefollowedtheatomicbombtestsin
3
the1960’s.Althoughtritiumdecaysto Heondecadaltimescalesitsoceanicsignalisstillusefulto
3
3
monitor;particularlythepairofTritiumand He.Additionally,primordial Heisreleasedatdeep
oceanridgesmakingitauniquetracerfordeepoceancirculationwithinabout1000kmfromthe
ridges.
Carbon-14:Thisisaradioactivecarbonisotopethatiscommonlyusedfordatingoforganicmatteron
timescalesofseveralthousandyears.Nuclearbombtestsinthe1960’sresultedinalargeinfluxof
14
atmospheric C,thisbombsignalcannowbemeasuredinintermediateanddeepwaters.This
14
changein Chasprovidedinformationonoceanventilationandthecarboncycleforseveraldecades
(McNicholetal.2000).
826
827
828
829
830
831
832
833
Oxygeninadditiontoitsbiogeochemicalimportanceisusefulindiagnosingoceancirculationandwater-mass
formationchanges.Deepandbottomwaters,whenformedareoxygenatedandbecomeoxygen-poorwith
increasingdistance(andtime)fromtheirformationduetobiologicalconsumption.Attheoceansurface,
oxygenconcentrationisdeterminedbyprimaryproduction,mixingandconsumption,attheseaflooritis
influencedmostlybytotalcommunityrespiration,orbyfluidventing(e.g.seeps,vents).Changesinoxygen
concentrationcanreflectchangesindeepandbottomwaterformationratesorcirculationstrength.While
oxygenisroutinelymeasuredfromships(mature),makinghighlyaccuratemeasurementsfromautonomous
platformsisstillinthepilotstage.
834
Pilot Phase
835
836
837
838
839
840
841
842
843
844
845
Argon-39isamongavarietyoftransienttracersthatcanpotentiallybemeasuredastheyareoftenrelatedto
39
differentintervalsofventilationperiods. Arisaverypowerfultracerforareasoftheoceanwithslower
ventilationasithasahalf-lifeof269years,makingitanimportanttracertomeasureinthefutureestablishing
temporalvariationsandchangesinoceanventilationandtransportofwatermasses,oceanmixinganduptake
ofanthropogeniccarbononcentennialtimescales.Recentimprovementsinthemeasurementtechnology(i.e.
AtomTrapTraceAnalysis(ATTA))willmakethisanincreasinglyfeasibletracerformeasurement.
846
Concept Phase
847
848
849
850
851
852
GeothermalFluxprovidesoneofthebottomboundaryconditionsforthedeepocean.Whileglobally
-2
averagedoceanfloorheatfluxesofsmall(0.1Wm ),theydovaryspatiallywithlargervaluesatoceanridge
crestsandsmallervaluesonabyssalplains.Theeffectsofridge-crestplumesonoceancirculationcanextend
overgreatdistances(e.g.,JohnsonandTalley1997).Usefullarge-scalemapshavebeenmadefrompoint
measurements(e.g.,Davies2013),butsmaller-scalemapsmightbeofsomeutility.
853
CarbonandBiogeochemistryEOVs
854
Mature Phase
855
856
InorganicCarbonischaracterizedbyfourmeasurablevariables;totalDissolvedInorganicCarbon(DIC),Total
Alkalinity(TA),pH,andpCO2.Atleasttwoofthesevariableshavetobemeasuredinordertofullycharacterize
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
18
OceanBottomPressure(OBP)capturescolumn-integratedmasschanges,andwheremeasuredatsufficiently
highfrequency,enablesthequantificationofintegratedoceancolumnvariability(QuinnandPonte2012).
OBPcanberetrievedfromtime-varyingspacegravimetry(GRACE),andfrombottompressuresensors,butthe
formerresolvesonlybroadspatialscales,andthelatterisvulnerabletosensordrift.
Page
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
19
thestateoftheinorganiccarbonsystem;includingeitherDICand/orTAsincetheycanmorereadilybe
measuredpreciselyandaccuratelythroughtheuseofcertifiedreferencematerials.(Spectrophotometrically
determinedpHisauseful3rdparameterbecauseofthehighmeasurementprecisionandgrowinginterestin
oceanacidification.)Theinorganiccarbonloadintheoceaninteriorisroughly50timesgreaterthanthatof
theatmosphere.Further,asanincreasingamountoftheanthropogeniccarbonreachesthedeepocean,
absorptionofthiscarbonbytheoceanisanimportantprocessinquantifyingtheglobalcarbonbudget.
13
CofDissolvedInorganicCarbonreflectstheisotopiccompositionofatmosphericCO2thathaschangeddue
tohumanintroducedexcessesofCO2andisabulktracerofbiologicalprocessesduetofractionationofcarbon
isotopeduringbiologicaluptake.Thismodifiedcarboncanbetrackedwithintheoceanandprovides
important,andindependent,informationonthelocationofcarboninbothinthecontemporaryandpaleoocean(Quayetal.2003).
MacroInorganicNutrients;Phosphate,
Nitrate,andSilicateareimportant
indicatorsofchangesinwatermasses
and
biogeochemicalactivity,butalsoin
humanimpacte.g.viaeutrophication.
Nutrientconcentrationsarean
importantparameterforobserving
changesinthebiologicalpumpandthe
locationofanthropogeniccarbon.
DissolvedOxygenisasensitivevariable
for
monitoringchangesinseveralocean
processesandwaterproperties;these
includewarming,stratification,and
biogeochemistry.Thedeoxygenationof
water-massneedstobemonitoredin
ordertoassessoceanhealthandbiologicalactivity.
DissolvedandParticulateOrganicMatterinthedeepoceanisrenewedeachyearby20%ofthetotalocean
exportofDissolvedOrganicMatter(DOM).AlthoughthepoolofDOMintheoceanissmallincomparisonto
theinorganicpool,thiscarbon-enrichedmatter(greaterthan200timesthecarboninlivingmatter)hasalarge
relativeimpactoncarboncyclingintheocean.ThecompositionandageofDOMisrelevantindeterminingthe
originofwatermasses,theirloadingwithterrestrialvs.marinematerials,andthetimeoftheirtransportin
theglobalconveyerbelt.DOMisasubstrateformicroorganisms,whichcanalteritscompositionand
selectivelytransformDOMcomponents.IfmicrobeswouldbemoreefficientindegradingDOM,ahigherflux
ofCO2intotheatmospherecouldbetheresult.Newmethodsallowfortheresolutionofthousandsof
individualDOMcompoundsmanyofwhichremainunknownintheirmolecularstructure.
Theparticulatemattertransportedintothesea(aggregates,marinesnow,fecalpellets)orproducedby
surfaceplanktonisexportedfromtheproductivesurfacelayerintothedeepoceanwhereitformsthekey
energysourceforheterotrophicdeepsealife.POMfluxescanbemeasuredbysedimenttrapsautonomously
atdifferentwaterdepths,asthecompositionofsinkingparticlesallowsestimatesofthetimingand
communitystructureofphytoplanktonbloomsandtheirgrazers.Sedimenttrapsconnectedtooceanographic
mooringsremainakeytoolinlinkingcarbonfluxestobiodiversityandthefoodwebstructure,aswellasto
monitoringsurfaceoceanandseafloorprocesses.Besidessedimenttraps,oceanseafloorcommunity
respirationviain-situmeasurementsisanotherrobustmethodtoassessPOMfluxes.Opticalmethodsfor
assessingfluxquantitiesandcharacterincludingsize-andtype-distributionsarenowevolvingthatshowgreat
promiseforaugmentingconventionalapproaches.
Page
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
909
Mature Phase
910
911
912
913
914
915
916
PrimaryProductivity,orChlorophyll,OceanColor,SurfaceProductivityisashighasterrestrialproductivity,
andshowssimilardynamicsinspaceandtime.Withintheoceanprimaryproductivityisrestrictedtothetop
20-100mandcanbeobservedremotelyfromsatellites,(byassessingchlorophyll,lightavailabilityand
photosyntheticefficiencyoftheprimaryproducers).Itcanalsobeassessedbasedonnutrientcomposition,
14
andprocessmeasurementssuchastheuptakeof CO2.Whilenotgeneratedinthedeepocean,primary
productivityisanimportantvariableinthedefinitionofbiogeochemicaloceanrealms,fromsurfacetodepth
andreflectsthefoodsupplytodeep-oceanecosystems,thusitisincludedhere.
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
ElementFluxes,includingverticalexportofparticulateanddissolvedorganicmatteraremajorsourcesof
carbonandassociatedbioelements(e.g.nitrogen,phosphorus,silicon,iron,etc.)tothedeepsea.The
biologicalpumpdescribesthecollectivesetofprocessesthatresultinthenetexportoforganicmatterfrom
theupperoceanandsubsequentselectiveremineralizationofthismaterialatdepth.Theseprocessesare
regulatorsofair-seacarbonexchangeandultimatelyactaskeydeterminantsonthepartialpressureof
atmosphericcarbondioxide.Thebiologicalpumpmaintainsverticalgradientsinthesebioelementsandresults
inthedownwardmovementofelementsagainsttheverticalconcentrationgradient(hencethe“pumping”).
Moreover,thedownwardmovementoforganicmatterfromtheupperoceantothedeepseaconstitutesthe
majorsourceofenergyandnutritionfor
deepseaorganisms.Organicmattercan
beexportedfromtheupperoceanin
bothparticulateanddissolvedphases;
globallytheseprocessesaccountfor15-1
20GtCyr .Exportofparticulatematter
canbemeasuredthroughuseof
sedimenttrapsthatcapturedownward
settlingparticles,orthroughvarious
geochemicalapproachesincluding
234
Thoriumdisequilibriumandelemental
massbalances.
937
Pilot Phase
938
939
940
941
942
943
944
945
RemineralizationRates:Biochemical
oxygendemandortotalcommunity
respirationistheamountofdissolvedoxygenconsumedbyorganismsinavolumeofwaterorsediment.It
measureswhatisrequiredtobreakdownorganicmaterialmeasuredatacertaintemperatureoveraspecific
periodoftime.Thisvariablecorrelatestocarbonandenergyavailability,aswellastoCO2fluxandnutrient
remineralization(viatheRedfieldratio).Inmostdeep-seaenvironments,themajorityofoxygenconsumption
comesfrommicrobialrespiration,butdeep-seafaunaandchemicaloxidationofreducedcompoundscanalso
contributesignificantly;suchasatcoldseepsandhydrothermalvents.
946
947
948
949
950
SecondaryProductivity,orin-situproductivitygenerationtime,istherateofbiomassformationorenergy
conversionbyorganismssuchasgrazersanddecomposers.Duetotheabsenceoflight,primaryproductivity
inthedeepseaisrestrictedtoareaswheretheavailabilityofreduced,energy-richcompoundssuchas
hydrogen,methane,sulfide,ammoniumorFeIIishighenoughtodrivebacterialorarchaealautotrophicCO2
fixation.
20
BiodiversityandEcosystemEOVs
Page
908
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
955
956
957
958
959
960
961
962
StandingStockBiomassinthedeepsea,abundanceofbiomass,andthedistributionofallorganismsize
classesisgenerallyafunctionoffoodsupplyandtemperaturewithinaparticularhabitat.Hence,standing
stockbiomasshasbeenusedasaproxyforenergyandcarbonflowtoanecosystem.Generally,therelative
proportionofbiomassdecreasesfromsmall,singlecelllife--whichusuallymakesupgreaterthan90%ofthe
biomass,tolargemegafauna,includingfish--whichcompriselessthan5%ofthetotalbenthiccommunity
biomass.Thisisassessedbycountingorganismsacrossallsizeclasses,usingmicroscopyorflowcytometryfor
smallsinglecells,nets,continuousplanktonrecordersandacoustics,sortingandvisualcountingforsmall
multicellularorganisms,orcamerasandacoustics(passiveandactive)forlargerorganisms.
963
964
965
966
Mesopelagicfishesareroutinelymonitoredthroughanumberofichthyoplanktonsurveyprograms.Thelarval
phaseofmostmesopelagicfishesisfoundintheupper200mofthewatercolumnandcanthereforebe
quantitativelysampledbyroutineplanktonsamplingprograms.Theabundanceoflarvalfishesprovidesan
indexoftheabundanceofthedeeperadultspawningstock.
967
Concept Phase
968
969
970
971
TrophicInteractions:Food-webcharacteristicssuchastrophiclevelsandinteractionsareimportantfunctions
ofecosystemsastheyaresensitivetochanges,suchastheremovaloflargepredatorsbyoverfishing.Critical
elementsusedtoassesstrophicinteractionsincludestableCarbonandNitrateisotopesignatures(bulkand
compound-specific),lipidbiomarkers,andtheaccumulationofpollutantsortracers.
972
973
974
PhysiologicalAdaptation:Forsomedriversofecosystemchange,itisrelevanttoassesspotentialnichesof
organismsandlimitstotheirdispersal--suchastheirphysiologicalabilitytoadapttotemperature,pH,CO2
levels,oxygendepletion,andpollutiontonameafew.
975
976
977
978
979
TaxonomicDiversity:Thealphadiversityorthebarcodingoforganismsorspeciesrichnesswithinagiven
habitatareaisanimportantecologicalvariable.Itcanbeassessedthroughthesamplingofdifferentsize
classesandgeneticbarcodeanalysis,ormorphologicalidentification.eDNAandhighthroughputgenomicsis
startingtoallowdetailedquantificationofeventhesmallesteukaryotesandprokaryotes.Developmentof
thesetoolswillgreatlyincreasethespaceandtimescaleofmeasurementsthatcanbeobtained.
980
981
982
983
984
FunctionalDiversityattributescanbeevaluatedthroughbiologicaltraitanalysis,andespeciallyformicrobes,
throughtranscriptomics,proteomicsandmetabolomicsincludingcoralmicrobiomesandsymbiontpopulation
ofdeep-seainvertebrates.Akeygoalindocumentingchangeorrecoveryinthefaceofsocietalpressures
(spills,trawlingmining)istounderstandtheconsequencesforecosystemfunctionandultimatelyecosystem
services.
985
986
987
988
989
990
CommunityTurnover:Beta-diversityreferstothechangeinspeciescompositionamonggeographicareasand
isanotherimportantecologicalvariablewhichisrequiredtounderstandnaturalandman-made-variationsin
communitydiversity,structure,andcomposition.Animportantparameterofbeta-diversityisthespatialor
temporalreplacementofspecies,alsoknownascommunityturnover.Aswithspeciesrichnessestimates,the
underlyingmeasurementsarespeciesinventories,whicharenowoftenassessedbyhighthroughputgenetic
sequencing.
