* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Genetics Questions Extra - Science-with
Site-specific recombinase technology wikipedia , lookup
Saethre–Chotzen syndrome wikipedia , lookup
Ridge (biology) wikipedia , lookup
Minimal genome wikipedia , lookup
Genome evolution wikipedia , lookup
Genetic drift wikipedia , lookup
Population genetics wikipedia , lookup
Polymorphism (biology) wikipedia , lookup
Gene expression programming wikipedia , lookup
History of genetic engineering wikipedia , lookup
Nutriepigenomics wikipedia , lookup
Epigenetics of human development wikipedia , lookup
Gene expression profiling wikipedia , lookup
Artificial gene synthesis wikipedia , lookup
Genome (book) wikipedia , lookup
Hardy–Weinberg principle wikipedia , lookup
Biology and consumer behaviour wikipedia , lookup
Genomic imprinting wikipedia , lookup
Quantitative trait locus wikipedia , lookup
X-inactivation wikipedia , lookup
Designer baby wikipedia , lookup
Biology 30 Genetics Package Exercise #1: Monohybrid Crosses 1. In order to solve any genetics problem, you must be able to code the genotypes of the parents and offspring. In this question, you will practice coding. For each of the following, indicate the genotypes and phenotypes of the P and F1 generation. Assume pure traits in the parents. a) Mendel crossed pea plants producing yellow seeds with plants producing green seeds. All offspring produced yellow seeds. b) Homozygous smooth-seed plants were crossed with wrinkled-seed plants. Smooth seeds are dominant. c) White-fruit squash plants were crossed with yellow-fruit squash plants. All the offspring produced white fruit. d) A yellow-pod pea plant was crossed with a green pod plant. None of the offspring produced green pods. e) A brown-eyed man and a blue-eyed woman had 6 children. All the children had brown eyes. In solving a genetics problem there are six basic steps: 1. Assign letters to represent the alleles. 2. Determine the genotype of each parent. 3. Determine the possible types of gametes each parent can produce. 4. Determine all possible gene combinations that may result when these gametes combine. 5. Determine the various phenotypes possible by analysing the various genotypes. 6. Determine genotypic and phenotypic ratios as required. 2. A pure black male cat mates with a white female. Black coat colour is the product of a dominant allele. Show the genotypes and phenotypes of the parental, F1 and F2 generations. Indicate the phenotypic and genotypic ratios of the F2 generation. 3. In humans, six fingers (F) is the dominant trait and five fingers (f) is the recessive trait. Both parent are heterozygous for six-fingers. Indicate the genotypes and phenotypes of the parents and their possible offspring. What is the probability of producing a fivefingered child? 4. In cattle the polled (hornless) trait is dominant over the horned trait. A purebred polled bull is bred with a horned cow. Show the genotypes and phenotypes of the parental, F1 and F2 generations. Indicate the phenotypic and genotypic ratios of the F2 generation. 5. Scientist believe that a mutant recessive form of an autosomal gene called BRCA1 may be associated with 5% to 10% of all cases of breast cancer. About 80% of women who inherit the gene in its defective form are likely to develop a cancerous breast tumour. Men who carry the faulty BRCA1 gene rarely develop breast cancer, but they may pass the gene to their offspring. A couple has two children, a girl and a boy. The mother has a single mutant gene for breast cancer; the father is not a carrier of the mutant BRCA1 gene. What is the probability that their daughter has inherited the mutant BRCA1 gene? D:\147026475.doc 1 Biology 30 Genetics Package 6. A single pair of genes in which the Siamese pattern is recessive to the ordinary solid coat colour pattern controls the Siamese coat pattern in cats. Predict the phenotypes, genotypes and their probable proportions in the kittens of a homozygous solid coat male with a Siamese female cat. 7. In a certain species of plant, one purebred variety has hairy leaves and another purebred variety has smooth leaves. A cross of the two varieties produces offspring that all have smooth leaves. Predict the phenotypic and genotypic ratio of the F2 generation. 8. Melanin pigments range in colour from yellow to reddish-brown to black. The amount and the colour of melanin in the skin account for differences in human skin coloration. Albinism is a genetic disorder that results in unpigmented skin and other tissues. About 1 in 20 000 humans has albinism. In humans, it can be caused by an autosomal recessive allele (a). Its dominant allele (A) results in normal pigmentation a) If an albino marries a homozygous person of normal pigmentation, what would be the expected phenotype and genotype of their children? b) If an albino married a heterozygous person of normal pigmentation, what phenotypes would you expect in their children? c) Two parents of normal skin pigmentation had an albino child. How was this possible? 