* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Magnetic monopole wikipedia, lookup

Coherent states wikipedia, lookup

Casimir effect wikipedia, lookup

Quantum teleportation wikipedia, lookup

Quantum field theory wikipedia, lookup

Wheeler's delayed choice experiment wikipedia, lookup

Interpretations of quantum mechanics wikipedia, lookup

Renormalization group wikipedia, lookup

Molecular Hamiltonian wikipedia, lookup

Scalar field theory wikipedia, lookup

Hidden variable theory wikipedia, lookup

Quantum entanglement wikipedia, lookup

Hydrogen atom wikipedia, lookup

Copenhagen interpretation wikipedia, lookup

Renormalization wikipedia, lookup

Bohr–Einstein debates wikipedia, lookup

History of quantum field theory wikipedia, lookup

Path integral formulation wikipedia, lookup

Identical particles wikipedia, lookup

Bell's theorem wikipedia, lookup

Ferromagnetism wikipedia, lookup

Quantum state wikipedia, lookup

Elementary particle wikipedia, lookup

Wave function wikipedia, lookup

Atomic theory wikipedia, lookup

Spin (physics) wikipedia, lookup

Introduction to gauge theory wikipedia, lookup

Symmetry in quantum mechanics wikipedia, lookup

Double-slit experiment wikipedia, lookup

Quantum electrodynamics wikipedia, lookup

Canonical quantization wikipedia, lookup

Particle in a box wikipedia, lookup

Probability amplitude wikipedia, lookup

Aharonov–Bohm effect wikipedia, lookup

Wave–particle duality wikipedia, lookup

Relativistic quantum mechanics wikipedia, lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia, lookup