991
992
HabitatDimensions:Thesizesandheterogeneityofhabitatswhichareoccupiedbydistinctcommunitiesare
alsoimportantecologicalfeatures.Underlyingmeasurementsusedtounderstandtheseenvironmentsinclude
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
21
Atthesub-surfaceproductivityisdeterminedbythenumberoftrophiclevelsandthelengthsofthefood
chainswithinanecosystem.Secondaryproductiondividedbytotalbiomassofagroupoforganismsprovides
anestimateoftheirgenerationtime.Bacterialsecondaryproductionisassessedbyprocessrate
measurementsalongwithtracersofradioactiveorstableisotope-labeledorganicmolecules.
Page
951
952
953
954
993
994
995
996
bathymetricmaps,habitatmosaics,timelapsephotography,andlandscape-scaleimagingandchemical
gradientsmappingatdifferentscales.Thecombinationofenvironmentalinformationandbiodiversity
assessments,alongwithgeographicinformationsystemsareusedtoinformourunderstandingofecological
variationsatvariouslandscapescales.
997
998
999
1000
EvolutionaryProcesses:Whereandwhenspeciesevolvehasconsequencesforboththecharacteristicsand
functionaltraitsoforganisms.Theecologicalprocessesweobserveinthepresenthavebeeninfluencedby
evolution.Theevolutionaryhistoryofecosystemsandtheircommunitiesisrelevanttotheassessmentof
potentialforadaption,andspeciesresiliencetonaturalandman-madeclimaticvariations.
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
CommunityStructure:Thepresence(orabsence)ofcertaintaxa,andtheirrelativecontributiontototal
abundanceoforganismsareessentialvariablestoassesscommunitystructure.Formicroorganisms,DNA
fingerprintingapproaches,whichcomparesequenceabundance,havebeenawaytoacceleratethe
assessmentofbiodiversityvariablessuchastaxonomicrichnessandrelativecomposition.Foranimals,such
estimatesrelymostlyonmanualextractionoforganismsfromwaterorsediments,oftenbysieving
(sediments)orfiltration(water)accordingtosizeclasses,andtaxaidentificationandquantificationby
microscopy.Newhighthroughputmolecularmethods(eDNA)maystarttobedevelopedforsmallertaxabut
willrequirecomparisonwithmorphologicalapproaches.Forfragilegelatinousorganisms,image-basedsurvey
techniquesareoftenused.Fromabundanceandwetweightorcarbonmass,otherimportantvariablesare
derivedsuchasbiomass,production;orestimatedspeciesrichness,speciesturnover,andtaxa-area
relationships.
1012
Page
22
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1014
1015
PART THREE
Deployment and Maintenance:
Observing Platforms and Technologies Addressing the EOVs
Introduction
1017
1018
1019
1020
1021
1022
1023
Oceanobservingtechnologydeploymentandinnovationarecoreprocessesofdeep-oceanobserving.Within
theglobaloceanobservingsystemitistheobservationdeploymentandmaintenanceelementswhichconnect
therequirementstotheneedfortechnologyandtechniqueswhichprovidetherequisitedataneededbythe
usercommunityinordertomeasureanEOV.Assessmentofthereadinessleveloftechnologiesalignedwith
anEOV,orEOVs,isthemechanismthroughwhichfeasibilityandimpactofproposalsforneworupgraded
observationelementsisassessed.Discussionsfocusontheadequacyoftechnologyormeasurement
techniquetomeettheneedsofaspecificEOV.
1024
1025
1026
1027
1028
1029
1030
1031
1032
Someelementsofthedeep-oceanphysical,chemical,geological,biologicalandecologicalobservingsystem
arealreadyimplemented.Presentlycriticalcomponentsofdeep-seaEOVassessmentrequirequantification
involvingcomplicatedshipboardmeasurementsandoceanprocesses.
Ship-basedmeasurementprogramsareacrucialcomponentoftheglobaldeepoceanobservingsystem.They
provideveryaccuratereferencedataonoceanvariablessuchastracers,nutrients,thecarbonsystemaswell
asbiologicalparametersthatcannotyetbequantifiedviaanyothermeans(e.g.Talleyetal.2016).However,
expandingship-basedmeasurementprogramstoadequatespatialsamplingandsufficientobservationsto
resolveseasonalandshorter,time-scalesovertheglobewouldbeprohibitivelyexpensive;giventhehighcost
1033
ofships,fuel,andpeople.
1034
Hence,theseship-based
1035
observationsneedtobe
1036
combinedwithpermanent
1037
fixedpointobservatoriesand
1038
mooredarraysdesignedto
1039
providemeasurementsof
1040
temporalchange,andarrays
1041
ofautonomousplatforms
1042
(e.g.floatsandgliders)
1043
designedforglobal,year1044
roundcoveragethatwill
1045
informfutureoceanclimate,
1046
physics,andecosystem
1047
studies.Deepfloatshave
1048
beendesignedandarebeing
1049
testedinpilotmodeand
1050
refined.Anemergingfieldof
1051
designanddeploymentfor
1052
fixed-pointobservatoriesisin
thearenaofcabledobservatoriescapableofprovidingthepowerandcommunicationbandwidthrequiredfor
sustainedandpotentiallydynamiclong-termobservationsofdeep-seaenvironments.Acousticmethods
continuetoevolvetoremotelysampletheoceanbetweenfixed(ormoving)platforms,e.g.,acoustic
thermometryandtomography,thatcanalsoprovidelong-rangenavigationsignalsforfloats(OceanObs’09
Dushawwhitepaper).Expandingourunderstandingofclimaticvulnerabilityofseafloorecosystemsand
relatedfunctions(includingclimate-relatedones)willrequiremonitoringofenvironmentalvariabilityand
dynamicecosystemresponsesusingseafloorplatforms.
1053
1054
1055
1056
1057
1058
1059
Page
1016
23
1013
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1061
1062
1063
1064
Belowisabriefreviewofconcerteddeploymentsofdeep-seaobservingtechnologies.Oftentheseprograms,
platforms,andnetworksaredeployedtoconductgeospatialorvariable-specificstudies.Assuchtheir
deploymentandoperationalmaturityvariesrelativetotheirfit-for-purposeintheglobalsustainedobserving
system.
1065
1066
1067
1068
1069
Inthefollowingsectiontechnologyreadinesslevelsareassessedbasedontheirscalability,maintainability,
anddocumentedbest-practicesforpredictabledeploymentanduse.So,whileitmayappearthatsome
technologieswhichhavebeensuccessfullydeployedinhighlyspecializedenvironmentsmaybelistedasless
mature,thisisduetothefactthattheyhaveyettobefullyvettedatascalerequiredtomeettheglobal
measurementneedsofagloballysustainedEOVobservingsystem.
1070
Mature
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
ShipboardSurveys:Deep-sea,referencequality,measurementsofclimate,biogeochemical,andbiological
variablesaremostlytakenduringshipboardsurveys,andtheirresultssubmittedtodatarepositories.Vitalfor
theassessmentofclimaticvariationsaretherepeatsectionstudiesconductedaspartoftheGO-SHIP
Program.Presently,theGO-SHIPprogramsupportsalimitednumberoftrans-oceanicstudiestypically
repeatedatdecadalintervals(Talleyetal.2016).Thissparsetemporalsamplingwithlargegapsbetweenshiptracks(typicallyafewthousandkilometers)resultsinincrementalincreasesintheunderstandingoftheglobal
deepoceanatdecadalandlongertimescales.Asaresulteffortstocompletelyquantifysealevel,energyand
freshwaterstorage,arehinderedbylargeuncertainties.Thephysicalandclimateandbiogeochemistry
communitiescoordinatewellanddatacollectionpoliciesoftheseactivitiesaremature.However,for
biologicalsurveys,globalandcross-regionalcoordinationofsamplingeffortsarestillrare,andneedahigh
levelofstandardizationofsamplingequipment,data,andmetadata.Mobilelaboratoriescomposedofarrays
ofsmallautonomousbenthicplatforms(associatedornotwithfixedpointobservatories)willbeneededto
addressspecificclimate-sensitivitywithinregionsofparticularinterest/concernacrossrelevantandcommon
spatialscales.
ShipboardTimeSeries:Thereareseveraldeep-sealocationsthathostship-basedstudiesoftimeseriesofsea
floorbiologicalcommunitiesandprocesses(Gloveretal.2010;Smithetal2013).Atabyssaldepthstimeseries
studieshavebeenconductedinseveraloftheworld’soceanbasins.Mostofthetimeseriesthatbeganinthe
1940swiththeoceanweathershipshavebeendiscontinued,butothersarestillvisitedfrequently.Afew
monthlyvisitedstationshavebeeninstitutednearmid-oceanislands(e.g.,HOTSandBATS).Duringthistime,
spanningarangeofdepthsandenvironments,nearlyallofthestudieshavewitnessedchangesinboth
hydrographicpropertiesalongwithcorrespondingbiologicalresponses(Gloveretal.2010).
MooringArrays:Thereexistsalimitedsuiteofmooringarraysdesignedtoobservearangeofregionsand
deep-oceanphenomena.Thesemooringsprovidevaluablemeasurementsofdeep-oceanvariablessuchas
temperature,salinity,andcurrentsathightemporalresolution(comparedtoship-basedmeasurements),but
lackcomprehensivespatialcoverage.Inthefuturespeciallyequippedmooringswithbio-opticaland
biogeochemicalsensormodules,sedimenttrapsand/orcamerasystemsarekeytolinkphysicalandchemical
variationstobiologicalones;andsurfaceoceanprocessestothoseindeepoceanandseafloorrealms.A
promisingdevelopment,theinternationalnetworkOceanSITESisimprovingitsmeasurementofthedeep
oceanbydeployingmaturetemperatureandsalinitysensorsontheirmooringsbelow2000meters.
RemotelyOperatedVehicles,MannedSubmersibles,andSubmersibles:Overthepastfewdecadesseveral
long-termstudiesofgeochemistryandbiologicalstructureshavebeenconductedatdifferenttypesofhot
spotecosystemssuchascoldseeps,coldwatercoralreefs,deep-seahydrothermalvents,orseafloor
experiments(e.g.LTERsiteHausgarten).AvarietyofsubmersiblesandRemotelyOperatedVehicles(ROV)
havebeenusedtostudyandconductexperimentsinavarietyofcommunitiesassociatedwithwhalefalls,
seepbenthos,canyons,hydrothermalvents,anddeep-oceanridges.However,thelong-termstudyof
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
24
Programs,Platforms,Networks
Page
1060
1152
1153
1154
1155
1156
1157
1158
Overthelasttwodecades,variousflavorsofunderseacablessystemsforoceanobservinghavebeeninstalled
andareoperating.SinglenodesystemssuchasMARS(MontereyBayat900m)andtheALOHACabled
Observatory(ACOatStationALOHA,thesiteoftheHawaiiOceanTimeseries)canprovideafairamountof
powerandcommunicationsinaplugandplayfashion.Regionalscalesystemswithmultiplenodesover100s
ofkilometersarerepresentedbyNEPTUNECanada,DONET,andOOIcabledarray.DONETalsofunctionsasa
seismic/tsunamiearlywarningsystem.TheS-NetsystemoffJapanisstrictlyanoperationalwarningsystem
(5000km,200sensors),albeititspressuresensorswouldbeveryusefulforoceanographicuse.
1159
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
25
midwaterecosystemsoffshoreMontereyistheonlyoneofitskind,inahabitatthemakesupmostofthe
oceansvolume.Completelylackingaretime-seriesdatafromdepthsof6,000-11,000metersintheocean’s
trenches.
PilotPhase
AutonomousSingleMooringsandMooringArrays:Othertechniquesincludingsustainedautonomous
mooringsandmooringarraysarepresentlysamplingthroughoutthewatercolumnatavarietyofkey
locations(e.g.OceanSITES,reviewbyGloveretal.2010).However,autonomousmooringtechnologymustbe
improvedinordertoallowformorelong-termanddeepermeasurements.Instrumentdevelopmentis
essentialinordertopermitoperationatvariabledepths(profilingofsubsurfaceandsurface),increasethe
lifetimesofmooringdeploymentsincludingtheirenergysupply,improvethestabilityandaccuracyof
instrumentcalibrations,decreasethecostofhardwareanddeployments,andallowcontinuousoroccasional
telemetryofdatatoshore.Datatelemetryinice-coveredandparticularlyharshenvironmentsrequires
developmentofretractablemooringcomponents(i.e.,underwaterwinches)andautomateddetectionofice
coverandseastate.Despitethebenefitsofferedthroughtheexpandeduseofmooringsandarrays,costand
logisticconsiderationsprecludeglobaldeploymentatsufficientspatialresolutionrequiredtoquantifyglobal
heatandfreshwaterinventories,andchangesinglobalcirculationpatterns.
DeepFloatsandGliders,LongRangeAUVs:Inordertoachieveadequateglobalsamplingofthedeepocean
somecombinationofdeepfloatsanddeepglidersmustbedeployed.Bothdeepfloatsanddeepglidersare
extensionsofexistingtechnology,andarebeingmaturedtoincludethemeasurementoftemperature,
salinity,andsoonoxygen,alongwithotherwaterpropertiessuchasnutrientsorgases.Sensortechnologies
arebeingdevelopedthataresufficientlylong-lived,small,efficient,andaffordable.Gliderscanalsomeasure
velocitiesdirectlyusingADCPs.DeepfloatsofferthepossibilitytoextendsomeEOVmeasurementsfrom
2000mtofulloceandepth.Indeed,severalnationsarecurrentlydeployingsmallnumbersofdeepArgofloats
inpilotregionalarrays,withadesignstudyforaglobalDeepArgoarray(Johnsonetal.2015).Repeatglider
trackscouldbeestablishedanddesignedtoincreasethetemporalandspatialresolutionofshipboardsurveys.
Thedeploymentofsomecombinationofautonomousassetsisappropriate,withdeepglidersrepeatedly
measuringacrossstrongandvariableboundarycurrents,whiledeepfloatsmeasurethebroadinterior.
