* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download WinFinalDraftB
Quantum tunnelling wikipedia , lookup
Path integral formulation wikipedia , lookup
Standard Model wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
History of quantum field theory wikipedia , lookup
ATLAS experiment wikipedia , lookup
Old quantum theory wikipedia , lookup
Monte Carlo methods for electron transport wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Magnetic monopole wikipedia , lookup
Introduction to quantum mechanics wikipedia , lookup
Canonical quantization wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Elementary particle wikipedia , lookup
Renormalization wikipedia , lookup
Mathematical formulation of the Standard Model wikipedia , lookup
Electric charge wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
Renormalization group wikipedia , lookup
Scalar field theory wikipedia , lookup
Electron scattering wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Math. Methods of Physics – Winter Final This is a CLOSED-BOOK, take-home exam. You may use your portfolio only. This is designed as a three-hour exam. Pace yourself, and take breaks when you need them. SHOW ALL YOUR WORK, explain your reasoning, and include units when necessary, to receive full credit Please circle or underline your answers when appropriate, for clarity. Keep answers in simplest exact form or make order-of-magnitude estimates. (sign legibly)_______________________________________________________________ I affirm that I have worked this exam with WITHOUT using a calculator, text, HW, quizzes, computer, classmates, or other resources. Possibly useless information (please ask if you need more info) G = 6.67x10-11 N m2/kg2 0 = 8.85 x 10-12 C2/N.m2 MSun = 2 x 1030 kg g=9.8 m/s2 c=3x108 m/s h = 6.63 x 10-34 J.s = 5.67 x 10-8 W/m2.K4 k = 1.38 x10-23 J/K MEarth 6 x 1024 kg F = mg F = -GmM/r2 F = -qQ/(40r2) F = -kx F = dp/dt = ma p = mv s = r v = r I = dq/dt W=qV E = - V F = qvxB = ILxB 1 ___ / 13 ___/ 12 ___/ 30 ___/18+14 ___/ 15 + 17 Part I – Calculus Part II – Research Part III – Universe Part IV – Electric and Magnetic fields Part V – Electromagnetism ___/ 122 total F = -dU/dx K= ½ mv2 Part I. Electromagnetism (about 1 hour) 1. Check all the fields that could possibly be present, for each charge motion. E alone B alone E and B together a. Charge at rest b. Charge moving at a constant speed c. Charge accelerating in a straight line d. Charge bending at constant speed e. Charge bending and accelerating 2. Describe how potentials V are related to electric fields E, (a) qualitatively and (b) quantitatively 3. Is an electric field stronger where equipotentials are concentrated or spread out? Explain. 4. Is an electric field stronger near a pointy conductor or a smooth one? Explain. 5. Is it safer to stand up or crouch down in a lightening storm? Explain. __ / 13 2 6. Draw the direction of the magnetic force for each situation below. Assume positive charges. 7. A device measures the mass of charged particles by first determining their velocity and then deflecting them with a magnetic field. (a) Velocity selector: When a charged particle travels through crossed E and B fields (both of which fill the region below), the trajectory will be undeflected (continuing in a straight line) only if the velocity has a certain relationship to E and B. This setup effectively “selects” particles with velocity v. uniform B x x x x x x x x x x x x x x x x x x x x uniform E (a) Derive the relationship between E, v, and B (b) that will select undeflected particles of velocity v. 7 (b) If the electric field E doubles, how will the selected particle’s ENERGY change? It will: (show your work) Halve - stay the same – double – quadruple - other Now that we know the speed v of the particle from the E and B settings, we’d like to determine the mass m of the particle – which is the point of this device. 