9. In cattle, hornless or polled (P) is dominant over the horned (p) condition. It is an autosomal trait. The semen of a polled bull is used to artificially inseminate three cows. Cow 1 (horned) produced a horned calf, cow 2 (polled) produced a horned calf, and cow 3 (polled) produces a polled calf. Determine the genotypes of the above animals then answer the following questions: a) Which of the cattle must have a heterozygous genotype for this trait? b) Which of the above cattle could have two possible genotypes? 10. Wild red foxes occasionally have silver-black pups. If two silver-black foxes mate, their offspring are all silver-black. Explain the inheritance of these coat colours in foxes. Use a Punnett square to provide evidence for your answers. 11. In mice the genotype GG is gray, Gg is yellow and gg dies as a small embryo. Assuming (g) in the homozygous state is a lethal allele, what offspring would be expected from a cross between a yellow mouse and a gray mouse? What offspring would be expected from a cross between two yellow mice? 12. In Drosophila, the common fruit fly, the normal grey body is dominant to the recessive trait of black body. How can you determine the unknown genotype of a grey bodied fly? 13. Black colour in guinea pigs is dominant over white. Outline a cross that would make it possible to determine if a black male guinea pig is homozygous or heterozygous. D:\147026475.doc 2 Biology 30 Genetics Package 14. When 20 purebred Himalayan rabbits are mated with a solid grey male of unknown ancestry, 46 of the offspring are Himalayan and 52 are grey. A single pair of genes controls coat colour in rabbits. Himalayan rabbit a) Is the Himalayan coat pattern controlled by a recessive or a dominant allele? b) What are the genotypes of the female and male rabbits? c) How many offspring of each phenotype would you expect from the cross outlined above? Use a Punnett square to provide evidence for your answer. 15. In rabbits, certain short-haired individuals crossed with long-haired ones produce only shorthaired individuals. Other short-haired ones when crossed with long-haired ones produce approximately equal numbers of short-haired and long-haired offspring. When long-haired rabbits are crossed, they always produce long-haired offspring like themselves. a) Which trait is do you hypothesize is dominant? b) Give the genotypes of all the rabbits described: First cross: short-haired rabbit long-haired rabbit Second cross: short-haired rabbit long-haired rabbit short-haired offspring short-haired offspring long-haired offspring 16. In humans, brown eyes are dominant to blue. Both parents of a blue-eyed man are brown eyed. The blue-eyed man, Ed, marries a brown-eyed woman, Sharon, whose mother had brown eyes and whose father had blue eyes. The woman has a brother who has blue eyes. Ed and Sharon marry and have a brown-eyed child. Give the genotypes of all the individuals described. Ed's mother _____ Sharon's mother _____ Ed's father _____ Sharon's father _____ Ed _____ Sharon's brother _____ Sharon _____ Ed and Sharon's child _____ 17. What are the chances that the first child from a marriage of two heterozygous brown-eyed parents has blue eyes? If the first child has brown eyes, what are the chances that the second child will also have brown eyes? Explain your reasoning. D:\147026475.doc 3 Biology 30 Genetics Package 18. A brown-eyed man marries a blue-eyed woman. They have eight children, all of whom have brown eyes. What are the genotypes of all the individuals in the family? 19. When two rough-coated guinea pigs are bred, the resulting offspring consisted of 18 roughand 4 smooth-coated offspring. Which type of coat is dominant? What proportions of the offspring are homozygous for the dominant trait? CHALLENGE QUESTION: 20. In peas, inflated pods are the product of a dominant allele and constricted pods are produced by a recessive allele. Long stems are the product of a dominant allele and short stems are produced by a recessive allele. a) What symbols would be used for coding these genes? b) What are the two possible genotypes of a plant, which has the phenotype of inflated pods and short stems? c) What is the genotype of a plant, which is a hybrid for pod shape and stem length (heterozygous for both traits)? D:\147026475.doc Biology 30 Genetics Package Exercise # 