CabledUnderwaterObservatories:Recently,permanentcabledunderwaterobservatorieshaveoffereda
uniquestepforwardinfixed-pointoceanobservation.Theirabilitytomeasureabroadrangeofenvironmental
elementsisenhancedbytheirdedicatedpowerandcommunicationcapabilities.Deep-watercablesprovide
energyandcommunicationenablingrepeat,temporallyandspatiallytargetedbiologicalsamplingandanalysis
inboththewatercolumnandattheseafloor.Sensorsamplingcanalsobecoupledwithvideo-and
photographicrecordingofhabitats,organismsandprocesses.Theseobservatorieshavethecapacityto
providenewmeasurementsforallfieldsofoceanscience,especiallyenergy-anddata-costlycamera
observations;tointegratethosewhichhavenotbeencoveredbyautonomoussensing,includingderived
processes,suchasproductivity,growthrates,andbiodiversityshifts.Modularinstrumentsforbio-optical,
molecular,chemical,geneticandbehavioralstudiesexist,butcanonlybedeployedintheopenoceanfor
researchwhenaccompaniedbyanenergysourceanddatatransfercapability.Thereforesubstantial
innovationsaretobeexpectedthroughtheuseofcabledobservatories,especiallyinthefieldsofbiological
oceanographyandecology,andmonitoringbiodiversitychangeandecosystemfunction.
Page
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1174
Concept
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
MobileDeep-seaLaboratories:Anapproachchampionedbybenthicresearchersandthedeep-subsurface
microbiologicalcommunityhasbeenthedevelopmentofmobiledeep-sealaboratories,whichmaybemoved
fromregiontoregion.Thesemobilefacilitiesareframes(landers)capableofhostingasuiteofhydrographic,
biogeochemical,opticalandacousticsensors,aswellasfixedbiologicalsurveyequipment(e.g.benthic
chambers,microprofilers,sedimenttraps,planktonrecorders,larvalpumps,molecularsequencers)and
processexperiments(e.g.,respirometers,colonizationsubstrates,organicfalls).Thesefacilitiesofferthe
optionofdeploymentandoperationindifferentregionsforextendedperiodsoftime(monthstoyears),as
wellasbeingreplicatedanddeployedinmultipledeep-oceansettings.Oncematurethecommunitymayelect
tosupportaninternationalmannedhabitatinthedeepsea.
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
Environmentalsensingontelecommunicationscables:Attheconceptphaseisanewefforttoadd
environmentalsensorstotrans-oceaniccommercialtelecommunicationscablesystems(JTFSMARTCables,
http://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx).Thesesystemshaverepeaters
every50-100km(e.g.,mesoscaleresolvingalongthecablepath),whichcanprovidemodestpowerand
communications.Currentplanscallforoceanbottompressureandtemperature,with3-dacceleration,to
monitoroceancirculationandclimate,tsunamisandearthquakes.Giventhatthereareabout1.5Gmof
presentlyinstalledcable(with25yearlife),anditisrefreshedevery10-15yearsfornewtechnology,overthis
sametimeframeonecouldobtainasmanyas20,000seafloormini-nodesspanningoceanbasins.Itislikely
thatadditional/othersensors(e.g.,salinity,passiveacoustics,invertedechosounder/acousticmodem,biooptics,amongothers)couldbeadded.Thisnewapplicationriding“piggy-back”onexistingverymature,
extremelyhighreliabilitytechnologycanprovideaveryrobustcomplementtothecurrentinsituandsatellite
sensing(altimetryandgravity).(https://eos.org/meeting-reports/submarine-cable-systems-for-futuresocietal-needs).
1198
Sensors,ProcessesandTechniques
1199
1200
1201
1202
1203
1204
1205
1206
1207
Forthedeepoceanobservingcommunityobstaclesrelatedtotheadvanceofdeep-seaobservationsinclude
thelimitedsuiteofsensors,analyticaltools,orsamplinginstrumentsthatcanbedeployedonautonomous
platforms.Processingandanalyzingdatastreamslikethosefromphotographicorgeneticsequencingishighly
effortintensive.Suchanalyticalworkflowswillbenefitfromcontinueddevelopmenttowardsremovinghuman
interventionstepsingeneratingusefulknowledge.Today,timeseriesstudiesofthedeepoceandepend
primarilyonship-basedsamplingefforts(Gloveretal.2010)thatareexpensiveanddifficulttosustainat
temporalandspatialscalesrequiredforclimatestudies.Assuchthedeepoceanobservingcommunityis
challengedtoexpandtheobservingsystemanddeterminetheappropriatemixofexistingsensorsand
platformsandtheattendantdeploymentofnewfixedandautonomoussensorsandplatforms.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
26
Beyondthewiderangeofsensorsandinstrumentsthatcanbedeployedviaabroadbandcabledobservatory,
theymayhavethecapacitytohostaseriesofdata-intensivetechnologiessuchasrobotics,video,andin-situ
molecularmeasurementtechniques.Sporadiceventsoncedetected,withtheaidofnetworktechnology,may
allowresearcherstointeractwiththemodularcomponentsoftheobservatoryandpotentiallyadaptthe
samplingpatternsofindividualsensorstodynamicallyaddobservationsandmanipulations.Thisopportunity
willenablecustomobservationandresearchofepisodiceventssuchassuddenhydrocarbonreleases,volcanic
eruptions,oceantemperatureanomalies,andseverebenthicstorms.Observatoriesfocusedontheseafloor
willofferearthandoceanscientistsnewopportunitiestostudymultiple,interrelatedprocessesovertime
scalesrangingfromsecondstodecades.Theseincludeepisodicprocessessuchassporadicdeep-ocean
convectionathighlatitudes,submarineslides,alongwiththeresultingbiological,chemicalandphysical
changes.Additionally,theseobservatorieswillallowforthestudyofprocessestakingplaceoverperiods
rangingfrommonthstoseveralyears,suchasmethanehydratedissolution,biomassvariability,aswellas
globalandlong-termchangesincludingwarmingtrendsandoceanacidification.
Page
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1231
Physical and Climate Observations
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
Sensorsthatmeasuretemperature,salinity,tracers,andvelocityonplatformssuchasships,moorings,and
cabledobservatoriesarerelativelymature.SamplingofCFCs,SF6,canbemeasuredwithahighdegreeof
39
accuracyandprecisionfromseagoingresearchvesselsandanalyzedonboard,while Arsamplingrequires
14
thatthesamplesarestoredduringthecruiseforlateranalysisonshore,(IOCCPreport14).Additionally, C
measurementtechniquesarewellestablished,andcompletedon-shoreoncethecruisehascompleted.
TemperatureandsalinitymeasurementtechnologiesondeepArgofloats,gliders,andsubmersiblesare
currentlybeingtestedandmatured.OceanBottomPressure(OBP)measurementsonmoorings,oncabled
observatories,andgravimetryonsatelliteplatformsarealsobeingmatured.
Insitumeasurementofcurrentsonmooredarraysismature,butisinthepilotphasewithregardstothe
deploymentanduseofdeepglidersanddeepArgofloats.Anotheremergingpracticeisthecombinationof
OBPandsealevelmeasurementsatsufficientaccuracylevelsastoenablethedistinctionofwhereandwhat
changesinmassandheatcontentimpactsealevel(Ponte2012).
1245
1246
1247
1248
1249
1250
Acousticnavigationandtomographyareusedtobetterdefinetheoceanvelocityfield,acousticfloattracking
haslongbeenusedforprocessexperiments.Oneshouldconsidertheimplementationofbasinscale
infrastructuresystems(i.e.,sourcesatlowerfrequency,broaderbandwidth)toaffectthis,usingreceiverson
Argofloats(“shallow”and“deep”)aswellasconventionaldeepRAFOSfloats.Thiswouldenableobtaining
longterm,hightemporalresolutiontrajectories(velocityEOV).Thesameacousticreceivercanbeusedfor
windandrainmeasurements(EOVs?),marinemammaland“soundscape”monitoring(EOV?).
1251
1252
1253
1254
1255
1256
Acoustictomographyistechnicallymature,havingbeenusedincabled(ATOC)andmooredscenariosfor
decades.ArraysarecurrentlydeployedinFramStraitandtheBeaufortSeawithexpansionintotheArctic
anticipated(ledbyNorway).Watercolumnspanningtemperatureandabsolutevelocity(EOVs)withsome
depthresolutioncanbeobtainedfromtheacoustictraveltimesbetweeninstruments.Workisunderwayto
usemobileplatformsasreceivers(e.g.,gliders).Thesamelowfrequencybroadbandsourcescouldbeusedfor
bothnavigationaswellastomography.Thepathaveragesinherentlysuppressinternalwaveeffectsresulting
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
27
Severalelementsnottraditionallyincorporatedinto
observingsystemsmaybeconsidered:
• Visual:Videoandphotocameraimagery,
Repeatlarge-scaleAUV(image)surveysofthe
bottomforbiology
• Sedimentprofileimagingcamera
• Acoustics:Sonar,passivemonitoring,ADCPs,
invertedechosounders,long-rangenavigation
andacoustictomography/thermometry
• Opticalinstrumentation:particlecounters,
Zooscan
• Timeseries:viasurfaceship(e.g.,coring,
landers),ROV,HOV,hybridvehicles(samplingandtransectsofvarioussorts-cores,hardsubstrates,
biogenicsubstrates)andgeochemicaltracerappliedtoecologicalstudies
• In-situsamplers:Planktonrecorders(gauze),Larvalpumps,Sedimenttraps,fluidosmo-samplers
• Experiments:respirometers,carbonatedissolutionunits,tracerdeployments,colonizationsubstrates,
sedimentmanipulations,organicenrichments(carcasses,phytodetritus)
• In-situMolecular/Genomicanalysis,andnewautonomouschemicalsensorsO2,H2S,NO3-,CO2/pH,N20)
forexperimentmonitoring
• Horizontalelectricfieldtodetermineabsolutebarotropicvelocity,usingcables,“point”sensorsonthe
bottom,andfloats
Page
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
inahighsignaltonoiseratio.Themethodis
calibrationfree(atimemeasurement).A
verysignificantbenefitofthemethodisthe
growthinthenumberofdataisquadratic:
thinkofnpassivereceiversonaSMART
cabletraversinganoceanbasin.Addinga
singlesourceimmediatelygivesndata;a
secondsourceaddsanotherndata,andone
couldobtainhighaccuracybasinscaleheat
contentinaday.
1267
1268
Carbon and Biogeochemistry
Observations
1272
1273
1274
1275
1276
Inthecarbon,biogeochemistryarenashipbasedobservationsofinorganiccarbon:
alkalinity,pCO2,pHareinthematurephase,
whilethesesamemeasurementtechnologiesarecurrentlyintheconceptorpilotphasewhendeployedon
moorings,deepArgofloats,deepglidersandsubmersibles.Oxygensensorsarematureonships,withaccuracy
andlong-termstabilityclosetobeingrobustforfloatsandgliders.Thereisacontinuingneedtodevelop
sensorsthatcanbesupportedonautonomousplatforms/robotics,asweneedmanymoreobservationsthan
canbemadefromships,andthecostsareordersofmagnitudeless.
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
Theanalyticalmethodsforinorganiccarbonsamplesarewelldeveloped.Certifiedreferencematerialsare
available,(forDICandTA)andusedtomeetlong-termaccuracyrequirements(Dicksonetal.2007andWang
etal.2007).Inthefuture,improvementsinsensortechnologyanddatadeliverytimeswilllikelyallowforlongterm,bettercalibrated,measurementsofcarbonatevariablesonautonomousplatforms.Theseelementsif
presentinthedeepoceaninterior,willbeusefultomonitorshorttimevariabilityandseasonality,however,
theywilllikelynotbeaccurateenoughtomonitordecadalchanges.
13
TotalDissolvedInorganicCarbonand CO2measurementandanalytictechniquesarewellestablished,aswell
14
as Cusingacceleratormassspectrometry(AMS).Samplesaretypicallytakenontheshipforshore-based
analysis.Thesecalibrationroutinesandinter-laboratorycomparisonsarewellestablished;inpartastheresult
13
ofextensiveatmospheric CO2measurementintercomparisons.
Todate,theaccuracyofinorganicnutrientmeasurementshave,ingeneral,beeninsufficientintoquantify
changesinthedeepocean.Measurementsarenormallydonewithspectrophotometricmethodsusingauto
analyzers.Analysisshouldbeperformedontheshipassoonaspossibleaftersampling.Oftenpreservingthe
samplesformeasurementonshore,afterthecruise,hasanegativeimpactonprecisionandaccuracy.
Certifiedreferencematerialsarenowavailablewhichwillgreatlyimproveaccuracyandcomparabilityof
measurementsashasoccurredwithstandarduseofCRMsfortotaldissolvedinorganiccarbonandalkalinity,
andstronglyrecommendedforuse(IOCCPreport14;Gordonetal.1993).
DissolvedOxygenMeasurementsonboardarecarriedoutusingWinkler-titration,atechniqueestablishedin
th
theendofthe19 century.Oxygencanalsobemeasuredpreciselywithsensorsmountedeitheronthe
Conductivity,Temperature,Depth(CTD)packageoronautonomousvehicles(gliders,floatsetc.),however
thesemeasurementsalsorequirecalibrationandreferencingusingWinklertitrations(IOCCPreport14).A
majoradvancehasbeenthecapabilitytoreferencetheoxygensensorstoairandprofilingfloatsarebeing
reconfiguredtoofferthisstandardizationeachtimeitreachesthesurface(Bushinskyetal.,2016)
Opticaltoolsthatincludechl-afluorescence,opticalbackscatter,holographyandlight-fieldimagingcanbe
usedinprofilingmodestodeterminetheparticletype-andsize-distributionsintimeorspace(e.g.Briggsetal.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
28
1269
1270
1271
1313
Biodiversity and Ecosystem Observations
1314
1315
1316
1317
1318
1319
BiologicalOxygenDemandorRemineralizationRate
observationtechniquesareinthepilottomature
phaseacrossplatforms.Oxygenconsumptioncanbe
assessedbybottleorsedimentcoreincubationsand
in-situbychamberincubationsormicroprofiler
measurements.
1320
1321
1322
1323
1324
1325
1326
Standingstockorbiomassdistributionacrosstaxaandfaunalsizeclasseshelptoassesstrophicstructureof
food-webs.Sometaxaandproductivitycanbeassessedthroughthemonitoringofbio-optical
instrumentation,bioluminescenceorbysoundcollectedviapassiveoractivehydro-acousticmeasurements
(formammals,fishandzooplankton).Theuseofstereoscopicimaging,holographyandlight-fieldcamerasnot
onlyshowspromiseforthequantificationoffragilemarinesnowparticles,butalsoimportantecological
quantitieslikegelatinouszooplanktonthatareverychallengingtostudyotherwise.Thesemeasurementsand
spatial-temporaldistributionrequiresadditionalexperimentationandunderstanding.