Transcript

1 PHY4605–Introduction to Quantum Mechanics II Spring 2004 Test 1 Solutions February 6, 2004 1. Short Answer. Must attempt (only) 3 of 4. Circle answers to be graded. (a) Explain the Einstein-Podolsky-Rosen ”paradox”. How does the Copenhagen school of quantum mechanics escape the apparent violation of causality? Simplest example: spin 0 particle decays in lab frame into two spin–1/2 particles which recoil in opposite directions. Quantum Mechanics says spin state must be |s = 0i = √12 (↑↓ − ↓↑). When observer at point A far from B measures spin of particle 1 to be up, wave function colapses ⇒ 2 is down with probability 100%, i.e. 1 influences 2 instantaneously apparently contradicting relativistic causality. Copenhagen: no info can be transferred due to statistical nature of measurement. (b) What’s the DC Stark effect? When is it linear and when quadratic in the applied field? Stark effect is the shift of the spectral lines in an atomic gas subject to an external constant electric field. In the case of a nondegenerate level in an atom, the first-order shift is zero, so the shift is quadratic in the field. If the line is degenerate, a linear term may result. (c) Sketch an experiment to measure the Aharonov-Bohm effect, and comment on the significance of the electromagnetic potentials A and φ in quantum mechanics as opposed to classical physics. interference pattern 1 B=0 2 A=0 B=0 Changing B in solenoid changes relative phases of electrons travelling along “paths” 1+2 shifts interference pattern at screen. Classically e− would 2 need to move through region of B 6= 0 to feel an effect. Not true in Quantum Mechanics. (d) In terms of what fundamental ratio is the conductivity quantized in the integer quantum Hall effect? Sketch the energy eigenstates for a 2D electron gas in a perpendicular magnetic field B, identify the spacing, and comment on the significance of a completely filled level for observation of the effect. σxy E 4 3 2 n=1 µ 2¶ e =n h (1) hω If level completely filled, no final states available for electron scattering if temperature is low. Therefore scattering time τ → 0. 3 2. Landau Levels/Ring. A particle of mass m, charge e moves on a rectangle of length Lx , width Ly in the x − y plane in a constant magnetic field B k ẑ. (a) Write down the Hamiltonian in Landau gauge, A = Bxŷ. H= ¡ e ¢2 2 2 e ¡ ¢¢ 1 ¡ e ¢2 1 ¡ 2 p̂ − A = p̂x + p̂2y + B x − py Bx + Bxpy 2m c 2m c c since [py , x] = 0 = ¡ e ¢2 2 2 ¢ 2e 1 ¡ 2 p̂x + p̂2y − Bxp̂y + B x 2m c c (b) Show that this problem is equivalent to a simple harmonic oscillator, and use what you know about the solution to the SHO problem to calculate the energy levels. Express your answer in terms of ω, the analog SHO oscillation frequency; what is ω and what is its physical interpretation? Note H doesn’t depend ¡ 2 on 2 y2 ⇒2e free motion ¡ e ¢2 2 in2 ¢ y-direction, ψ = 1 iky y e X(x) ⇒ Hψ = 2m p̂x + ~ ky − c ~ky + c B x . Complete square: µ ¶ ¡ eB ¢2 ¡ ¢2 p̂2x y 1 H → 2m + 2 m mc x − x0 , x0 = ~ck . SHO Hamiltonian with effeceB tive ω = eB/mc = cyclotron frequency of classical orbit in perpendicular magnetic field B. (c) Now instead of solving the problem exactly, treat A as weak. Show H ' p̂2 /2m + (e/2mc)B · L. [Hint: symmetric gauge A = r × B/2 is more convenient.] ¶2 µ · µ ¶¸ 1 1 e e H= p̂ − A ' p̂ − p̂ · A + A · p̂ 2m c 2m c since (2) 4 · ¸ 1 2e A ⊥ r, ∇ · A = A · ∇, so H ' p̂ − A · p 2m c (3) symmetric gauge · ¸ ¡ ¢ ¢ 1 2e 1 ¡ e p̂2 e p̂ 2 H= p̂ − r × B · p̂ = + B · r × p̂ = + B · L̂. (4) 2m c 2 2m 2mc 2m 2mc (d) Use the result (1) to discuss a particle of mass m and charge e constrained to move on a ring of radius a. Find eigenvalues and eigenfunc³ the ´ energy ∂ψ 1 ∂ 1 ∂2ψ 2 tions. [Hint: in 2D , ∇ ψ = ρ ∂ρ ρ ∂ρ + ρ2 ∂φ2 ] Constrained to ring ⇒ ψ = ψ(φ), note Bkẑ µ 2 2 ¶ µ ¶ −~ ∇ e −~2 ∂ 2 e + B · L̂ ψ = 2ma2 ∂φ2 + 2mc B L̂z ψ |{z} 2m 2mc −i~∂/∂φ ¶ µ −~2 ∂ 2 i~eB ∂ = 2ma2 ∂φ2 − 2mc ∂φ ψ = Eψ (5) (6) Solution: ψ = eibφ , ~2 2 ~ω b + b = E, b = 0, 1, 2, · · · for single–valuedness. 