* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Notes27and29January2014BasicQuantumMechanics
Quantum chaos wikipedia , lookup
Dirac equation wikipedia , lookup
Coherent states wikipedia , lookup
Quantum mechanics wikipedia , lookup
Quantum potential wikipedia , lookup
Elementary particle wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Future Circular Collider wikipedia , lookup
Quantum state wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
Matrix mechanics wikipedia , lookup
Renormalization group wikipedia , lookup
Monte Carlo methods for electron transport wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Quantum logic wikipedia , lookup
History of quantum field theory wikipedia , lookup
Path integral formulation wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Wheeler's delayed choice experiment wikipedia , lookup
Probability amplitude wikipedia , lookup
Renormalization wikipedia , lookup
Canonical quantization wikipedia , lookup
EPR paradox wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Wave packet wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Relational approach to quantum physics wikipedia , lookup
Quantum tunnelling wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Old quantum theory wikipedia , lookup
Photon polarization wikipedia , lookup
Uncertainty principle wikipedia , lookup
Photoelectric effect wikipedia , lookup
Double-slit experiment wikipedia , lookup
Electron scattering wikipedia , lookup
Introduction to quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Basic Quantum Mechanics 27 January 2014 (29 January) What Is An Energy Band And How Does It Explain The Operation Of Semiconductor Devices? To Answer These Questions, We Will Study: • Introduction to quantum mechanics (Chap.2) • Quantum theory for semiconductors (Chap. 3) •Allowed and forbidden energy bands (Chap. 3.1) 1 Classical Mechanics and Quantum Mechanics Mechanics: the study of the behavior of physical bodies when subjected to forces or displacements Classical Mechanics: describing the motion of macroscopic objects. Macroscopic: measurable or observable by naked eyes Quantum Mechanics: describing behavior of systems at atomic length scales and smaller . 2 Incident light with frequency ν Emitted electron kinetic energy = T Tmax Photoelectric Effect 0 Metal Plate The photoelectric effect ( year1887 by Hertz) νo ν Experiment results • Inconsistency with classical light theory According to the classical wave theory, maximum kinetic energy of the photoelectron is only dependent on the incident intensity of the light, and independent on the light frequency; however, experimental results show that the kinetic energy of the photoelectron is dependent on the light frequency. Concept of “energy quanta” 3 Energy Quanta • Photoelectric experiment results suggest that the energy in light wave is contained in discrete energy packets, which are called energy quanta or photon • The wave behaviors like particles. The particle is photon Planck’s constant: h = 6.625×10-34 J-s Photon energy = hn Work function of the metal material = hno Maximum kinetic energy of a photoelectron: Tmax= h(n-no) 4 5 Electron’s Wave Behavior Nickel sample θ =0 Electron beam θ Scattered beam θ =45º θ =90º Detector Davisson-Germer experiment (1927) Electron as a particle has wave-like behavior 6 Wave-Particle Duality Particle-like wave behavior (example, photoelectric effect) Wave-like particle behavior (example, Davisson-Germer experiment) Wave-particle duality Mathematical descriptions: The momentum of a photon is: The wavelength of a particle is: p h h p λ is called the de Broglie wavelength 7 The Uncertainty Principle The Heisenberg Uncertainty Principle (year 1927): • It is impossible to simultaneously describe with absolute accuracy the position and momentum of a particle p x • It is impossible to simultaneously describe with absolute accuracy the energy of a particle and the instant of time the particle has this energy E t The Heisenberg uncertainty principle applies to electrons and states that we can not determine the exact position of an electron. Instead, we could determine the probability of finding an electron at a particular position. 8 Quantum Theory for Semiconductors How to determine the behavior of electrons in the semiconductor? • Mathematical description of motion of electrons in quantum mechanics ─ Schrödinger’s Equation • Solution of Schrödinger’s Equation energy band structure and probability of finding a electron at a particular position 9 Schrӧdinger’s Equation One dimensional Schrӧdinger’s Equation: 2 2 ( x, t ) ( x, t ) V ( x ) ( x , t ) j 2 2m x t ( x, t ) : Wave function ( x, t ) dx 2 ( x, t ) V (x) : m: , the probability to find a particle in (x, x+dx) at time t 2 , the probability density at location x and time t Potential function Mass of the particle 10