2 Dihybrid & Monohybrid Crosses 1. Horses which are black in colour and which have a trotting gait carry autosomal dominant genes, while horses, which are chestnut in colour and have a pacing gait carry autosomal recessive genes. A purebred black trotting stallion is bred with a chestnut-pacing mare. a) What are the parental genotypes and what are the possible sperm and eggs produced? b) What would the genotype and phenotype of the F1 offspring be? c) What kind of gametes could the F1 offspring produce at maturity? d) Construct a Punnett square to show the possible F2 offspring if two F1 horses were bred maturity. e) What is the expected phenotypic ratio of the F2 generation if many of these breeding took place? 2. In summer squash, white fruit is dominant over yellow fruit while disc is dominant over sphere shape. A plant which is homozygous for white fruit and sphere shape is crosspollinated with one which is homozygous for yellow fruit colour and disc shape. a) What will be the genotype and phenotype of the F1? b) What is the phenotypic ratio of the F2 generation? c) If a F1 plant were crossed with pollen from its yellow disc parent, what would be the expected phenotypes of the offspring and in what ratio? 3. In certain breeds of dogs, black colour is determined by an autosomal dominant gene and red colour is due to an autosomal recessive gene. Solid coat is dominant trait and white spotted coat is recessive. A male which is heterozygous black and homozygous white spotted is bred with a female which is red and white spotted. a) What is the probability of producing a pup which is red and white spotted? b) What is the probability of these two dogs producing a solid black puppy? 4. In garden peas, the allele for tall plant height (T) is dominant over the allele for short plant height (t), and the autosomal allele for axial flower position is dominant over the allele for terminal flower position (a). A plant heterozygous for both traits was crossed with plant homozygous recessive for both traits. a) What percentage of the offspring produced would be expected to display at least one of the dominant traits? b) Predict what fraction of the offspring will be heterozygous for both traits? 5. In pea plants, tall (T) dominant over short (t), and round seed (R) is dominant over wrinkled seed (r). A heterozygous tall-heterozygous round –seed pea plant and a short-heterozygous round-seed pea plant were crossed. a) What is the probability of producing an offspring that is homozygous recessive for both traits? b) What portion of the offspring are tall and round? c) How could you test your hypothesis of which trait is dominant? Use Punnett squares to show the results of the crosses you would use. D:\147026475.doc Biology 30 Genetics Package 6. In Drosophila, the common fruit fly, the normal grey body is dominant to the recessive trait of black body. A grey-bodied male fly was allowed to breed with many black-bodied females. Some of the offspring had grey bodies and some had black bodies. a) What were the genotypes of the parents and the offspring? b) Two grey-bodied flies were mated, and all the offspring had grey bodies. Can you conclusively determine the genotypes of the parents? Explain your answer. c) Two grey bodied flies were mated, and both grey and black bodies were observed in their offspring. What were the genotypes of the parents? What were the genotypic and phenotypic ratios of the offspring? 7. In Holstein-Friesian cattle, the two colours black-and-white and red-and-white are controlled by a single pair of alleles. A black-and-white bull was bred with 20 red-and white cows. All of the resulting calves were black-and-white. a) What allele for the trait of coat colour is dominant? b) When the F1 calves grew to maturity, the ones that had the most desirable traits were mated. What would be the expected phenotypic ratio of coat colours of the F2 calves? 8. Normal skin pigmentation (A) dominates lack of pigmentation (albino = a). Brown eyes (B) dominant blue eyes (b). Two people with normal pigmentation produce one brown-eyed child of normal skin pigmentation, two blue-eyed children of normal skin pigmentation, and one blue-eyed albino. What are the possible genotypes of the parents? Challenge Question: 9. In snapdragons, the characteristics of flower colour and leaf shape are both determined by genes which show incomplete dominance. The genotypes and corresponding phenotypes are given below: rr = red flower nn = narrow leaves ww = white flower bb = broad leaves rw = pink flower bn = intermediate leaves A snapdragon having red flowers and narrow leaves was crossed with one having white flowers and broad leaves. Indicate