3 (7) Magnetic deflection: When a charged particle of velocity v enters a region of perpendicular magnetic field (B) (where E=0 now), how is it deflected? (c) Sketch the path of a positively charged particle. (d) Derive an expression for its radius of curvature in terms of q, v, m, and B. (e) Find the mass of the particle in terms of measurable quantities (r, E, and B) and the charge q. uniform B v x x x x x x x x x x x x x x x x x x x x (f) If the magnetic field B in the deflection region doubles, how will the RADIUS of curvature of the particle’s path change? (Assume fields in the velocity selection region are unchanged.) It will: (show your work) Halve - stay the same – double – quadruple - other 4 8. (a) Find the charge distribution q(r) inside a sphere which carries a charge density proportional to the distance from the origin, = c r, for some constant c. [Hint: A spherical volume element is d= r2 sin dr d d where (0<<) and (0<).] (b) Sketch q(r) and (r). (c) Find the electric field inside the sphere. (d) What is the total charge Q in the sphere? Express the electric field outside the sphere in terms of Q. (e) How could you find the energy in this charge configuration? You need not calculate it, but set it up. 5 9. A metal sphere of radius R, carrying charge q, is surrounded by a thick concentric metal shell with inner radius a and outer radius b, as drawn below. The outer shell carries no net charge. (a) Find the surface charge density at R, at a, and at b. (b) Find the electric field E everywhere. (c) If the outer shell is touched to a grounding wire, how do your answers change? Why? (d) Find the capacitance of the system. 6 Math interlude 1. Is each function below a vector or a scalar? (a) v = x sin y xˆ + cos y yˆ + x y zˆ (b) T e5 x sin 4 y cos3z 2. What is the definition of the function del or (in Cartesian coordinates)? 3. (a) Can one find the Laplacian ( 2 ) of a scalar or vector function? (b) Find the Laplacian of the appropriate function from (1) above. 4. (a) Can one find the divergence and curl of a scalar or vector function? (b, c) Find the divergence and curl of the appropriate function from (1) above. 7 Part II: Modern physics (less than an hour) 1. If an electron in the Bohr orbit n = 4 transitions to n = 2: (a) Find the energy difference between the orbits. (b) Find the emitted wavelength. (c) Is this in the visible range? 2. If an electron is in the “3p” state: (a) What do you know about its energy quantum number, n? (b) What do you know about its angular momentum quantum number, ? (c) What do you know about the orientation of its angular momentum, m? (d) What do you know about its spin quantum number, ms? (e) Diagram, and list the excited states (in spectroscopic notation) to which the 3p state can make downward transition (ignoring forbidden transitions to which it may tunnel). (f) How would the spectrum change in the presence of an external magnetic field? 8 3. If the angular momentum of the Earth in its motion around the Sun were quantized like a nh hydrogen atom according to L mvr n , 2 (a) What would Earth’s quantum number be? (b) How much energy would be released in a transition to the next lowest level? (c) Would that energy release (presumably in a gravity wave) be detectable? (d) What would be the radius of that orbit? (The radius of Earth’s orbit is 1.5 x 1011 m.) 9 Part III: Differential Equations and more (1 hour or so) y 2 x2 1. Solve y ' . 2 yx (Hint: Bernoulli eqn: Let z y n 1 …) 2. Lagrange multipliers: Consider a particle of mass m in a 3D quantum mechanical well. The well is a rectangular box with sides a, b, and c. The ground state energy of the particle is given h2 1 1 1 by E 2 2 2. 8m a b c (a) Find the shape of the box (a, b, and c) that will minimize the energy E, subject to the constraint that the volume is constant. (b) Find the minimum energy. 10 0, x 0 3. (a) Sketch the PERIODIC function f ( x) . x, 0 x (b) Is it even, odd, or neither? (c) Does it make more sense to expand f(x) in a cos/sin or exponential Fourier series? Why? (d) Expand f(x) in the most economical Fourier series. [Hint: xe inx 1 ix dx e inx 2 .] n n 4. Solve D 2 4 y 16cos 4 x : (a) (b) (c) (d) (e) (f) 11 Write the differential equation in terms of derivatives of y. Solve for the roots of the characteristic (or homogeneous) equation. Write the characteristic (or homogeneous) solution, yc, with undetermined coefficients. Write a particular solution yp, based on the nonhomogeneous part of the equation. Check for constraints on undetermined coefficients. Write the general solution to the equation. How do you feel about your work and your learning so far? What question do you wish had been on this exam? Feedback or questions for your prof? 12