1327
1328
1329
1330
1331
1332
ThereareseveralbiodiversityandecosystemEOVsstillintheconceptphase.Thedifficultyincapturingand
observingdeep-sealifepresentstremendouschallenges,althoughship-basedsamplingmethodsarewell
established.However,expense,thehighlevelofeffortrequired,workflow/delayandinvasivenessmake
themunsuitedforroutineandfrequentobservationsatlargespatialscales.LOKI,flowcytometry,andvarious
opticalimagingsystemsarewellestablished.Whiletheseimagingsystemsaremature,theautomatedspecies
recognitiontechnologyisnot,andworkisneededtoenhancevalueforbiodiversityassessment.
1333
1334
1335
1336
Trophicinteractionscanbeobservedthroughthestudyofstablecarbon,nitrogen,sulfurisotopesignatures,
lipidbiomarkers,andtheaccumulationofpollutantsortracersfoundinharvestedspeciesorthosecapturedin
traps.Physiologicaldispersion,andadaptiontoecosystemchangeiscommonlyassessedthroughin-situ,
shipboardorlaboratoryexperiments,however,fewdeep-seaorganismsareaccessible.
1337
1338
1339
1340
1341
1342
1343
1344
1345
Diversitybaselineandturnoverstudiesaredifficult,againduetothechallengesassociatedwithobservation
andsampling.Therehasbeensomeprogressingene-basedrapidbiodiversityassessments(e.g.,
metagenomics,DNA-barcoding),butsuccessfulapplicationdependsonbaselineknowledgeofspeciesidentity.
Diversityindicators,suchasrareversusabundantspecies,canbeappliedtoestimatetheproportional
populationoforganisms.Diversityindicescanalsobeusedtoassessresiliencetochange,alongwiththe
restorationofcommunitiesinimpactedenvironments.Moreresearchmayrevealindicatorsspeciesthatcan
beused(likeacanaryinacoalmine)toreflectthestatusandhealthofdifferentecosystemsandprovideearly
warningofimpendingchange.However,thedifficultytovalidatebioticqualityindexeswillbeashighasinthe
coastalzone.
1346
1347
1348
Theavailabilityofanopen-accessrepositoryfordeep-seageneticsequencedatatakesonincreasing
importanceasbarcodingandothergenetictoolsgainuseindiversityassessment.Thisisparticularlytruefor
meiofauna,forwhichassessmentsareevenmoretimeconsumingandrequirerareexpertise.
1349
1350
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
29
2011).Quantitativeinferencescanthenbemadefor
quantitieslikeparticulateorganicremineralization
lengthscale(RLS)(Sensue,BuesselerandBoyd2009)
orthetypesandsizesofparticlesassociatedwith
variationinRLS.
Page
1307
1308
1309
1310
1311
1312
1353
1354
Introduction
1355
1356
1357
1358
AstheoutputoftheDeepOcean,oranyobservingsystem,dataandinformationproductsaretheinterface
formostusers.FortheDeepOceanObservingcommunity,theseproductsincluderawdata,deriveddata
products,models,ansoftware.Weincludealloftheseas“informationproducts”thattheDOOSinformation
managementstrategymustaddress,andusethetermsdataandinformationinterchangeably.
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
Theneedfordataandinformation
runsthroughoutthescientificgoalsof
theDeepOceanObservingSystem.A
globalunderstandingofthedeep
ocean,whetherfromtheperspective
ofdeepwaterformationpatterns,
heatbudgets,acidification,or
biodiversitypatterns,requiresthe
integrationofdatafrommany
observatoriesandresearchprograms.
Progressinareaslikeclimatechange,
whereforensicchallengestoscientific
resultsarelikely,requirethatdata,
models,andmodeloutputbewelldocumented,citable,andofknown
provenance.Acrosstheboard,
observationsinthedeepoceanare
sufficientlysparseandexpensivethat
availabledatashouldbesharedand
reusedforthefieldtoprogress.
1379
InformationSystemGuidelines
1380
1381
1382
1383
1384
1385
1386
1387
1388
AshasbeenadoptedbyGOOS,thegoaloftheDOOSinformationmanagementstrategyandpolicywillbeto
fosteranopenandinteroperablesystemofregional,coastal,andglobalobservingnetworksthatrapidlyand
systematicallyacquireanddisseminatedataanddataproductstoservetheneedsofscientists,government
agencies,educators,non-governmentalorganizations,andthepublic.Thisdocumentdeliberatelydoesnot
putforwardaproposedarchitectureortechnicalframeworkforaDOOSinformationsystemapproach,
becausethetechnicalsolutionmustfollowthescientificrequirements:asDOOSfurtherdevelopsthescience
componentsofitsstrategicroadmap,andconductsanassessmentofthemanycurrentsystems’capabilities,a
roadmapforthespecificIMstrategiesrequiredtosupporttheDOOSsciencevisioncanbedeveloped.Instead,
wepresentbelowasetofguidelinesforIMstrategydevelopment.
1389
1390
1391
1392
PromoteOpenData.Tothedegreepossiblewithinnationalandfundingrestrictions,DOOSwillpromotethe
openandfreeexchangeofscientificdata,asdescribedintheOpenDatainaBigDataWorldAccord(Science
International2015)andendorsedbytheInternationalCouncilforScience.Thisincludesacceptingthe
fundamentalresponsibilityofsharingsciencedata:
1393
1394
1395
1396
Publiclyfundedscientistshavearesponsibilitytocontributetothepublicgoodthroughthecreationand
communicationofnewknowledge,ofwhichassociateddataareintrinsicparts.Theyshouldmakesuchdata
openlyavailabletoothersassoonaspossibleaftertheirproductioninwaysthatpermitthemtobere-used
andre-purposed.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
1352
30
PART FOUR
Data and Information Products:
Importance of Open and Shared Data
1351
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
AnopendatapolicywillseektogeneratearippleeffectthatacceleratestheoceanandEarthobservation
community’sprogresstowardtheapplicationofthebenefitsofdeep-oceanobservationsacrossmultiple
scientificdisciplines,andincreaseduseofthedataandinformationasappliedtotheunderstandingand
addressingofsocietalissuesglobally.Thebenefitsofdatasharinginfurtheringscientificprogressarewell
known.Asoneexample,theTAOarray,atropicalPacificOceanantennafordetectingElNiñoandLaNiña,was
ahighlyvisiblepioneerinanopendatapolicyinthearenaofphysicaloceanography.Numericaldataand
productsincludingmanydifferenttypesofplotsweremadeavailableinrealtimeviatheinternet.Thisopen
policygeneratedaveryhighlevelofdatauseintheresearchcommunity,aswellasanincreasingrelianceon
thedataforseasonalclimatepredictionsmadebyweatherandclimateservices--resultinginverylarge
economicbenefitsforsociety.
1408
1409
1410
1411
1412
Morerecently,theglobalArgoarrayofprofilingtemperatureandsalinitymeasuringfloatshasadoptedan
opendatapolicywithsimilarbenefitsintermsofburgeoningscientificandoperationalusercommunities.The
globalnatureofArgomeansthatitisincreasinglyusefulininitializingoperationalmodelsanddata
assimilationproducts.Argoarraydataproductsareusedforhindcasting,now-casting,andforecasting,and
morerecentlyarebeingusedexperimentallyforinitializingmodelsfordecadalclimateprediction.
1413
1414
1415
1416
TheimportanceofopendataisparticularlyimportantinDeepOceanObservingscience,wherelackofdata
limitscientificprogress,andmissingdatafromthehistoricrecordcannotbereproduced.DOOSwillpromote
theopensharingofdatathroughmaturerepositories,suchasthosemeetingICSUWorldDataSystem(WDS)
andtheDataSealofApproval(DSA)CoreTrustworthyDataRepositoryRequirements(Edmundsetal.2016).
1417
1418
1419
1420
1421
1422
1423
1424
1425
PromoteBestPracticesforInformationManagement.Inadditiontoacommitmenttoopendata,DOOSwill
worktoidentifyandpromotebestpracticesrelatingtodatamanagementanddatasharingfordeepocean
observations.Thesewillincludegeneralprinciples,suchastheFAIRguidingprinciplesforscientificdata
managementandstewardshipformakingdataFindable,Accessible,Interoperable,andReusable(BoxX
(optional)Wilkinsonetal2016),andtheenablingpracticesofcitationandprovenance,interoperability,nonrestrictivereuse,andlinkabilitynamedintheScienceInternational(2015)Accord.Itwillalsoincludethe
evaluationandpromotionofdomainspecificpractices,suchasqualitycontrolproceduresforspecificEOVs,
andparticularstandards,vocabularies,andservicesprotocolsneededtosharedeepoceandataeffectively.
Thespecificpracticesendorsedwillbeidentifiedbasedonscientificpriorities.
1426
1427
1428
1429
1430
1431
1432
1433
Leverageexistinginformationmanagementinfrastructure.Deepoceandataareheldinmanywellestablishedrepositoriesaroundtheworld,andmanydeepoceanprojectsalreadyhaveamandateto
contributedatatoaspecifiedrepository,suchasthenationaloceandatacenterfortheircountry.Itisneither
feasiblenorefficienttocreateanewglobaldeepoceaninformationsystemdesignedtoholdalldeep-sea
data.Furthermore,segregatingdeepseadatafromotheroceandataisnotscientificallydesirable:deepwater
formationcanonlybestudiedinthecontextofsurfacewatermovementsandproperties,ParticulateOrganic
Matterfluxestotheseafloorarebestunderstoodalongsidesurfaceproductivitydata,thepatternsand
processesdrivingdeepbiodiversityshouldberelatedtoshallowercommunities,etc.
1434
1435
1436
1437
1438
1439
1440
1441
Therearealsomanyongoingeffortstobetterintegratedataacrossrepositories,toidentifyandpromotebest
practicesfordatacurationandsharing,andtodevelopstandardsandprotocolstoimprovedataquality,
accessibility,andusability.GroupsliketheResearchDataAlliance,theGrouponEarthObservations,theOpen
GeospatialConsortium,andtheOceanDataInteroperabilityPlatformareworkinginternationallyonthese
challenges,andhavemanynationalequivalentsworkingwithinindividualcountries.Domain-specificgroups
suchastheInternationalOceanographicDataandInformationExchange(IODE)andQualityAssuranceofReal
TimeOceanData(QARTOD)aredevelopinganddisseminatingprotocolsspecifictovarioustypesofocean
data.
1442
1443
1444
1445
DOOSwillnotduplicate,butwillseektoevaluate,contributeto,andsupplementtheseongoingactivitiesto
bestmeettheneedsoftheDOOScommunity.TowhatdegreenewIMsystemcomponentsorpracticesmust
bedeveloped,vshavingDOOSpromoteanddisseminateexistingpracticesandcontributetoanduseexisting
resources,willdependonthespecificprioritiessetforthbytheDOOScommunity.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
31
Page
1397
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
Identifytherequirementsandprioritiesofthedeepoceanobservingcommunity.Despitetheplethoraof
institutional,national,andinternationaldataefforts,noexistinginformationsystemcurrentlymeetsthe
needsoftheDOOSsciencecommunity.BroaddialogamongDOOSparticipantswillassistinidentifyingwhat
partnershipsarerequiredtocreatetheinformationneededtosupportscientificdiscoveryandaddress
societalissuesandassistindecisionmaking.AkeyelementwillbeidentificationofDOOSstakeholders.Who
willusethedata,andhow?Specificdeepoceanresearchtopicswillhavespecificrequirements,anddifferent
challengeswillhavedifferentsolutions.Anotherkeyelementwillbetosurveythecurrentprojectsproducing
deepoceandatatoaskwhethertheirdata,modelsandsoftwareareshared,andifsothroughwhat
repository;whatarethestandardsthattheirinformationproductsadhereto;andwhatcapabilitiesand
servicesdotherepositoriessupport?FinallyagapanalysisevaluatingwhatIMcapabilitiesarecurrentlyahigh
priorityforstakeholdersbutnotsupportedbyexistingrepositories/IMsystemscanidentifyprioritiesforDOOS
IMstrategydevelopment.
1458
1459
1460
1461
Thecreationandexecutionofasuccessfuldatamanagementcapabilitywillrequireasustainedeffort,
characterizedbyacommitmentacrossthescientificmarinecommunities,andcontinualcoordinationamong
internationalcounterparts.DOOSwilltakeleadintheneededcoordinationandconsensus-buildingamonga
widerangeofplanning,implementation,andusercommunities.
1462
Page
32
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1464
[thistextwillbeincorporatedintoanotherplaceinthereport]
1465
TheRoleofModels
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
Theroleofmodelsandtheirdataneedsareanimportantconsiderationwhendesigningadeepocean
observingsystem.First,giventheirroleintrenddetection,somemodelsprovideestimatesofvariablesnot
accessiblethroughdirectmeasurements.Theyalsoprovideanextrapolationfunctionextendingobservations
andprovidingestimatesofthegranularityneededtoassesssignal-to-noiseratiosofclimaticallysensitive
variables.Constrainedbydirectmeasurements,modelsoftenprovidedynamicinterpolationsconsistingof
sparseobservationsofmanytypes--withthegoalofprovidingaconsistentdepictionofchangesintheocean.
Finally,modelsareapivotalcomponentfordecadaltomulti-centennialpredictionstudies.Theyrequire
knowledgeofapplicableinitialdeepoceanconditionsthatareoftenassociatedwithprocessesthatcontrol
changesinoceanheatcontentandthestorageoftracers.
Asmentionedabove,forthepurposesoftrenddetection,andspatialandtemporalsamplingisanimportant
oceanobservingsystemdesignconcern,(WunschandHeimbach2014).Currentmodelanalysisusingformer
parameterobservations,suggeststhatinordertobeoptimallyeffective,andinsomeinstancestobe
minimallyeffective,someregionsofthedeepoceanmayrequirespatialsamplingbelow2000matfrequencies
equaltothatofthecoreArgonetwork,currentlymeasuringabove2000m.Thisissuspectedforspecificeddyactiveregionsthatcouldbeusedtodeterminedeepstericheightvariabilityandlow-frequencytrend
detection,(Ponte2012).