the genotypes and phenotypes of the parental, F1 and F2 generations D:\147026475.doc Biology 30 Genetics Package Exercise #3: Other Patterns of Inheritance Codominance/Multiple Alleles 1. In the four o’clock flower, similar to a petunia, the allele for red flower colour is incompletely dominant over the allele for white flower colour. A heterozygous plant has pink flowers showing intermediate inheritance. a) Show the genotypes of the parents and F1 generation of a cross between a red flowered and a white flowered four o’clock plant. b) What would be the anticipated offspring if an F1 plant were back-crossed to the red flowered parent? c) What would be the anticipated offspring if an F1 plant were back-crossed to the white flowered parent? 2. In a certain strain of chickens, a mating between a black chicken and a white chicken always produces offspring which have a distinctive feather appearance called blue Andalusian. A cross between two blue Andalusians produces blue, black and white offspring. a) Using Punnett squares, illustrate the two crosses described. b) What are the phenotypic and genotypic ratios of the F2 generations? c) What would be the expected phenotypic ration if a blue Andalusian hen were bred with a black rooster? 3. Blood typing: The alleles for A (IA) and B (IB) are codominant, and both are dominant to O (i). The alleles for M and N are codominant. The allele for RH+ (R) is dominant to the allele for RH- (r). The coding usually used to represent these alleles is: type A antigen IA type B antigen IB no antigen i a) Complete the table below to indicate all possible genotypes for the phenotypes indicated. Phenotypes Type A Type B Type AB Type O Genotypes 4. A woman having type A blood claims that her former husband who has type B blood is the father of her baby. The baby has type O blood. The man denies that he is the father of the child and refuses to pay child support. Show how you would determine if the man is in fact the father of the child. 5. If a woman with the genotype IAIBRr and a man with the blood type O Rh- have a child, what is the probability that the child will have blood type A Rh-. D:\147026475.doc Biology 30 Genetics Package 6. Which children could belong to a couple in which the woman has blood type A, N, Rh+ and the man has blood type O, M, Rh+. Child Blood Types One O MN Rh+ Two A N Rh+ Three A MN RhFour AB MN Rh- 7. Coat colour in mice is dependent on members of a series of multiple alleles. The hierarchy of dominance is: C+ (full colour) > Cch (chinchilla) > Cd (blonde) > c (albino) Complete the table below to indicate all possible genotypes for the phenotypes indicated. Phenotypes Genotypes Full colour Chinchilla Blonde Albino a) A chinchilla female which was heterozygous for albino was mated with a full colour male which was heterozygous for blonde. What phenotypes could be expected in their offspring? 8. Sickle cell anemia is caused by the sickle cell allele (HbS) of a gene that contributes to hemoglobin (Hb) production. The abnormal hemoglobin (hemoglobin-S) produced causes red blood cells to become deformed and block capillaries. Tissue damage results. Affected individuals homozygous for the sickle cell gene rarely survive to reproductive age. Heterozygous individuals produce both normal hemoglobin and a small percentage of hemoglobin-S. These individuals are more resistant to malaria than individuals who are homozygous for the allele for normal hemoglobin (HbA). Their red blood cells are prone to sickling when there is a deficiency of oxygen. a) If a man and a woman who are both heterozygous for the alleles HbA and HbS have a child, what is the probability that the child would not be heterozygous? D:\147026475.doc Biology 30 Genetics Package Genetics Exercise #4 Polygenic characteristics: Epistatic Genes One Gene Many Effects: Pleiotropic Genes 1. 2. In the radish plant three shapes are observed in the root - round, long and oval. Different crosses of radishes gave the following results: a) long x oval 52 long and 48 oval b) long x round 98 oval c) oval x round 51 oval and 50 round d) oval x oval 24 long, 53 oval, and 27 round Explain the inheritance of root shape in radishes. Using symbols, demonstrate that your hypothesis is true for all crosses. R is the allele for red flesh fruit colour in tomatoes, while r is the allele for yellow fruit. P is the allele which gives tomato stem a purplish colour, and p shows up as a greenish stem. Suppose a cross was made between two tomato plants which resulted in the following kinds of offspring: 247 red fruit, purple stem 261 red fruit, green stem, 253 yellow fruit, purple stem 256 yellow fruit, green stem What would be the phenotypes and genotypes of the parent plants? 