2ma2 2 (7) 5 3. Stern-Gerlach effect. A Stern-Gerlach setup is defined to be a region of inhomogeneous magnetic field, with field gradient pointing in the same direction as field itself. (a) Show that a neutral particle with spin S k x̂ entering the SG setup shown feels a force in the x̂ direction. Explain briefly how you could create such a field, and what is wrong with the picture. F = −∇U = ∇(µ · B) ∼ Sx (∇Bx ) ∼ Sx |∇Bx |x̂ sign depends on Sx . Figure indicates B, ∇B point in same direction. Could do this approximately e.g. with coil whose winding density increases in x direction. However there must be some small transverse gradient to satisfy ∇ · B = 0. (b) The 1st particle entering the SG setup shown is a neutron (spin 1/2), prepared in a pure spin state in accelerator A with S k x̂. What is the probability it is recorded in particle detector D1 ? Detector D2 ? Since particle has Ŝkx̂, ⇒ it is in pure eigenstate of Ŝx with eigenvalue +~/2 ⇒ it will be observed in detector D2 with 100% probability. (c) The 2nd particle is a ρ meson (charge 0, spin 1) prepared in a spin up (m = 1) state (the spin quantization axis is the ẑ direction, as usual). What is the probability the ρ is detected in D1 ? D2 ? (Note any particle whose trajectory lies on the y-axis is missed by both detectors). 1 Write |z1i = 0 in terms of eigenstates of Ŝx for S = 1 particle. 0 0 1 0 Work out mattrix elements hm|Ŝx |m0 i for S = 1, find Sx = √~2 1 0 1 0 1 0 6 1 1 √ √1 eigenvectors |x1i = 12 2, |x0i = √12 0 , |x, −1i = 21 2 1 −1 1 P 1 1 1 √ |x, 0i + |x, −1i ⇒ probability |z1i = m hx|m|z1i|xmi = 2 |x1i + 2 2 2 to be detected at D1 or D2 is (1/2) = 1/4. (d) Now a camera with a very narrow-angle lens is placed at position C pointing along the −y axis and another ρ in the same state as (c) is injected into the SG region. The camera does not observe the particle during the time it takes for the particle to pass through the setup. What is the probability it is recorded in D1 ? D2 ? If particle observed not to travel a long y-axis, probability must be 1/2 to be either in |x1i or |x, −1i ⇒ wave function collapses. 7 4. Molecule. A molecule is made up of three identical X atoms arranged in an equilateral triangle. An electron is added to the molecule to form an X3− ion. Given that the elctron has zero energy when it sits on any one of the i X-atoms, hi|H0 |ji, with i = 1, 2, 3, · · · and that it hops between atoms with matrix element hi|H0 |ji = −a, for i 6= j, and taking a > 0, (a) Find the eigenvalues of H0 . State the degeneracy of each level. 0 H0 = −a −a −λ £ ¤ det H0 − λ = 0 = −a −a −a 0 −a −a −λ −a −a −a ⇒ 0 −a 2 2 2 −a = λ(λ − a ) − 2a(aλ − a ) −λ = (λ − a)[λ(λ + a) − 2a2 ] = (λ − a)2 (λ + 2a) ⇒ E0 = −2a, E1 = a (degeneracy 2) (b) Find the eigenvectors of H0 . [Be sure to express your eigenvectors in terms of a basis consisting of states where the electron is located with probability 1 on a given X-atom.] Ground state |ψ0 i: y + z = 2x x x 1 1 −a 0 −a y = −2a y ⇒ x + z = 2y ⇒ |ψ0 i = √ 1 . 3 x + y = 2z z z −a −a 0 1 0 −a −a 8 Excited states |ψ1 i, |ψ2 i: y + z = −x 0 −a −a x x −a 0 −a y = a y ⇒ x + z = −y ⇒ −a −a 0 z z x + y = −z 0 −2 1 1 |ψ1 i = √ 1 , |ψ2 i = √ 1 2 6 −1 1 Note chosen so hψ0 |ψ1 i = hψ0 |ψ2 i = hψ1 |ψ2 i = 0. (c) Suppose an electric field in the ẑ-direction is now applied as shown, so that the potential energy for the atom on top is lowered by an amount b, with b ¿ a (this is the only effect of the E-field!). Calculate the shifts in the energy of the three zero-field eigenstates. −b 0 0 V̂ = 0 0 0 0 0 0 1 ´ 1 1 1 ³ (1) δE0 = √ 1 1 1 V̂ √ 1 = 3 3 3 1 0 ³ ´ 1 1 (1) δE1 = √ 0 1 −1 V̂ √ 1 = 0 2 2 −1 −2 ³ ´ 1 1 2b (1) δE2 = √ −2 1 1 V̂ √ 1 = − 3 6 6 1 9 N.B. if now chose eigenvectors for |ψ1 i, |ψ2 i such that hψ1 |V̂ |ψ2 i 6= 0, you have to diagonalize. With the choice above it’s not necessary. (d) Calculate the ground state wave function in the perturbed system to 1st order. 0 z }| { √ √ 2b/ 18 hψ1 |V̂ |ψ0 i |ψ1 i hψ2 |V̂ |ψ0 i|ψ2 i − 2b δψ0 = + = |ψ2 i = |ψ2 i ⇒ E0 − E1 E0 − E1 (−2a) − a 9 √ 2b new ψ̃0 = c(|ψ0 i − |ψ2 i) 9 where c is a normalization factor. Your answer might look different depending on how you chose ψ1 , ψ2 .