Download File - Biology

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Gene expression programming wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Skewed X-inactivation wikipedia , lookup

Point mutation wikipedia , lookup

Hybrid (biology) wikipedia , lookup

Genetic engineering wikipedia , lookup

Epigenetics of human development wikipedia , lookup

Genomic imprinting wikipedia , lookup

Polycomb Group Proteins and Cancer wikipedia , lookup

Gene wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

NEDD9 wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Y chromosome wikipedia , lookup

Quantitative trait locus wikipedia , lookup

History of genetic engineering wikipedia , lookup

Genome (book) wikipedia , lookup

Designer baby wikipedia , lookup

Dominance (genetics) wikipedia , lookup

Neocentromere wikipedia , lookup

X-inactivation wikipedia , lookup

Microevolution wikipedia , lookup

Karyotype wikipedia , lookup

Chromosome wikipedia , lookup

Ploidy wikipedia , lookup

Meiosis wikipedia , lookup

Polyploid wikipedia , lookup

Transcript
Name: __________________________________
Date: ___________
Meiosis & Mendel Notes – Chapter 6
A. You have body cells and gametes
a. body cells are called somatic cells
b. germ cells develop into gametes
i. germ cells are located in the ovaries and testes
ii. gametes are sex cells; eggs and sperm
iii. gametes have DNA that can be passed to offspring
B. Your cells have autosomes and sex chromosomes
a. your body cells have 23 pairs of chromosomes
i. homologous pairs of chromosomes have the same structure
ii. for each homologous pair, one chromosome comes from each parent
b. chromosome pairs 1 – 22 are autosomes
c. sex chromosomes, X and Y, determine gender in mammals
C. Body cells are diploid; gametes are haploid
a. fertilization between egg and sperm occurs in sexual reproduction
b. diploid (2n) cells have two copies of every chromosome
i. body cells are diploid
ii. half the chromosomes come from each parent
c. haploid (n) cells have one copy of every chromosome
i. gametes are haploid
ii. gametes have 22 autosomes and 1 sex chromosome
D. Chromosome number must be maintained in animals
a. many plants have more than two copies of each chromosome
b. mitosis and meiosis are types of nuclear division that makes different types of cells
c. mitosis makes diploid cells
E. Cells go through two rounds of division in meiosis
a. meiosis reduces the chromosome number and creates genetic diversity
F. Meiosis I and Meiosis II each have four phases similar to those in mitosis
a. pairs of homologous chromosomes separate in meiosis I
b. homologous chromosomes are similar but not identical
c. sister chromatids divide in meiosis II
d. sister chromatids are copies of the same chromosomes
G. Meiosis I occurs after DNA has been replicated
H. Meiosis I divides homologous chromosomes in four phases
I. Meiosis II divides sister chromatids in four phases
J. DNA is not replicated between meiosis I and meiosis II
K. Meiosis differs from mitosis in significant ways
a. meiosis has two cell divisions while mitosis has one
b. in mitosis, homologus chromosomes never pair up
c. meiosis results in haploid cells; mitosis results in diploid cells
L. Haploid cells develop into mature gametes
a. gametogenesis is the production of gametes
b. gametogenesis differs between females and males
i. sperm becomes streamlined and motile
ii. sperm primarily contribute DNA to an embryo
iii. eggs contribute DNA, cytoplasm, and organelles to an embryo
iv. during meiosis, the egg gets most of the contents; the other cells become
polar bodies
M. Mendel laid the groundwork for genetics
a. traits are distinguishing characteristics that are inherited
b. genetics is the study of biological inheritance of patterns and variation
c. Gregor Mendel showed that traits are inherited as discrete units
d. many in Mendel’s day thought traits were blended
N. Mendel’s data revealed patterns of inheritance
a. Mendel made three key decisions in his experiments
i. use of purebred plants
ii. control over breeding
iii. observation of seven “either-or” traits
b. Mendel used pollen to fertilize selected pea plants
i. P-generation crossed to produce F1 generation
ii. interrupted the self-pollination process by removing male flower parts
O. Mendel allowed the resulting plants to self-pollinate
a. among the F1 generation, all plants had purple flowers
b. F1 plants are all heterozygous
c. among the F2 generation, some plants had purple flowers and some had white flowers
P. Mendel observed patterns in the first and second generations of his crosses
Q. Mendel drew three important conclusions
a. traits are inherited as discrete units
b. organisms inherit two copies of each gene, one from each parent
c. the two copies segregate during gamete formation
d. the last two conclusions are called the Law of Segregation
R. The same gene can have many versions
a. a gene is a piece of DNA that directs a cell to make a certain protein
b. each gene has a locus, a specific position on a pair of homologous
chromosomes
S. An allele is any alternative form of a gene occurring at a specific locus on a chromosome
a. each parent donates one allele for every gene
b. homozygous describes two alleles that are the same at a specific locus
c. heterozygous describes two alleles that are different at a specific locus
T. Genes influence the development of traits
a. all of an organism’s genetic material is called the genome
b. a genotype refers to the makeup of a specific set of genes
c. a phenotype is the physical expression of a trait
U. Alleles can be represented using letters
a. a dominant allele is expressed as a phenotype when at least one allele is
dominant
b. a recessive allele is expressed as a phenotype only when two copies are present
c. dominant alleles are represented by uppercase letters; recessive alleles by
lowercase letters
V. Both homozygous dominant and heterozygous genotypes yield a dominant phenotype
a. most traits occur in a range and do not follow simple dominant-recessive patterns
W. Punnett Squares illustrate genetic crosses
a. the Punnett Square is a grid system for predicting all possible genotypes resulting
from a cross
b. the axes represent the possible gametes of each parent
c. the boxes show the possible genotypes of the offspring
d. the Punnett Square yields the ratio of possible genotypes and phenotypes
X. A monohybrid cross involves one trait
a. monohybrid crosses examine the inheritance of only one specific trait
b. homozygous dominant-homozygous recessive: all heterozygous, all dominant
c. heterozygous-heterozygous – 1:2:1 homozygous dominant: heterozygous:
homozygous recessive; 3:1 dominat:recessive
d. heterozygous-homozygous recessive – 1:1 heterozygous:homozygous recessive;
1:1 dominant:recessive
e. a testcross is a cross between an organism with an unknown genotype and an
organism with the recessive phenotype
Y. A dihybrid cross involves two traits
a. Mendel’s dihybrid crosses with heterozygous plants yielded a 9:3:3:1 phenotypic
ratio
b. Mendel’s dihybrid crosses led to his second law, the Law of Independent
Assortment
i. The Law of Independent Assortment states that allele pairs separate
independently of each other during meiosis
Z. Heredity patterns can be calculated with probability
a. probability is the likelihood that something will happen
b. probability predicts an average number of occurrences, not an exact number of
occurrences
c. probability = number of ways a specific event can occur
number of total possible outcomes
d. probability applies to random events such as meiosis and fertilization
AA. Sexual reproduction creates unique combinations of genes
a. sexual reproduction creates unique combinations of genes
i. independent assortment of chromosomes in meiosis
ii. random fertilization of gametes
b. unique phenotypes may give a reproductive advantage to some organisms
AB. Crossing over during meiosis increases genetic diversity
a. crossing over is the exchange of chromosome segments between homologous
chromosomes
i. occurs during prophase I of meiosis I
ii. results in new combinations of genes
AC. Chromosomes contain many genes
a. the farther apart two genes are located on a chromosome, the more likely they are to
be separated by crossing over
b. genes located close together on a chromosome tend to be inherited together, which is
called genetic linkage
c. genetic linkage allows the distance between two genes to be calculated