3. In mice, the gene C causes pigment to be produced, while the recessive gene c makes it impossible to produce pigment (albinism). Another gene B, located on a different chromosome, causes a chemical reaction with the pigment and produces a black colour. The recessive gene b causes incomplete breakdown of the pigment and causes a light brown or tan colour to be produced. The genes that produce black or tan coat colour rely on the gene C which produces the pigment, but are independent of it. Indicate the phenotypes of the parents and provide genotype and phenotypic ratios of the F1 generation from the following crosses: a) CCBB x Ccbb b) ccBB x CcBb c) CcBb x ccbb d) CcBb X CcBb 4. The mating of a tan mouse and a black mouse produces many different offspring. The geneticist notices that one of the offspring is albino. What is the genotype of the tan parent? How could you determine the genotype of the black parent? D:\147026475.doc Biology 30 Genetics Package 5. The gene R produces a rose comb in chickens. An independent gene, P, which is located on a different chromosome, produces a pea comb. The absence of the dominant rose comb or pea comb allele (rrpp) produces birds with single combs. However, when the rose and pea comb genes are present together, they interact to produce a walnut comb (R_P_). Pictures of these comb shapes are shown on page 487 of your text. Indicate the phenotypes of the parents and provide genotypic and phenotypic ratios of the F1 generation from the following crosses: a) rrPP x RRpp b) RrPp x RRPP c) RrPP x rrPP d) RrPp X RrPp 6. Assume that there are two gene pairs involved in determining eye colour: one codes for pigment in the front of the iris and other codes for pigment in the back of the iris. Genotype Eye Colour AABB black-brown AABb dark brown AAbb brown AaBB brown-green flecked AaBb light brown Aabb grey-blue aaBB green aaBb dark blue aabb light blue a) A man has gray-blue eyes and a woman has green eyes. Which eye colour phenotypes would be possible for children born to this man and woman? b) If one parent has light brown eyes and the other has dark brown eyes, what is the probability that they would have an offspring with gray-blue eyes? 7. Marfan syndrome is an autosomal-dominant disorder of humans. Affected individuals tend to be tall and thin. They have defects in the lens of the eye and weak connective tissue around the aorta. Often, affected individuals excel in sports like volleyball or basketball, but it is not uncommon for people with this syndrome to die suddenly. a) A man, heterozygous for Marfan syndrome and a homozygous recessive woman have a child. What is the probability that the child will be affected by Marfan syndrome? b) If the couple’s first child has Marfan, what is the probability of their second child also having this disorder? 8. In humans, normal pigmentation dominates no pigmentation (albino). Black hair dominates blonde hair. An albino person will have white hair colour even though they may also have the genes for black or blonde hair colour. An albino male who is homozygous for black hair marries a woman who is heterozygous for normal pigmentation and who has blond hair. What colours of hair can their children have and what is the probability for each hair colour? D:\147026475.doc Biology 30 Genetics Package Genetics Exercise #5 Chromosome Mapping The probability of a crossover between 2 loci (specific places on a chromosome where genes are located) in a chromosome is proportional to the distance between the two loci. Since a crossover can occur at any place in the chromosome, the longer the chromosome length between the loci the greater the chance that crossover will take place. By knowing recombination frequencies, the sequence of genes in a chromosome can be determined. 1. The recombination frequency between gene A and gene B is 9%; between A and C is 17%; and between B and C is 26%. What is the sequence of genes in the chromosome? Sketch a map of the chromosome, showing the map unit distances between the genes. 2. The crossing-over frequency between genes A and B is 35%; between B and C , 10%; between C and D, 15%; between A and C, 25%; and between B and D, 25%. What is the sequence of genes in the chromosome? Sketch a map of the chromosome, showing the map unit distances between the genes. 3. The crossing-over frequency between genes A and B is 5%; between B and C , 17%; between C and D, 18%; between A and C, 12%; between B and D, 1%; and between A and D; 6%. What is the sequence of genes in the chromosome? Sketch a map of the chromosome, showing the map unit distances between the genes. 