Next,forthemodelingcommunity,quantificationofthedeepocean’sheatcontentandassociatedtrendsare
crucialforclosingtheEarth’senergybudget.Climatemodelsimulationofverticallynon-uniformratesofheat
absorptionandstoragemayprovideimportantcluestoresolvingsurfaceheatimbalanceswhichhavebecome
apparentinsomestudies,(Meehletal.2011,Palmeretal.2011).Asdemonstratedbythevariabilityamong
estimates,attemptstoquantifyheatcontentchangesfrommulti-decadalreanalysis,(e.g.,Cartonand
Santorelli2008)orotherwisedata-constrainedmodels(e.g.,SongandColberg2011),whilesuggestingdeep
oceanwarming,arehamperedbyverylargeremaininguncertainties,(Stammeretal.2010andMasudaetal.
2010;Kouketsuetal.2011,WunschandHeimbach2014).Despitethis,possiblyduetoreducedproductionof
coldanddensedeepandbottomwatersaroundAntarctica,aconsistentpictureemergesacrossdifferent
studiesofabyssalwarming.Unfortunately,theseresultsremaindifficulttoreproduceinmodelsgiventhese
highlysensitiveprocessesareeithersignificantlyunresolvedorarepoorlyrepresentedinthemodels,(Heuze
etal.2013;2015).Theconstraintofmodelswithbetterobservationsisakeytoimprovedprocess
representationandforincreasedconfidenceinmodelresults.
Thegrowinginterestindecadal-to-centennialscalepredictionsorprojections,(e.g.,Cane,2010)alsoplaces
increasinglystringentdemandsonsuitableinitialconditions–asmostcurrentmodelpredictionsare
influencedbyartificialmodeldrift,(Hurrelletal.2009;Meehletal.2009).Today,decadalpredictionstudies
remaininconclusivegivenuncertaintiesrelatedtowhetherornotdeepoceanconditionshavebeen
sufficientlyconstrained.Predictabilitystudiessuggestthatchangesindeepoceandensity(duetoeddynoise)
maytriggerresponsesinclimateindicessufficientlylargeenoughtolimittheiraccuracytolessthanadecade,
(Zannaetal.2012).Theoceanobservingcommunityischallengedtoconsidertherequirementsofpredictions
studiesandaddressthecapacityformodelstoexpandthepredictabilityhorizon.
Page
33
1463
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
PART FIVE
Strategic Roadmap:
DOOS Development and Improvement
1507
1508
1509
1510
Introduction
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
ThedevelopmentofDOOS,asaprojectinGOOS,willoccurinstages.Acommunity–widesurveyofdeepoceanobservingprograms,activities,andtoolswillbeconducted,andfollowedbyasmallcommunity
workshopdesignedtobringtogethermajordeepobservingprogramleaders.ThisworkshopwillinitiateDOOS
asa10-yearprograminwhichthedeepoceanresearchcommunitywilldefineanddevelopobservationsof
essentialphysical,chemical,geologicalandbiologicalvariables.InadditiontothearticulationofEOVs,DOOS
willexplorethesocietalissuesandscientificchallengesthatdrivetheneedforsustainedobservationofthe
deepocean.Therewillbeanoverviewoftheobservingelementscurrentlyinplace,whichplatformsand
technologiesaremeetingtheneedsofthesystem,andwherethereisaneedforimprovementortechnology
development.Therewillalsobeanexplorationoftheimpactandbenefitofastandardizedandopendata
policy.Lastly,theworkshopwillexplorestrategiesforachievingintegrationthroughtheidentificationof
expertpanelsandimplementationteamsthataremindfuloftheneedsofthedeepoceanobservingsystem
overall.
1523
Specificworkshopgoalsareto:
1524
1525
1.
Assesstheuses,applications,societalimportanceandrelevanceofdeepobservations.
1526
1527
1528
1529
2.
Define the key scientific questions that should be addressed with deep observations.
Characterize how shipboard (e.g. Go SHIP) and in-situ (e.g., Deep Argo, Core Argo,
Observatories,Gliders)andremotesensingobservingsystemsarecontributingtomeetthese
scientificandfunctionalrequirements,andidentifygaps,inefficienciesandvulnerabilities.
1530
1531
3.
Review the status of deep observing including an inventory of systems, geographic
coverage,andtypesofmeasurements.
1532
4.
Reviewandprioritizeexistingandpotentialessentialoceanvariablesindeepwaters.
1533
1534
1535
1536
1537
5.
Recommend revisions and/or adjustments to the current suite and configuration of
observingsystemstoenhancetheirresilienceandrobustnessinordertoproducedatain
amorecost-efficientandsustainablemannerfeasiblewithintheanticipatedenvelopeof
capability and resources. Determine need for new configurations, geographic locations,
waterdepths,fordeepobservingsystems.
1538
6.
Identifytechnologydevelopmentneedstofilldatagapsandaddressnewquestions.
1539
1540
7.
EvaluatelogisticalrequirementsforimplementationoftherecommendedDeepOcean
ObservingStrategy.
1541
1542
a.
Assessinterests,aswellaspotentialcontributingcapabilities,ofexistingand
newcollaboratorstowardsimplementingDeepOceanObservingStrategyneeds.
1543
1544
1545
1546
b.
Recommendstrategies(e.g.,training,developmentassistance,technology
transferprogramsandobservingsystemmanagement)toaddresslong-term
observingcapabilitiesofpotentialcontributorsinordertoimproverobustness
andresilienceofobservationaldatafromtheDeepOceanObservingStrategy.
8.
Evaluaterequirementsfordeliveryofdata,andderivedproductsandinformation,inreal
timeanddelayedmode(e.g.availability,quality,latency,integration/interoperability);
evaluatetheexistingdatasystemsforfitnessforpurpose.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
34
1548
1549
1550
Page
1547
1551
1552
1553
1554
1555
9.
Assessreadinessofnewtechnologies,theirpotentialimpactandfeasibilityinaddressing
requirements,andtheirpotentialtocontributetowardsaddressinggaps,improving
robustness/resilience,and/orloweringcostsperobservationindeepocean;recommend
newtechnologieswithgreatestpotentialtomeetcriticalrequirementsandsuggest
approachestoimprovethereadinessforinclusioninthesustainedobservingsystem.
1556
1557
1558
10. Develop a report of this workshop, with recommendations on the development of a
process for the ongoing evaluation of the observing system. Outcomes may include
formationofimplementationortaskteamstopursueDOOSthemes.
1559
1560
1561
1562
1563
1564
Byusingahighlycollaborative,EOV-basedapproachtheworkshopwillencourageincreasedpartnerships
acrosstheresearchandoperationalcommunities.Thesepartnershipswillworktoalign,assessandimprove
thereadinesslevelsofrequirements,technologiesandplatforms,anddataproductsthatareofcommon
interesttomultipleGOOScommunities;aswellastoothercommunitiesconductingdeep-oceanobserving
activitiesandusingtheoutput.
1565
1566
1567
1568
1569
AsubsequentDOOStaskmaybetofacilitatetheprovisionofanobservingsystemevaluationtestbedfornot
onlyquantitativelyevaluatingthecurrentobservingsystem,butmanyscenariosofchangesthereto,toguide
possiblerestructuringofthepresentsystemandtheintroductionofnewtechnologies.Thiswouldconsistof
astateoftheartmodelanddataassimilationthat,ifneededbe,istailoredtodifferentobservables.(i.e.,akin
toageneralpurpose“missionsimulator”usingNASAlanguage).
1570
1571
1572
1573
REMINDER:TheDOOSConsultativedraftisavailabletoallmembersofthedeep-oceanscientificand
regulatorycommunityforreview,andweencourageinput.Subsequenttotheinitialscopingworkshoptobe
heldinDecember2016,aconferenceorworkshopwillbeheldthatisopentoallinterested,withtheintentof
broadeningDOOSengagementglobally.
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
Aspartofthisrevisionprocess,theReporthasbeenpostedonlineforyourreviewandcomment:
http://www.deepoceanobserving.org
Weaskthatyouprovidethefollowinginyourresponses:
• Nameand/oraffiliation(pleasemakeanoteifyouprefertoremainanonymous)
• Linereferencenumberalongwithcommentorsuggestedchange
• Generalcommentsonthereportcontentand/orstructure
• Contactinformationshouldyourcommentsrequirefurtherdiscussion
Weaskthatyouemailyourcommentsto:[email protected].
ThefinalReportandthecommunityinputwillbeusedtoguidetheagendaanddiscussionsattheGlobalDOOS
Workshop7-9December2016.
1588
Page
35
1589
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1590
References
1591
1592
Adcroft, A., Scott, J. R., and Marotzke, J., 2001: Impact of geothermal heating on the global ocean
circulation. Geophys. Res. Lett., 28(9), 1735–1738.
1593
1594
1595
1596
1597
1598
Ardron, J. A., Rayfuse, R., Gjerde, K., Warner, R. 2014. The sustainable use and conservation of
biodiversity in ABNJ: What can be achieved using existing international agreements? Mar. Policy,
49, 98-108.
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
Bauerfeind, E., Nöthig, E. M. , Beszczynska, A. , Fahl, K. , Kaleschke, L. , Kreker, K. , Klages, M. ,
Soltwedel, T. , Lorenzen, C. and Wegner, J. 2009. Variations in vertical particle flux in the Eastern
Fram Strait (79°N/4°E) during 2000-2005. Results from the Deep-Sea Long-Term observatory
HAUSGARTEN. Deep- Sea Research I, 56, 1471-1487.
1624
1625
Billett, D. S. M., Bett, B. J., Reid, W. D. K., Boorman, B., Priede, I. G. 2010. Long-term change in the
abyssal NE Atlantic: The ‘Amperima Event’ revisited. Deep Sea Research Part I, 57, 1406-1417.
1626
1627
Boetius, A., Wenzhöfer, F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps.
Nature Geoscience, 6, 725-734.
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
Bograd, S.J., Pozo Buil, M., Di Lorenzo, E., Castro, C.G., Schroeder, I.D., Goericke, R., Anderson,
C.A., Benitez-Nelson, C., Whitney, F.A. 2015. Changes in source waters to the Southern California
Bight. Deep-Sea Research II, 112, 42-52.
Arnaud-Haond, S., Arrieta, J. M., Duarte, C. M. 2011. Marine Biodiversity and Gene Patents. Science,
331, 1521-1522.
Bauerfeind, E., Nöthig, E. M., Pauls, B., Kraft, A. and Beszczynska-Möller A. 2014. Variability in
pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term
observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009, J. Mar. Syst., 132, 95105.
Beaird, N. L., Fer I., Rhines, P. B., Eriksen, C. C. 2012. Dissipation of Turbulent Kinetic Energy
inferred from Seagliders: An application to the eastern Nordic Seas overflows. Journal of Physical
Oceanography, 42, 2268-2282.
Bergmann, M. , Soltwedel, T. and Klages, M. 2011. The interannual variability of megafaunal
assemblages in the Arctic deep sea: preliminary results from the HAUSGARTEN observatory
(79°N). Deep Sea Research I, 58, 711-723.
Beszczynska-Möller, A., Fahrbach, E., Schauer, U. and Hansen, E. 2012. Variability in Atlantic water
temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES Journal of Marine
Science, 69, 852-863.
Biastoch, A., Böning, C. W., Lutjeharms, J. R. E. and Schwarzkopf, F. U. 2009. Increase in Agulhas
leakage due to pole-ward shift of the Southern Hemisphere westerlies. Nature, 462, 495–498.
Page
Broggiato A., Arnaud-Haond S., Chiarolla C., Greiber T., 2014. Fair and equitable sharing of benefits
from the utilization of marine genetic resources in areas beyond national jurisdiction: Bridging the
gaps between science and policy. Marine Policy, 49, 176-185.
36
Brandt, A., Gooday, A. J., Brix S.B., Brökeland, W., Cedhagen, T., Choudhury, M., Cornelius, N.,
Danis, B., De Mesel, I., Diaz, R.J., Gillan, D. C., Ebbe, B., Howe, J., Janussen, D., Kaiser, S.,
Linse, K., Malyutina, M., Brandao, S., Pawlowski, J., Raupach, M., 2007. The Southern Ocean
deep sea: first insights into biodiversity and biogeography. Nature, 447, 307-311.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1640
1641
1642
Buhl-Mortensen L., Vanreusel A., Gooday, A. J., Levin L. A., Priede, I. G., Buhl-Mortensen P.
Gheerardyn H., King N. J., Raes, M. 2010. Biological structures as a source of habitat
heterogeneity and biodiversity on the deep ocean margins. Marine Ecology, 31, 21-50.
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
Cane, M. A. 2010. Climate science: decadal predictions in demand. Nature Geoscience, 3, 231-232.
1669
1670
Dickson, R.R., Rudels, B., Dye, S., Karcher, M., Meincke, J., Yashayaev, I., 2007. Current estimates
of freshwater flux through Arctic and subarctic seas. Progress in Oceanography 73, 210–230.
1671
1672
1673
1674
1675
1676
1677
1678
1679
Dong, S., Garzoli, S. L., Baringer, M. O., Meinen, C. S., Goni, G. J. 2011. The Role of Interocean
exchanges on Decadal variations of the meridional heat transport in the south Atlantic. Journal of
physical oceanography, 41, 1498-1511.
1680
1681
1682
1683
1684
1685
1686
1687
Emile-Geay, J., and Madec, G., 2009. Geothermal heating, diapycnal mixing and the abyssal
circulation. Ocean Science, 5, 203–218.
1688
1689
Fujita, R., Markham, A. C., Diaz J. E., Garcia, J. R. M., Sarborough, C., Greenfield, P., Black P., and
Aguilera, S. 2011. Revisiting ocean thermal energy conversion. Marine Policy, 36, 463-465.
1690
1691
Garzoli, S. L., and Matano, R. 2011. The South Atlantic and the Atlantic meridional overturning
circulation. Deep-Sea Research II, 58, 1837–1847.
Carmack, E. C., Yamamoto, K. M., Haine, T. W. N., Bacon, S., Bluhm, B. A., Lique, C., et al. 2016.
Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and
physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res.,
121, 1-43.
Carton, J. A., and Santorelli, A. 2008. Global decadal upper-ocean heat content as viewed in nine
analyses. Journal of Climate, 21-22, 6015-6035.
