Download Topic 21 - FSU Biology

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Leukotriene B4 receptor 2 wikipedia , lookup

Purinergic signalling wikipedia , lookup

Lipid signaling wikipedia , lookup

Chemotaxis wikipedia , lookup

VLDL receptor wikipedia , lookup

JADE1 wikipedia , lookup

Cannabinoid receptor type 1 wikipedia , lookup

Paracrine signalling wikipedia , lookup

Biochemical cascade wikipedia , lookup

G protein–coupled receptor wikipedia , lookup

Obesogen wikipedia , lookup

Signal transduction wikipedia , lookup

Transcript
Topic 21: COMMUNICATION BETWEEN CELLS – CHEMICAL (LECTURE 33)
OBJECTIVES:
1. Know the different kinds of chemical signal molecules.
2. Understand the concept of second messenger and hormone signal amplification.
3. Understand how the chemistry of a hormone determines where in the cell its
receptor is located.
4. Be able to compare and contrast the control of hormone secretion by the anterior
and posterior pituitary and be able to recognize which hormones are secreted by
these two regions.
5. Understand the concept of negative feedback regulation as relates to thyroid
hormone secretion.
An animal consists of a complex assemblage of cells organized into tissues, organs and
organ systems; the activities of these cells must be coordinated. This is accomplished
by a diverse array of chemical signals.
Fig. 11.3- kinds of chemical signal molecules
1. hormone- a chemical signal molecule released by an endocrine gland into the blood
which is then carried long distance to have an effect on some target organ;
neurohormone- a chemical signal molecule released by a specialized nerve cell
(neuroendocrine gland) into the blood which is then carried long distance to have an
effect on some target organ
2. neurotransmitter – a chemical signal molecule released by a nerve cell (neuron)
which has impact on adjacent cell(s) like other neurons
3. paracrine secretion- a molecule released by a cell other than a neuron which has a
local effect
Hormones & neurohormones- these molecules are released at very low concentrations
into the blood; target organs have specific hormone receptors which bind the hormone
and subsequently the biological effect is produced. Hormone receptors are proteins
which can be located inside the cell or on the exterior of the cell membrane. Location is
determined by the chemistry of the hormone1. lipid soluble hormones like steroids can dissolve into the cell membrane and pass
right on through; these hormones have cytoplasmic and/or nuclear receptors
2. peptide or protein hormones are lipid-insoluble; they cannot pass through the cell
membrane; they interact with membrane-bound receptors.
How can a few hormone molecules produce a large biological effect; the hormone
signal is amplified by signal transduction pathways (fig. 11.5).
G- proteins are often involved in signal transduction- fig. 11-6
1
Binding of signal molecule to membrane receptor initiates a series of changes which
leads to a biological effect. Examples of typical signal transduction systems- G protein
linked (fig. 11.7)- binding of a signal molecule to receptor causes activation of a G
protein by phosphorylation which in turn activates some other process.
Second messenger systems in signal transduction pathways.
A way of amplifying the interaction of a chemical signal with a receptor is to
produce a second messenger ( second messengers- small, water soluble molecules or
ions that are present in excess of the original signal chemical). These molecules are
able to travel throughout the cell producing a variety of biological effects.
Cyclic AMP based systems- fig. 11.12; cyclic AMP is produced by the enzyme adenylyl
cyclase and broken down by the enzyme phosphodiesterase.
Fig. 11.13 – G protein linked activation of adenylyl cyclase with subsequent production
of cyclicAMP and activation of protein kinase A.
Calcium ions and inositol triphosphate- fig. 11.15; activation of phospholipase C causes
breakdown of membrane phospholipids; inositol triphosphate IP3 is one of the products.
This causes the endoplasmic reticulum to release calcium ions which act as a second
messenger system.
Hormones –transported long distances by the circulatory system; generally are
somewhat long-lasting in biological effects- minutes to a few hours.
Fig. 45.3- Chemical signaling overview
Some examples of endocrine glands and hormone action in mammals- the major points
to keep in mind: (1) targets may be very distant from endocrine gland/neuroendocrine
cells, (2) hormones are very specific; specificity is determined by the receptors in the
target organ, (3) often there are hormones that have opposite or antagonistic effects to
a particular hormone and (4) hormone secretion is under precise control.
Fig. 45.6- posterior and anterior pituitary gland; secretions of this gland are under direct
control by a region of the brain known as the hypothalamus.
Posterior pituitary- neuroendocrine cells in the hypothalamus extend all the way into
the pos. pituitary; release two hormones into the blood- (1) antidiuretic hormone and (2)
oxytocin (milk ejection reflex; contraction of the uterus)
Anterior pituitary- neuroendocrine cells in the hypothalamus produce neurohormones
that are released into blood vessels going to the anterior pituitary. These agents control
the secretion of many of the hormones of the anterior pituitary including:
2
1. growth hormone- bone elongation, brain development
2. gonadotropins- follicle stimulating hormone and luteinizing hormone; targets are the
ovary and testes
3. thyroid stimulating hormone (TSH) - stimulates thyroid to release thyroid hormone
4. adrenocorticotropic hormone- causes the cortical region of the adrenal gland to
release the hormone cortisol (important in carbohydrate and protein metabolism)
An example of control of hormone secretion.
Fig. 45.8- thyroid hormone consists of two very similar hormones T 3 and T4 which are
derived from the amino acid tyrosine; both stimulate metabolism and are also essential
for normal brain development. Both are under very tight control in terms of secretion by
what are known as negative feedback loops (the accumulation of a product in a
sequence inhibits its further production/release).
1. hypothalamus releases TRH (TSH releasing hormone) which causes the anterior
pituitary to release TSH
2. TSH causes the thyroid gland to release thyroid hormone.
3. as TSH levels in the blood rise, it begins to inhibit the release of TRH by the
hypothalamus
4. as thyroid hormone levels in the blood rise, it begins to also inhibit the release of
TRH
5. the net effect is to avoid over secretion of thyroid hormone
3