4. For a breeding experiment, a linkage group composed of genes W, X, Y, and Z was found to show the following gene combinations. Use this data to construct a gene map. W X Y Z W Gene X Y Z 5 7 8 5 2 3 8 3 1 - 7 2 1 5. In a series of breeding experiments, a group of genes located on the same chromosome was found to show the recombination frequencies in the chart below. Using this data, map the chromosome. A B C D E D:\147026475.doc A 8 12 4 1 GENE B 8 4 12 9 C 12 4 16 13 D 4 12 16 3 E 1 9 13 3 - Recombinations per 100 fertilized eggs Biology 30 Genetics Package The use of marker genes and the analysis of crossover frequencies of genes have enabled geneticists to map the location of many genes on human chromosomes. Blue colour vision and blue colour blindness (tritanopia) are both controlled by a gene on chromosome 7. The gene for the production of trypsin (a digestive enzyme) and the gene responsible for cystic fibrosis are also found on chromosome 7. Some crossover frequencies of these genes are shown below. Pairs of Genes Crossover Frequency Marker gene - cystic fibrosis 18 Marker gene - tritanopia 13% Cystic fibrosis- trypsin 6% Trypsin - tritanopia 1% 6. Which of the following gene maps shows the correct sequence of these genes on chromosome 7? Crossover Frequencies for Some Genes on an Autosome of Organism Z Genes Crossover Frequency P and Q 5% P and R 8% P and S 12% Q and R 13% Q and S 17% 7. Which chromosome map best represents the sequence of genes on the autosome from organism Z? D:\147026475.doc Biology 30 Genetics Package Exercise #6: Sex linkage Note: For all genetics problems involving sex-linked traits state the results of the two sexes separately. 1. Colour blindness in humans is a sex-linked recessive trait. A woman of normal colour vision whose father was colour blind marries a man of normal vision whose father was also colour blind. What type of colour vision will be expected in their children? 2. Mr. and Mrs. White have normal colour vision. They have three children: Bob, who is colour blind and who has a daughter of normal colour vision; Joan, who has normal colour vision and who had one son who is colour blind and one son who is normal; and Susan, who also has normal colour vision and who has five sons of normal colour vision. What are the genotypes of the individuals described? 3. Peter's maternal grandmother had normal colour vision and his maternal grandfather was colour blind. Peter's mother is colour blind, and his father has normal colour vision. a) What are the genotypes of the individuals described? b) What type of colour vision does Peter have? c) What type of colour vision do his sisters have? d) If Peter were to marry a woman who is genotypically the same as his sister Joan, what type of colour vision would be expected in their children? 4. Eye colour in Drosophila is sex-linked. It is controlled by a pair of genes in which red is dominant over white. a) If a red-eyed male fruit fly is crossed with a white-eyed female, what will be the phenotypes of the offspring? b) If a male F1 is mated with a white-eyed female, what will be the appearance of the offspring produced? c) If a female F1 is mated with a red-eyed male, what will be the appearance of the offspring produced? d) If a white-eyed female is crossed with a red-eyed male and the F1 are allowed to freely interbreed, what will be the eye colour of the F2 offspring? 5. “Alligator men” or “fish women” were exhibited for their physical abnormalities in fairs or circuses earlier this century. These people probably suffered from X-linked ichthyosis, which produces symmetric dark scales on the body. The disease occurs in 1 in 6 000 males and is more rarely found in females. Ichthyosis is likely a recessive disorder. If an “alligator man” were to marry a woman homozygous for the normal condition, what is the percentage probability that their children would have ichthyosis? D:\147026475.doc Biology 30 Genetics Package 6. In Drosophila wing length is controlled by autosomal genes in which the normal long-wing allele is dominant over the vestigial-wing allele. Vestigial wings are very small and nonfunctional. a) If a female fruit fly having white eyes and homozygous long wings is crossed with a male having red-eyes and vestigial wings, what will be the appearance of the F1? b) What will be the appearance of the F2? c) If an F1 female is mated with a male, which has the same genotype as her father, what will be the appearance of the offspring? d) If an F1 male is mated with a female, which has the same genotype as his mother, what will be the appearance of the offspring? 