Copley, J. , Cuvelier, D. , Desbruyères, D. , Kalogeropoulou, V. , Klages, M. , Lampadariou, N. ,
Lejeusne, C. ,C. ,L. J. , Perez, T. , Ruhl, H. , Sarrazin, J. , Soltwedel, T. , Soto, E. H. , Thatje, S.,
Tselepides, A. , Van Gaever, S. 2010. Temporal Change in Deep-Sea Benthic Ecosystems: A
Review of the Evidence From Recent Time-Series Studies. Advances in Marine Biology, 58, 1-95.
Cunningham, S. A., Baringer, M. O., Toole, J., Østerhaus, S., Fischer, J., Piola, A., McDonagh, E.,
Lozier, S., Send, U., Kanzow, T., Marotzke, J., Rhein, M., Garzoli, S. L., Rintoul, S., Speich, S.,
Wijffels, S., Talley, L., Baehr, J., Meinen, C., Treguier, A. M., and Lherminier, P. 2010. The present
and future system for measuring the Atlantic Meridional overturning circulation and heat transport.
OceanObs'09: Sustained Ocean Observations and Information for Society. 2, WPP-306.
Davies, J. H. 2013. Global map of solid Earth surface heat flow, Geochem. Geophys. Geosyst., 14,
4608–4622.
Dickson, R. R., Yashayaev, I., Meincke, J., Turrell, B., Dye, S., Holfort, J., 2002. Rapid freshening of
the deep North Atlantic Ocean over the past four decades. Nature, 416, 832–837.
Drijfhout, S. S., Weber, S. L., and van der Swaluw, E. 2011. The stability of the MOC as diagnosed
from model projections for pre-industrial, present and future climates. Climate Dyn., 37, 1575–1586.
Edmunds, R., L'Hours, H., Rickards, L., Trilsbeek, P., and Vardigan, M. 2016. Core Trustworthy
Data Repositories Requirements. https://doi.org/10.5281/zenodo.168411.
Ferrari, R. and Wunsch, C. 2009. Ocean Circulation Kinetic Energy–Reservoirs, Sources and Sinks,
Ann. Rev. Fluid Mech., 41, 253-282.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
37
Fine, R. A. 2011. Observations of CFCs and SF6 as Ocean Tracers, Annual Review of Marine
Science, 3, 173-195.
1696
1697
Gilbert, D., Rabalais, N. N., Diaz, R. J., and Zhang, J. 2010. Evidence for greater oxygen decline
rates in the coastal ocean than in the open ocean. Biogeosciences, 7, 2283–2296.
1698
1699
1700
1701
1702
1703
Glover, A. G., Gooday, A. J., Baily, D. M., Billet, D. S. M., Chevaldonné, P., Colaco, A., Copley, J.,
Cuvelier, D., Desbruyères, D., Kalogeropoulou, V., Klages, M., Lampadariou, N., Lejeusne, C.,
Mestre, N. C., Paterson, G. L. J., Perez, T., Ruhl, H., Sarrazin, J., Soltwedel, T., Soto, E.H., Thatje,
S., Tselepides, A., Van Gaever, S., Vanreusel, A. 2010. Temporal change in deep-sea benthic
ecosystems: A review of the evidence from recent time-series studies. Advances in Marine Biology,
58, 1-95.
1704
1705
1706
1707
1708
Gordon, L. I., Jennings Jr. J. C., Ross, A. A., and Krest, J. M. 1993. A suggested protocol for the
continuous automated analysis of seawater nutrients (phosphate, nitrate, nitrite and silicic acid) in
the WOCE Hydrographic program and the Joint Global Ocean Fluxes. Study Report. OSU Coll. of
Oc. Descriptive. Chem. Oc. Grp. Tech. Rpt. 93-1 and WOCE Hydrographic Program Office,
Methods Manual WHPO 91-1
1709
1710
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R. 2013. Ice-sheet
mass balance and climate change. Nature, 498, 51–59.
1711
1712
Hansen, J. 2005. Earth's Energy Imbalance: Confirmation and Implications. Science, 308, 1431–
1435.
1713
1714
Hautala, S. L., and Riser, S. C. 1989. A simple model of abyssal circulation, including effects of wind,
buoyancy and topography. Journal of physical oceanography, 19, 596-611.
1715
1716
1717
Heimbach, P., Wunsch, C., Ponte, R. M., Forget, G., Hill, C., and Utke, J. 2011. Timescales and
regions of the sensitivity of Atlantic meridional volume and heat transport magnitudes: Toward
observing system design. Deep Sea Res. II, 58, 1858-1879.
1718
1719
Helm, K. P., Bindoff, N. L., and Church, J. A. 2011. Observed decreases in oxygen content of the
global ocean. Geophys. Res. Lett., 38, L23602.
1720
1721
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K. 2013. Southern Ocean bottom water
characteristics in CMIP5 models. Geophys. Res. Lett., 40, 1409–1414.
1722
1723
1724
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K. 2015. Changes in global ocean bottom
properties and volume transports in CMIP5 models under climate change scenarios. Journal of
Climate, 28, 2917-2944.
1725
1726
1727
Huhn, O., Rhein, M., Hoppema, M., and van Heuven, S. 2013. Decline of deep and bottom water
ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984-2011.
Deep-Sea Res. I, 76, 66–84.
1728
1729
Hurrell, J., Meehl, G. A., Bader, D., Delworth, T. L., Kirtman, B., and Wielicki, B., 2009. A unified
modeling approach to climate system prediction. Bull. Amer. Met. Soc., 90, 1819–1832.
1730
1731
1732
Ilyina, T., I., Wolf-Gladrow, D., Munhoven, G., and Heinze, C. 2013. Assessing the potential of
calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean
acidification. Geophysical Research Letters, 40, 5909–5914.
1733
1734
1735
1736
1737
IPCC, 2013: Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D.
Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley
(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535
pp, doi:10.1017/CBO9781107415324.
38
Gehlen, M., Séférian, R., Jones, D. O. B., Roy, T., Roth, R., Barry, J., Bopp, L., Doney, S. C., Dunne,
J. P., Heinze, C., Joos, F., Orr, J. C., Resplandy, L., Segschneider, J., Tjiputra, J. 2014. Projected
pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences, 11, 6955–
6967.
Page
1692
1693
1694
1695
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1738
1739
Henson, S. A., Yoo, A., Sanders, R. 2014. Variability in efficiency of particulate organic carbon export:
A model study. Global Biogeochem. Cycles, 29, 33-45.
1740
1741
1742
Hood, E.M., C.L. Sabine, and B.M. Sloyan, eds. 2010. The GO-SHIP Repeat Hydrography Manual: A
Collection of Expert Reports and Guidelines. IOCCP Report Number 14, ICPO Publication Series
Number 134. Available online at http://www.go-ship.org/HydroMan.html.
1743
1744
Jacobs, S. S., and Giulivi, C. F., 2010. Large multidecadal salinity trends near the Pacific–Antarctic
continental margin. J. Clim., 23, 4508–4524.
1745
1746
Jing, Z., and Wu, L. 2010. Seasonal variation of turbulent diapycnal mixing in the northwestern Pacific
stirred by wind stress. Geophys. Res. Lett., 37, L23604.
1747
1748
Johnson, G. C., and Talley, L. D. 1997. Deep tracer and dynamical plumes in the tropical Pacific
Ocean. J. Geophys. Res., 102, 24953–24964.
1749
1750
1751
Johnson, G. C., Lyman, J. M., and Purkey, S. G. 2015. Informing Deep Argo array design using Argo
and full-depth hydrographic section data. Journal of Atmospheric and Oceanic Technology, 32,
2178–2198.
1752
1753
Joyce, T.M. and Speer, K.G. 1987. Modeling the large-scale influence of geothermal sources on
abyssal flow. Journal of Geophysical Research, 92, 0148-0227.
1754
1755
Joyce, T. M., Warren, B. A., and Talley, L. D. 1986. The geothermal heating of the abyssal subarctic
Pacific Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 33, 1003-1015.
1756
1757
1758
1759
1760
Katsman, C. A., Sterl, A., Beersma, J.J., van den Brink, H.W., Hazeleger, W., Kopp, R. E., Kroon, D.,
Kwadijk, J., Lammersen, R., Lowe, J., Oppenheimer, M., Plag, H. P., Ridley, J., von Storch, H.,
Vaughan, D. G., Vellinga, P., Vermeersen, L. L. A., van de Wal, R. S. W., and Weisse, R. 2011.
Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a lowlying delta – the Netherlands as an example. Climatic Change, 109, 617-645.
1761
1762
Keeling, R. F., Körtzinger, A. and Gruber, N. 2010. Ocean deoxygenation in a warming world. Annual
Review of Marine Science, 2,199–229.
1763
1764
Khatiwala, S., Primeau, F., and Hall, T. 2009. Reconstruction of the history of anthropogenic CO2
concentrations in the ocean. Nature, 462, 346–349.
1765
1766
Koslow, J. A., Goericke, R., Lara-Lopez A., Watson W. 2011. Impact of declining intermediate-water
oxygen on deepwater fishes in the California current. Mar. Ecol. Prog. Ser., 436, 207–18.
1767
1768
1769
Koslow, J.A., E.R. Miller, et al. 2015. Dramatic declines in coastal and oceanic fish communities off
California linked to climate. Marine Ecology Progress Series. Mar. Ecol. Progr. Ser. Vol. 538: 221–
227
1770
1771
1772
Kouketsu, S., Doi, T., Kawano, T., Masuda, S., Sugiura, N., Sasaki, Y., et al., 2011. Deep ocean heat
content changes estimated from observation and reanalysis product and their influence on sea level
change. J. Geophys. Res., 116, C3.
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
Lalande, C., Bauerfeind, E., and Nöthig, E. M. 2011. Downward particulate organic carbon export at
high temporal resolution in the eastern Fram Strait: Influence of Atlantic Water on flux composition.
Marine Ecology Progress Series, 440,127-136.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
Lampitt, R. S., Achterberg, E. P., Anderson, T. R., Hughes, J. A., Iglesias-Rodriguesz, M. D., KellyGerreyn, B. A., Lucas, M., Popova, E. E., Sanders, R., Shepherd, J.G., Smythe-Wright, D., and
Yool, A. 2008. Ocean fertilization: a potential means of geoengineering? Phil. Trans. R. Soc. A,
366, 3919-3945.
39
Lalande, C., Bauerfeind, E., Nöthig, E. M. and Beszczynska-Möller, A. 2013. Impact of a warm
anomaly on export fluxes of biogenic matter in the eastern Fram Strait. Progress In Oceanography,
109, 70-77.
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
Le, J. T., Levin, L. A., Carson, R. T. 2016. Incorporating ecosystem services into environmental
management of deep seabed mining Deep-sea Research II.
http://dx.doi.org/10.1016/j.dsr2.2016.08.007.
1798
1799
Levin, L. A. and Breitburg. D., 2015. Connecting coasts and seas to address ocean deoxygenation.
Nature Climate Change, 5, 401-403.
1800
1801
Levin, L. A. and Dayton, P. K. 2009. Ecological theory and continental margins: where shallow meets
deep. Trends in Ecology and Evolution, 24, 606-617.
1802
Levin, L. A., Le Bris, N. 2015. Deep oceans under climate change. Science 350: 766-768.
1803
1804
1805
1806
Levin, L. A., Mengerink, K., Gjerde, K. M., Rowden, A. A., Van Dover, C. L., Clark, M. R., RamirezLlodra, E., Currie, B., Smith, C. R., Sato, K. N., Gallo, N., Sweetman, A. K., Hannah L., Armstrong,
C. W., Brider, J. 2016. Defining “Serious Harm” to the marine environment in the context of DeepSeabed Mining. Marine Policy 74: 245-259.
1807
1808
Levin, L. A., and Sibuet, M. 2012. Understanding continental margin biodiversity: A new imperative.
Ann. Rev. Mar. Sci. 4, 79-112.
1809
1810
1811
Levin, L. A., Sibuet, M. Gooday, A. J., Smith C., Vanreusel, A. 2010. The roles of habitat
heterogeneity in generating and maintaining biodiversity on continental margins: An introduction.
Marine Ecology, 31, 1-5.
1812
1813
1814
1815
Mahone, B. P., Bhatt, A., Vulla, D., Supuran, C. T., McKenna, R., 2015. Exploration of anionic
inhibition of the α-carbonic anhydrase from Thiomicrospira crunogena XCL-2
gammaproteobacterium: A potential bio-catalytic agent for industrial CO2 removal. Chem. Eng.
Sci., 138, 575-580.
1816
1817
1818
Mashayek, A., Ferrari, R., Nikurashin, M., and Peltier, W. R., 2015. Influence of enhanced abyssal
diapycnal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr., 45,
2580-2597.
1819
1820
1821
Maslin, M., and Owen, M. 2010. Gas hydrates: past and future geohazard? Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 23692393.
1822
1823
1824
Masuda, S., Awaji, T., Sugiura, N., Matthews, J. P., Toyoda, T., Kawai, Y., Doi, T., Kouketsu, S.,
Igarashi, H., Katsumata, K., Uchida, H., Kawano, T., Fukasawa, M. 2010. Simulated Rapid
Warming of Abyssal North Pacific Waters, Science, 329, 319-322. DOI,10.1126/science.1188703.
1825
1826
1827
McNichol, A. P., Schneider, R. J., von Reden, K. F., Gagnon, A. R., Elder, K. L. Nosams, R. M. Key
and P.D. Quay. 2000. Ten Years after the WOCE AMS Radiocarbon Program. Nucl. Instr. And
Meth. In Phys. B172, 479-484.
1828
1829
Meehl, G.A., Washington, W. M., Collins, W. D., Arblaster, J. M., Hu, A., Buja, L. E., Strand, W. G.,
and Teng, H. 2005. How much more global warming and sea level rise? Science, 307, 1769-1772.
1830
1831
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., et al. 2009.
Decadal Prediction. Bull. Amer. Met. Soc., 90, 1467–1485.
LeBel, D. A., Smethie, W. M., Rhein, M., Kieke, D., Fine, R. A., Bullister, J. L., Smythe-Wright, D.
2008. The formation rate of North Atlantic Deep Water and Eighteen Degree Water calculated from
CFC-11 inventories observed during WOCE. Deep Sea Research Part I: Oceanographic Research
Papers, 55, 891-910.
Page
40
Lecroq, B., Lejzerowicz, F., Bachar, D., Christen, R., Esling, P., Baerlocher, L., et al. 2011. Ultra-deep
sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous
lineages in deep-sea sediments. Proc. Natl. Acad. Sci. U.S.A., 108, 13177–13182.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1832
1833
1834
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A., and Trenberth, K. E. 2011. Model-based
evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate
Change, 1, 360-364.
