* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
Renormalization wikipedia , lookup
Probability amplitude wikipedia , lookup
Second quantization wikipedia , lookup
Elementary particle wikipedia , lookup
Molecular Hamiltonian wikipedia , lookup
Spherical harmonics wikipedia , lookup
Perturbation theory (quantum mechanics) wikipedia , lookup
Path integral formulation wikipedia , lookup
Coupled cluster wikipedia , lookup
Compact operator on Hilbert space wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Tight binding wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Quantum state wikipedia , lookup
EPR paradox wikipedia , lookup
History of quantum field theory wikipedia , lookup
Double-slit experiment wikipedia , lookup
Coherent states wikipedia , lookup
Noether's theorem wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Perturbation theory wikipedia , lookup
Self-adjoint operator wikipedia , lookup
Particle in a box wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Scalar field theory wikipedia , lookup
Dirac equation wikipedia , lookup
Schrödinger equation wikipedia , lookup
Renormalization group wikipedia , lookup
Copenhagen interpretation wikipedia , lookup
Hidden variable theory wikipedia , lookup
Identical particles wikipedia , lookup
Hydrogen atom wikipedia , lookup
Atomic theory wikipedia , lookup
Matter wave wikipedia , lookup
Canonical quantization wikipedia , lookup
Wave function wikipedia , lookup
Wave–particle duality wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION - PHYSICS SECOND SEMESTER – APRIL 2012 PH 2811 / 2808 - QUANTUM MECHANICS Date : 19-04-2012 Time : 9:00 - 12:00 Dept. No. Max. : 100 Marks PART - A Answer ALL questions: (10x2=20) 1. Prove [ [A,B], C]+[ [B,C], A]+[ [C, A], B] = 0 2. State Heisenberg’s uncertainty principle 3. What are spherical harmonics? Are they mutually orthogonal? 4. Prove that the square of the angular momentum commutes with its z-component. 5. If A and B are two operators, then show that [A-1[A,B]] = 2B 6. What are unitary transformations? 7. Show that commuting operators have simultaneous eigenfunctions. 8. What are indistinguishable particles? 9. What is Rayleigh ratio? 10. Find the separation between any two consecutive energy levels of a rigid rotator. PART - B Answer any FOUR questions: (4x7.5 = 30) 11. Obtain the equation of continuity in Quantum mechanics. 12. Obtain the normalized wave function for a particle trapped in the potential V(x) = 0 for 0 < x < a and V(x) = ∞ otherwise. 13. (a) With an example explain linear operator (b) A and B are two operators defined by A(x) = (x) + x and B(x) = 14. If 𝑯 = 𝒑𝟐 𝟐𝝁 𝒅 𝒅𝒙 + 2(x) check for their linearity (2.5 +5) 𝟏 + 𝟐 μω2x then show that i. 𝐱𝐇 − 𝐇𝐱 = 𝐢ℏ𝐩 𝛍 and ii. 𝒑𝑯 − 𝑯𝒑 = −𝒊ℏ𝝁𝝎𝟐 x 15. Obtain the second order correction for a non-degenerae energy level. (4+3.5) PART - C Answer any FOUR questions: (4x12.5 = 50) 16. State and prove Ehernfest’s theorem 17. Solve the Schrodinger equation for a linear harmonic oscillator. Sketch the first two eigenfunctions of the system. 18. Determine the eigenvalue spectrum of angular momentum operators Jz and Jz 19. What are symmetric and antisymmetric wave functions? Show that the symmetry character of a wave function does not change with time. Explain how symmetric and antisymmetric wave functions are constructed from unsymmetrized solution of the schrodinger equation of a system of indistinguishable particles. (3+3+6.5) 20. Using perturbation theory, explain the effect of an electric field on the energy levels of an atom (Stark effect). ***************