7. Baldness is a sex-influenced trait. Two autosomal alleles (HB and HN) exist for the pattern baldness gene. The HB allele is dominant in men but recessive in women. The HN (normal) allele is dominant in females but recessive in males. A single HB allele seems to cause pattern baldness only in the presence of the level of testosterone normally found in adult males. Males will develop pattern baldness with the genotypes HBHN or HBHB; whereas, for females to develop pattern baldness, they must inherit two HB alleles. It appears that testosterone destroys or inhibits the production of an enzyme necessary for hair growth in the hair follicle. a) What is influencing the difference in expression of the pattern baldness gene in women and men? b) Parents who do not display pattern baldness have a son who exhibited pattern baldness by the age of thirty. What are his possible genotypes? c) If they also have a daughter, could she also display baldness? Explain. 8. In humans, the conditions for blood clotting dominates the condition for non-clotting (haemophilia). Both genes are linked to the X chromosome. A male haemophilic marries a woman who is a carrier for this condition. What are the chances that if they have a male child he will be normal for blood clotting? D:\147026475.doc Biology 30 Genetics Package Biology 30 Genetics Exercise #7: Mixed Problems 1. How many different types of gametes could be produced by the individuals having the following genotypes, and what are the gametes? a) XRY f) XNXnBb b) WwDd g) XHXh c) LlGG h) rwTT r d) X YLL i) AATtRr e) ssBB j) RrYyAa *challenge 2. In pea plants, round seeds and tall stems are dominant to wrinkled seeds and short stems. Determine the phenotypes and their proportions for the following crosses. a) RRtt x rrTT b) RrTt x RrTt c) Rrtt x rrTt 3. In peas, yellow seed colour is dominant to green. What will be the colours and their proportions in the offspring of the following crosses? a) homozygous yellow x green b) heterozygous yellow x green c) heterozygous yellow x homozygous yellow d) heterozygous yellow x heterozygous yellow 4. In humans, the condition for normal blood clotting (H) dominates the condition "bleeder's disease". The gene controlling blood clotting is carried on the X chromosome. a) A male haemophiliac marries a woman who is a carrier for this condition. What are the chances that if they have a male child he will be normal for blood clotting? b) A male who has normal blood clotting marries a woman who is a carrier for haemophilia. What are the chances that if they have a son he will be normal for blood clotting? c) Rarely a female haemophiliac is born. How could this happen? 5. In cats, short hair is dominant over long and solid black coat is dominant over he Siamese coat pattern of black and tan. A cat breeder wants to know if a certain black, shorthaired cat is homozygous or heterozygous. How can this be determined? 6. A cross between two sweet pea plants produced 41 plants with pink flowers, 18 with white flowers, and 19 with red flowers. a) How is flower colour inherited in sweet peas? b) What is the phenotype of the parents? Explain how you determined this. 7. Using the information from the previous question, determine the expected phenotypes and their proportions among the offspring of the following crosses. a) white x pink b) red x red c) pink x pink D:\147026475.doc Biology 30 Genetics Package 8. Plumage colour in ducks is dependent on a set of three alleles: Mr produces restricted mallard plumage, M produces mallard, and m produces dusky mallard. The dominance hierarchy is Mr > M > m. Determine the genotypic and phenotypic ratios expected in the F1 from the following crosses. MrMr x MrM MrMr x Mrm MrM x Mrm Mrm x mm 9. A young woman with type O blood gave birth to a baby with type O blood. In a court case she claims that a certain young man is the father of her child. The man has type A blood. Could he be the father of her child? Can it be proven on this evidence alone that he is the father? 10. Normal pigmentation (A) dominates no pigmentation (albino = aa). Brown-eyed colouring (B) dominated blue-eyed colouring (bb). Two people with normal skin pigmentation produce one brown-eyed, three blue-eyed, and one albino child. What are the parents' possible genotypes? 11. In rabbits, short hair is due to a dominant gene L, and long hair to its recessive allele l. Black fur is due to a dominant gene B and white hair to its recessive allele b. Two rabbits were crossed several times and they produced a total of 88 shorthaired black and 29 longhaired black offspring. What are the probable genotypes of the parents? 