1835
1836
1837
Mengerink, K. J., Van Dover, C. L., Ardron, J., Baker, M., Escobar-Briones, E., Gjerde, K., Koslow, J.
A., Ramirez-Llodra, E., Lara-Lopez, A., Squires, D., Sutton, T., Sweetman, A. K., Levin L. A. 2014.
A Call for deep-ocean stewardship. Science, 344, 696-698.
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
Merrett, N. R. and Haedrich, R. L. 1997. Deep-sea demersal fish and fisheries. Chapman and Hall,
London, 281pp.
1856
1857
1858
1859
1860
1861
Mora C., Wei C. L., Rollo A., Amaro, T., Baco, A. R., Billett, D., Bopp, L., Chen, Q., Collier, M.,
Danovaro, R., Gooday, A. J., Grupe, B. M., Halloran, P. R., Ingels, J., Jones, D. O. B., Levin, L. A.,
Nakano, H., Norling, K., Ramirez-Llodra, E., Rex, M., Ruhl, H. A., Smith, C. R., Sweetman, A. K.,
Thurber, A. R., Tjiputra, J. F., Usseglio, P., Watling, L., Wu, and Wu, T., and Yasuhura, M. 2013.
st
Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21
Century. PLoS Biology, 11, e1001682.
1862
1863
Mora C., Tittensor D. P., Adl S., Simpson A. G. B., Worm, B. 2011. How Many Species Are There on
Earth and in the Ocean? PLoS Biol., 9, e1001127.
1864
1865
1866
Norse, E. A., Brooke, S., Cheung, W. W. L., Clark, M. R., Ekeland, I., Froese, R., Gjerde, K. M.,
Haedrich, R. L., Heppell, S. S., Morato, T., Morgan, L. E., Pauly, D., Sumaila, R., Watson, R. 2012.
Sustainability of deep-sea fisheries. Marine Policy, 36, 307-320.
1867
1868
1869
Orsi, A. H., William M., Smethie Jr., J., Bullister, L. 2002. On the total input of Antarctic waters to the
deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res.,
107, 1-31.
1870
1871
Palmer, M. D., McNeall, D. J., Dunstone, N. J. 2011. Importance of the deep ocean for estimating
decadal changes in earth’s radiation balance. Geophys. Res. Lett., 38, L13707.
1872
1873
Phrampus, B.J., and Hornbach, M. J. 2012. Recent changes to the Gulf Stream causing widespread
gas hydrate destabilization. Nature, 490, 527-530.
1874
1875
1876
Piecuch, C. G., Heimbach, P., Ponte, R. M., and Forget, G. 2015. The sensitivity of a global ocean
state estimate of contemporary sea level changes to geothermal flux. Ocean Modelling, 96, 214220.
1877
1878
Polzin, K. L., Toole, J. M., Ledwell, J.R., and Schmitt, R.W. 1997.Spatial variability of turbulent mixing
in the abyssal ocean. Science, 276, 93-96.
1879
1880
Ponte, R. M., 2012: An assessment of deep steric height variability over the global ocean, Geophys.
Res. Lett., 39, L04601, doi:10.1029/2011GL050681.
Merrie, A., Dunn, D. C., Metian, M., Boustany, A. M., Takei, Y., Elferink, A. O., Ota, Y., Christensen,
V., Halpin, P. N., Österblom, H. 2014. An ocean of surprises – Trends in human use, unexpected
dynamics and governance challenges in areas beyond national jurisdiction. Glob. Environ. Chang.,
27, 19–31.
Meyer, K., Bergmann, M. and Soltwedel, T. 2013. Interannual variation in the epibenthic megafauna
at the shallowest station of the HAUSGARTEN observatory (79°N, 6°E), Biogeosciences, 10, 34793492.
Michalak, A. M., R. B. Jackson, G. Marland, C. L. Sabine, and Carbon Cyle working group. 2011. A
U.S. Carbon Cycle Science Plan, 69 pp. UCAR, Boulder.
http://downloads.globalchange.gov/carbon-cycle/us-carbon-cycle-science-plan.pdf
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
41
Milne, G., Gehrels, W. R. Hughes, C. W., and Tamisiea, M. E. 2009. Identifying the causes of sealevel change. Nature Geosci., 2, 471-478.
1883
1884
1885
Purkey, S. G., and Johnson, G. C. 2010. Warming of global abyssal and deep southern ocean waters
between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim., 23,
6336-6351.
1886
1887
Purkey, S. G., and Johnson, G. C. 2012. Global contraction of antarctic bottom water between the
1980s and 2000s. J. Clim., 25, 58305844.
1888
1889
1890
Purkey, S. G., and Johnson, G. C. 2013: Antarctic Bottom Water warming and freshening:
Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim., 26, 61056122
1891
1892
1893
Quay, P. D., Sonnerup, R. E., Westby, T., Stutsman, J., and McNichol, A. P. 2003. Anthropogenic
changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of CO2 uptake,
Global Biogeochem. Cycles, 17, 1004.
1894
1895
Quinn, K. J., and Ponte, R. M. 2012. High frequency barotropic ocean variability observed by GRACE
and satellite altimetry. Geophys. Res. Lett., 39, L07603.
1896
1897
1898
1899
Ramirez-Llodra, E., Trannum, H. C., Schaanning, M., Evenset, A., Flem, B., Finne, T. E., Andersson,
M., Levin, L., A., Vanreusel, A. 2015. Submarine and deep-sea mine tailing placements: a review of
current practices, environmental issues, natural analogs and knowledge gaps in Norway and
internationally. Marine Pollution Bulletin. 97, 13-35.
1900
1901
1902
1903
Ramirez-Llodra, E., Brandt, A., Danovaro, R., Escobar, E., German, C. R., Levin, L. A., Martinez
Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B. E., Smith, C. R., Tittensor, D. P.,
Tyler, P. A., Vanreusel, A., and Vecchione, M. 2010. Deep, diverse and definitely different: unique
attributes of the world's largest ecosystem. Biogeosciences, 7, 2851-2899.
1904
1905
1906
Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., Levin, L. A.,
Menot, L., Rowden, A. A., Smith, C. R., and Van Dover, C. L. 2011. Man and the last great
wilderness: Human impact on the deep sea. PLOS One, 6, e22588.
1907
1908
1909
1910
1911
1912
Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E., Francis, J. A., P. Y. Groisman,
L. D. Hinzman, T. G. Huntington, D. L. Kane, J. S. Kimball, R. Kwok, R. B. Lammers, C. M. Lee, D.
P. Lettenmaier, K. C. McDonald, E. Podest, J. W. Pundsack, B. Rudels, M. C. Serreze, A.
Shiklomanov, O. Skagseth, T. J. Troy, C. J. Vorosmarty, M. Wensnahan, E. F. Wood, R. Woodgate,
D. Q. Yang, K. Zhang, and T. J. Zhang. 2010. Analysis of the Arctic system for freshwater cycle
intensification: observations and expectations. J. Clim., 23, 5715-5737.
1913
1914
Rex, M. A., and Etter, R. J. 2010. Deep-Sea Biodiversity: Pattern and Scale. Harvard University
Press.
1915
1916
1917
1918
1919
1920
Rhein, M., S.R. Rintoul, S. Aoki, E. Campos, D. Chambers, R.A. Feely, S. Gulev, G.C. Johnson, S.A.
Josey, A. Kostianoy, C. Mauritzen, D. Roemmich, L.D. Talley and F. Wang. 2013. Observations:
Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D.
Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley
(eds.)]. Cambridge University Press, Cambridge, UK.
1921
1922
Rintoul, S. R. 2007. Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific
oceans, Geophys. Res. Lett., 34, L06606.
1923
1924
1925
Ruhl, H. A., Bett, B. J., Hughes, S. J. M., Alt, Claudia H. S., Ross, E. J., Lampitt, R. S., Pebody, C. A.,
Smith, K. L. and Billett, D. S. M. 2014. Links between deep-sea respiration and community
dynamics. Ecology, 95, 1651-1662.
1926
1927
1928
Sarafanov, A. 2009. On the effect of the North Atlantic Oscillation on temperature and salinity of the
subpolar North Atlantic intermediate and deep waters. ICES Journal of Marine Science, 66, 14481454.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
42
Puig, P., Canals, M., Company, J. B., Martın, J., Amblas, D., Lastras, G., Palanques, A., and Calafat,
A. M. 2012. Ploughing the deep sea floor. Nature, 489, 286-290.
Page
1881
1882
1929
1930
1931
Serreze, M. C., Barrett, A. P., Slater, A. G., Woodgate, R. A., Aagaard, K., Lammers, R. B., Steele,
M., Moritz, R., Meredith, M., and Lee, C. M. 2006. The large-scale freshwater cycle of the Arctic, J.
Geophys. Res., 111, C11010.
1932
1933
1934
Schuckmann, von, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers, D., Champollion, N.,
et al. 2016. An imperative to monitor Earth's energy imbalance. Nature Climate Change, 6, 138144.
1935
1936
1937
Science International (2015): Open Data in a Big Data World. Paris: International Council for
Science (ICSU), International Social Science Council (ISSC), e World Academy of Sciences
(TWAS), InterAcademy Partnership (IAP)
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
Sloyan, B. M. 2005. Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32,
L18603.
1962
1963
1964
1965
1966
1967
1968
1969
1970
Song, Y. T., and Colberg, F. 2011. Deep ocean warming assessed from altimeters, gravity recovery
and climate experiment, in situ measurements, and a non-Boussinesq ocean general circulation
model. Journal of Geophysical Research: Oceans, 116, C02020.
1971
1972
1973
1974
1975
1976
1977
Stammer, D., Köhl, A., Awaji, T., Balmaseda, M., Behringer, D., Carton, J., Ferry, N., Fischer, A.,
Fukumori, I., Giese, B., Haines, K., Harrison, E., Heimbach, P., Kamachi, M., Keppenne, C., Lee,
T., Masina, S., Menemenlis, D., Ponte, R., Remy, E., Rienecker, M., Rosati, A., Schroeter, J.,
Smith, D., Weaver, A., Wunsch, C., Xue, Y. 2010. Multi-model ensemble ocean synthesis in
support of climate diagnostics. Proceedings of the OceanObs'09: Sustained Ocean Observations
and Information for Society. Hg. Hall, J.; Harrison, D. E.; Stammer, D.. WPP-306. Venice, Italy: ESA
Publication.
1978
1979
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E. 2013. Causes for contemporary
regional sea level changes. Annu. Rev. Mar. Sci., 5, 21–46.
Smith, Jr. K.L., Ruhl, H.A., Kahru, M., Huffard, C.L., Sherman, A.D. 2013. Deep ocean communities
impacted by changing climate over 24y in the abyssal northeast Pacific Ocean. Proc. Natl. Acad.
Sci. U.S.A., 110, 19838–19841.
Soltwedel, T., Bauerfeind, E. , Bergmann, M. , Bracher, A. , Budaeva, N. , Busch, K. , Cherkasheva,
A. , Fahl, K. , Grzelak, K. , Hasemann, C. , Jacob, M. , Kraft, A. , Lalande, C. , Metfies, K. , Nöthig,
E. M. , Meyer, K. , Quéric, N. V. , Schewe, I. , Wlodarska-Kowalczuk, M. and Klages, M. 2016.
Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary
observations at the arctic open-ocean LTER site HAUSGARTEN. Ecological Indicators, 65, 89-102.
Soltwedel, T., Bauerfeind, E. , Bergmann, M. , Budaeva, N. , Hoste, E. , Jaeckisch, N. , Juterzenka,
K. V. , Matthießen, J. , Mokievsky, V. , Nöthig, E. M. , Quéric, N. , Sablotny, B. , Sauter, E. ,
Schewe, I. , Urban-Malinga, B. , Wegner, J. , Wlodarska-Kowalczuk, M. and Klages, M. 2005.
HAUSGARTEN: multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic
Ocean. Oceanography, 18, 46-61.
Soltwedel, T., Schauer, U. , Boebel, O. , Nöthig, E. M. , Bracher, A. , Metfies, K. , Schewe, I. , Klages,
M. and Boetius, A. 2013. FRAM - FRontiers in Arctic marine Monitoring: Permanent Observations in
a Gateway to the Arctic Ocean. 2013 Marine Technical Society/IEEE, doi:10.1109/OCEANSBergen.2013.6608008.
Srokosz, M. A. and Bryden, H. L. 2015. Observing the Atlantic Meridional Overturning Circulation
yields a decade of inevitable surprises. Science, 348, 6.
Page
43
St. Laurent, L. and Thurnherr A. M. 2007. Intense mixing of lower thermocline water on the crest of
the Mid-Atlantic Ridge, Nature, 448, 680–683.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
1982
1983
1984
Sydeman, W. J., García-Reyes, M., Schoeman, D. S., Rykaczewski, R. R., Thompson, S. A., Black,
B. A., & Bograd, S. J. 2014. Climate change and wind intensification in coastal upwelling
ecosystems. Science, 345, 77-80.
1985
1986
1987
1988
1989
1990
1991
Talley, L. D., R. A. Feely, B. M. Sloyan, R. Wanninkhof, M. O. Baringer, J. L. Bullister, C. A. Carlson,
S. C. Doney, R. A. Fine, E. Firing, N. Gruber, D. A. Hansell, M. Ishii, G. C. Johnson, K. Katsumata,
R. M. Key, M. Kramp, C. Langdon, A. M. Macdonald, J. T. Mathis, E. L. McDonagh, S. Mecking, F.
J. Millero, C. W. Mordy, T. Nakano, C. L. Sabine, W. M. Smethie, J. H. Swift, T. Tanhua, A. M.
Thurnherr, M. J. Warner, and Zhang J.Z. 2016. Changes in ocean heat, carbon content, and
ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Ann. Rev. Mar. Sci.,
8, 185-215.
1992
1993
Thurber, A., Sweetman, A., Narayanaswamy, B., Jones, D., Ingels, J., Hansman, R. 2014. Ecosystem
function and services provided by the deep sea. Biogeosciences, 11, 3941-3963.
1994
1995
UNESCO. 2009. Global Open Oceans and Deep Seabed (GOODS) – Biogeographic Classification.
Paris, UNESCO-IOC. (IOC Technical Series, 84).