12. Below is a pedigree showing the inheritance of the common condition of myopia (shortsightedness). A square represents a male and a circle represents a female. A white symbol indicates normal vision and a black symbol represents myopia. a) Is the allele controlling myopia dominant or recessive? How do you know? b) Give the genotypes of all individuals. D:\147026475.doc Biology 30 Genetics Package Biology 30 Genetics Exercise #8: Review The information below is given to answer questions 1 to 10. Each letter represents an allele of a gene controlling a character. B = black D = dull R = rough Xt = thick skin b = white d = sharp S = smooth XT = normal skin RS = wrinkled Parental Genotypes 1. BB x bb What percentage of the offspring will be black? 2. RR x SS What percentage of the offspring will be smooth? 3. Dd x Dd What percentage of the offspring will be sharp? 4. Bb x bb What percentage of the offspring will be black? 5. RS x RS What percentage of the offspring will be wrinkled? 6. BbDd x BbDd What percentage of the offspring will be white & dull? T t t 7. X X x X Y What percentage of the offspring will be thick-skinned males? 8. BbXTXt x BbXtY What fraction of the offspring will be white thick-skinned males? 9. BbDd x BbDd What fraction of the offspring will be black & sharp? 10. BbRS x BbRS What fraction of the offspring will be black & wrinkled? 11. The father of a certain family has type AB blood, and the mother has type O blood. They have four children, of which one belongs to each of the four blood groups (A, B, AB and O). One of the 4 children is adopted and another is from a previous marriage of the mother. State which of the children is adopted and which is from the earlier marriage. Show clearly how you arrived at your answer. 12. Skin colouring in the common leopard frog can be spotted green or plain green. (When spotted frogs are crossed with plain frogs, all the offspring are spotted). In the space below, outline a cross between a heterozygous spotted frog and a green frog. 13. In chickens there is 10% recombination between the genes for brown eye (B) and light down (L). There is a 26% recombination between brown eye and silver plumage (S), and a 16% recombination between silver plumage and light down. Another gene, slow feathering (K) is found to have 11% recombination with S and 27 % recombination with L. a) Construct a chromosome map to show the position of these genes. D:\147026475.doc Biology 30 Genetics Package Use this information to answer the next two questions. In Drosophila melanogaster gray body is dominant to black body, and long wings is dominant to short wings. 14. Name the characteritics and traits involved in this situation. 15. Define the alleles for each trait. 16. For each of the phenotypes below, state how many genotypes could apply. Your answer should be a number. a) grey body, long wings ____________ b) black body, short wings ____________ c) black body, long wings_____________ d) grey body, short wings____________ 17. Colour blindness is a sex-linked, recessive disorder. A colour-blind man who has type AB blood marries a woman who is a carrier of colour blindness and who also has type AB blood. What is the probability of these parents producing a colour-blind son having type B blood? 18. There are many possible factors for which human blood can be typed, including the ABO factor and the Rh factor, which were previously studied. Another blood factor is the MN factor, which is controlled by two codominant alleles, M and N. A woman having type O, Rh-negative, N blood marries a man having type AB, Rh-positive, M blood. a) Is it possible for these parents to produce a child having type B, Rh-negative, MN blood? b) Is it possible for these parents to produce a child having the same blood type as either the mother or the father? D:\147026475.doc Biology 30 Genetics Package 19. Haemophilia is a sex-linked, recessive blood clotting disorder. Below is a pedigree showing inheritance of haemophilia in a family. Give the genotypes of all the individuals indicated in this pedigree. Challenge Question: 20. A man, whose hobby is the rearing of Mexican swordtail fish, crosses a strain of truebreeding fish that are stippled and patternless (lacking spots at the base of the tail fin) with true-breeding fish that are nonstippled and have a twin spot tail fin. He finds all the offspring of these matings are stippled and possess a tail fin spotting pattern unlike that of either parent, called crescent spot. When the offspring are allowed to mate at random, he finds that the offspring fall into six categories in the following numbers: crescent, stippled 83 crescent, nonstippled 27 twin spot, stippled 29 twin spot, nonstippled 9 patternless, stippled 35 patternless, nonstippled 12 Explain how these results would be possible. D:\147026475.doc