1996
1997
Wang, D., Gouhier, T. C., Menge, B. A., Ganguly, A. R. 2015. Intensification and spatial
homogenization of coastal upwelling under climate change. Nature, 518, 390–394.
1998
1999
2000
Wang, Z. A., Liu, X., Byrne, R. H., Wanninkhof, R., Bernsteina, R. E., Kaltenbachera, E. A., Pattena,
J. 2007. Simultaneous spectrophotometric flow-through measurements of pH, carbon dioxide
fugacity, and total inorganic carbon in seawater. Analytica chimica, 596, 23-36.
2001
2002
Watling, L., Guinotte, J., Clark, M. R., Smith, C. R. 2013. A proposed biogeography of the deep ocean
floor. Prog. Oceanogr., 111, 91-112.
2003
2004
Watson, R. and Morato, T. 2013. Fishing down the deep: Accounting for within-species changes in
depth of fishing. Fisheries Research, 140, 63-65.
2005
2006
Waugh, D. W., Hall, T. M., and Haine, T. W. N. 2003. Relationships among tracer ages. J. Geophys.
Res., 108, 3138.
2007
2008
2009
Webb, T. J., Vanden-Berghe, E., and O’Dor, R. 2010. Biodiversity’s big wet secret: The global
distribution of marine biological records reveals chronic under-exploration of the deep pelagic
ocean. PLoS ONE, 5, e10223.
2010
2011
Wilkinson, M.D. et al. 2016. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data 3:160018 doi: 10.1038/sdata.2016.18 (2016)
2012
2013
Wright, G., Rochette, J., Druel, E., Gjerde, K. 2016.The long and winding road continues: Towards a
o
new agreement on high seas governance. Study N 01/16. IDDRI, Paris, France, 50 pp.
2014
2015
Wu, L. X., Jing, Z., Riser, S., and Visbeck, M. 2011. Seasonal and spatial variations of Southern
Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363–366.
2016
2017
Wunsch, C., and Heimbach, P. 2014. Bidecadal thermal changes in the abyssal ocean. J. Phys.
Oceanogr., 44, 2013-2030.
2018
2019
Wunsch, C. and Ferrari, R. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks.
Annu. Rev. Fluid Mech., 41, 253-282.
2020
2021
Wunsch, C., 2005: The Total Meridional Heat Flux and Its Oceanic and Atmospheric Partition. J.
Clim., 18, 4374-4380.
2022
2023
Wunsch, C., Ponte, R. M., and Heimbach, P. 2007. Decadal trends in sea level patterns: 1993-2004.
J. Clim., 20, 5889-5911.
2024
2025
Wunsch, C. 2016. Global ocean integrals and means, with trend implications. Ann. Rev. Mar. Sci., 8,
1-33.
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
44
Stramma, L., Schmidt, S., Levin, L. A., and Johnson. G.C., 2010. Ocean oxygen minima expansions
and their biological impacts. Deep-Sea Research I, 210, 587-595.
Page
1980
1981
2026
2027
2028
Yao, H., Dao, M., Imholt, T., Huang, J., Wheeler, K., Bonilla, A., Suresh, S., Ortiz, C., 2010.
Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc.
Natl. Acad. Sci. 107, 987-992.
2029
2030
Yashayaev, I. 2007. Hydrographic changes in the Labrador sea, 1960-2005. Progress in
Oceanography, 73, 242-276.
2031
2032
2033
Zanna, L., Heimbach, P., Moore, A. M., and Tziperman, E. 2012. Upper-ocean singular vectors of the
North Atlantic climate with implications for linear predictability and variability. Quart. J. Roy. Met.
Soc.,138, 500-513.
2034
2035
2036
Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M., Mark Welch, D.B.,
Martiny, J.B.H., Sogin, M., Boetius, A., Ramette, A. 2011. Global patterns of bacterial beta-diversity
in seafloor and seawater ecosystems. PLoS ONE, 6, e24570.
2037
Page
45
2038
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
2039
AppendixA:AuthorsandContributors
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
ExecutiveCommittee
AlbertFischer
EricLindstrom
Physical/Climate
GregoryC.Johnson
PatrickHeimbach
BernadetteSloyan
Carbon/Biogeochemistry
TosteTanhua
RikWanninkhof
Biodiversity/Ecosystems
AntjeBoetius
LisaLevin
MyriamSibuet
Contributors
SilviaGarzoli
MattChurch
KarenStocks
Advisors
OscarSchofield
FelixJanssen
2067
Page
46
2068
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
Thisreportarticulatesastrategyformeasuringthedeepoceaninalignmentwiththeguidingprinciplesand
practicespromotedinthereporttitled“AFrameworkforOceanObserving,”(preparedbytheTaskTeamfor
anIntegratedSustainedOceanObservingSystemestablishedaftertheOceanObservation2009Conferencein
Venice,Italy).The“Framework”recommendsthattheoceancommunityadoptasystemengineering
approachtowardthecommunity-wideacceptanceofprioritiesandactivitiesassociatedwithanintegrated,
sustainedglobaloceanobservingsystem;onethataddressesbothsciencequestionsandsocietalneeds.
TheFrameworkapproachasoutlinedinthereport,contendsthattomaintainaglobaloceanobservingsystem
thatisfitforpurpose,theoutputsofthesystemmustproperlyaddresstheissuesthatdrovetheoriginalneed
tomeasureanoceanvariable,andestablishafeedbackloopofassessmentthatmustbemaintainedby
communityagreed-uponprocesses.Inordertoestablishthisconcertedcommunityeffort,thereportalso
recommendsthatoceanobservingactivitiesbeorganizedaroundcommunity-definedandselectedEssential
OceanVariables(EOVs).AnEOVisdefinedasanelementoftheoceanthattheoceanobservingcommunity
agreesmustbemeasuredinordertofurtherscientificunderstandingoftheoceanandEarthsystemsandtheir
impactonsociety.
2086
2087
2088
2089
2090
Thisapproachisbasedonlessonslearnedfromtheglobalclimateobservingcommunity,whichmetwithgreat
successafterorganizingitseffortsaroundessentialclimatevariables(ECVs).EssentialClimateVariableswere
introducedbyGCOSin2004,alongwiththeessentialdatadefinedformeteorologicalservicesbytheWMO
andhavegalvanizedtheclimateandweathercommunitiestowardthedevelopmentofamorefully
functioningresearchandobservationalglobaloceanobservingsystemforclimate.
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
BeyondanalignmentaccordingtoEOVs,theFrameworkreportfurthersuggeststhatwhatisrequiredto
adequatelymeetscientificandsocietalneedsforaglobalsystem,isthatthecommunityengageinongoing
dialogastowhatarethemeasurementrequirementsofanEOV,whataretheobservationalelements
(technologiesandtechniques),andwhatarethedataandinformationproductsrequiredtomeetuserneeds.
Inmakingtheseassessmentsthecommunity
isthenaskedtoevaluatetherequirements,
observationalneeds,anddataanddata
productsaccordingtotheirreadinesslevels.
Generallythisisanassessmentasto
whethertheobservingsystemelements
underreviewaregloballyrelevantsuchthat
theyjustifysustainedfunding.
Fromasystemsengineeringperspective,the
inputs(measurementrequirements)ofthe
systemarebestdescribedintermsofthe
environmentalorecosysteminformation
neededtoaddressaspecificscientific
problemorsocietalissue.Societalissues
mayincludeashort-timescaleneedsuchas
hazardwarning,oralong-timescaleneedforinformationsuchasknowledgeofecosystemlimitsrequiredto
setsustainableusesofoceanresources. Theprocesses(observationelements)arethetechnologyusedtocollectthedataneededtoaddressthese
requirements.Theoutputs(dataandinformationproducts)arethesynthesesofoceanobservationsand
provideabasisforservicesandinformscientificproblemsordecisionsaboutsocietalissues.
47
AppendixB:ReportMethodology
Page
2069
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
AssuggestedaccordingtotheFramework
orsystemsapproach,thecriteriafor
evaluatingnewcomponentsforpossible
inclusionintotheglobaloceanobserving
systemisintermsoftheirreadinesslevel.
Theselevelsareaddressedinthreebroad
categories:concept,pilotandmature.
Duringtheconceptphase,ideasare
articulatedandpeer-reviewed.Duringthe
pilotphase,aspectsofthesystemare
testedandmadereadyforglobalscale
implementation.Atmaturity,theybecome
asustainedpartoftheglobalocean
observingsystem.
Byusingasystemsapproachtheauthorsof
thisreportseektoencourageincreased
partnershipsacrosstheoceanresearchand
operationalcommunitiesalignedtoassessandimprovethereadinesslevelsofrequirements,observation
elements,anddataproductsassociatedwithEOVsproposedforthedeepoceanobservingsystem.Itis
expectedthatalignmentwillalsoenhancecollaborationamongdevelopedanddevelopingregions,and
promotetheuseofcommonstandardsandbestpracticesaroundtheworld.
Page
2134
2135
2136
2137
2138
48
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
2139
2140
AppendixC:DraftStrategyTimeline
2141
•
WritingGroupRevisesandUpdatesDOOSConsultativeDraftAugust2016
2142
•
SeekcommunityfeedbackonDraftReportandformSteeringCommittee
2143
•
ConductDeepObservationInventorySept-Oct.2016
2144
•
DOOSDevelopmentworkshoptoformworkinggroupsorteamsthatframespecificgoals
2145
December2016
2146
2147
•
Inoneyear:
2148
o
Establisheddevelopmentprogram
2149
o
IncorporatedDOOSinGCOS,CLIVAR,IMBER,INDEEP,DOSI
2150
•
2151
2154
2155
•
Pilotprogramunderway
OceanObs2019
o
Globalsustainedcoverageinsight
49
2153
o
Page
2152
Inthreeyears:
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
2156
AppendixD:DraftEOVTemplate
2157
Prepared by the IOC-GOOS Program Office (2013)
2158
EOV information
2159
2160
•
Name of EOV (to explain the concept to a non-specialist, in the case of biology can be an index or a
variable)
2161
•
Sub-variables (the true scientific variable(s) measured to get at the EOV)
2162
•
Derived products (other variables, indices, or indicators)
2163
•
Supporting variables (needed to scientifically deliver or interpret this EOV)
2164
•
Contact / lead expert(s)
2165
2166
Requirements Setting
2167
•
Responsible GOOS Panel (can also be a partner of GOOS)
2168
2169
•
Readiness level of the requirement (has it been scientifically-vetted for the main applications below, see
FOO Fig. 9):
2170
2171
•
Societal Benefit Area(s) / Societal Drivers (why do we measure this EOV? societal justification and link to the
EOV. This section may be common amongst several linked EOVs)
2172
2173
•
Scientific Context (Why does science need this EOV? For which questions (these may be multiple, and span
multiple SBAs / scientific disciplines)? ):
2174
•
Phenomena to capture (are there key biological and/or ecological processes to capture?
2175
2176
2177
2178
What are the space and time scales that will need to be captured by observation? Are there characteristic
size and functional compositions to be captured? Do these differ between the open ocean and coastal
regions? Do different biomes need to be captured and if so how many? What is the signal-to-noise ratio of
the phenomena? These may vary depending on each societal benefit target for the EOV)
2179
Observing elements (networks)
2180
(What observing elements measure this EOV presently? Which elements are emerging?)
2181
•
Readiness: observing technique
2182
•
Readiness: ability to scale globally
2183
•
Sub-variables measured:
2184
•
Characteristic spatial/temporal scales, size/functional compositions:
2185
•
Sensor(s)/techniques:
2186
•
Accuracy/uncertainty estimate (units) (e.g. bias/random error)
2187
EOV Data and information creation
2189
2190
•
Oversight and coordination (is there a body charged with global coordination of analysis/synthesis products
of this EOV? if so are all observing elements included?)
2191
•
Readiness level [scope, quality control, scientific oversight / peer review, delivery of products]:
2192
•
Data centre/repository:
2193
•
Frequency of updating:
2194
•
Derived products
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
Page
2188
50
[Make reference to the observing element templates]
2195
AppendixE:Sustainedobservatoriesandobservingstations(SeeSeparateTable)
2196
2197
Page
51
2198
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016
2199
AppendixF:OpenDataPolicyStatement
2200
2201
2202
2203
2204
2205
2206
2207
Effectivemanagementandstorageofdataarefundamentalrequirementsforsuccessfulscientificresearch
endeavors,suchthatthefutureofsuccessfuloceanographicresearchwilldependontheavailabilityand
clarityoflong-termdatarecords.Alreadytoday,large,multi-investigator,interdisciplinaryprojectsrequirethe
timelyavailabilityandsharingofdataandobservations.Implementationofamaturedeepoceandata
managementstrategywillresultinthetimelysubmissionofqualitycontrolleddatadirectlytousers,aswellas
tolocal,regional,andnationaldatacentersforongoinguse.
TheFAIRGuidingPrinciples(fromWilkinsonetal.2016)
TobeFindable:
2208
2209
F1.(meta)dataareassignedagloballyuniqueandpersistentidentifier
2210
F2.dataaredescribedwithrichmetadata(definedbyR1below)
2211
F3.metadataclearlyandexplicitlyincludetheidentifierofthedataitdescribes
2212
F4.(meta)dataareregisteredorindexedinasearchableresource
TobeAccessible:
2213
2214
2215
A1.(meta)dataareretrievablebytheiridentifierusingastandardizedcommunications
protocol
2216
A1.1theprotocolisopen,free,anduniversallyimplementable
2217
2218
A1.2theprotocolallowsforanauthenticationandauthorizationprocedure,where
necessary
2219
A2.metadataareaccessible,evenwhenthedataarenolongeravailable
TobeInteroperable:
2220
2221
2222
I1.(meta)datauseaformal,accessible,shared,andbroadlyapplicablelanguagefor
knowledgerepresentation.
2223
I2.(meta)datausevocabulariesthatfollowFAIRprinciples
2224
I3.(meta)dataincludequalifiedreferencestoother(meta)data
TobeReusable:
2225
2226
R1.meta(data)arerichlydescribedwithapluralityofaccurateandrelevantattributes
2227
R1.1.(meta)dataarereleasedwithaclearandaccessibledatausagelicense
2228
R1.2.(meta)dataareassociatedwithdetailedprovenance
2229
R1.3.(meta)datameetdomain-relevantcommunitystandards
2230
52
Page
2231
CONSULTATIVE DRAFT V5: Deep Ocean Observing Strategy, November 2016