Download Neurons

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

List of types of proteins wikipedia, lookup

Chemical synapse wikipedia, lookup

Action potential wikipedia, lookup

Membrane potential wikipedia, lookup

Mitosis wikipedia, lookup

Cytokinesis wikipedia, lookup

Amitosis wikipedia, lookup

Organ-on-a-chip wikipedia, lookup

Endomembrane system wikipedia, lookup

Cellular differentiation wikipedia, lookup

Cell culture wikipedia, lookup

Cell growth wikipedia, lookup

Cell encapsulation wikipedia, lookup

Cell cycle wikipedia, lookup

Signal transduction wikipedia, lookup

Node of Ranvier wikipedia, lookup

Transcript
Neurons
Ted Miles
Neuron structure

Composed of:




Dendrites- receive
information via
neurotransmitters, then
produce graded
potentials.
Soma
Axon Hillockresponsible for making
the decision to fire an
action potential.
Axon-transmit action
potentials to deliver
information via
neurotransmitters from
the axon terminals.
Neuron conduction of Action
Potential


An action potential occurs when there is a
reversal of the normal resting potential
(goes from negative to positive). Also
called depolarization.
Depolarization occurs due to the opening
of voltage gated Na channel allowing the
influx of Na. Repolarization of the cell is
due to Potassium efflux.
 If membrane potential is excited to the
threshold level an action potential is
propagated
Myelination of Neurons


Produced by 2 types
of cells
Acts as an insulator
between ECF and INF

Schwann cells



PNS
Each axon is wrapped
with many schwann
cells leaving small
gaps called nodes of
Ranvier
Oligodendricytes


CNS
One cell produces
extension to many
different axons
Myelination of Neurons
Body has both myelinated and
nonmyelinated fibers
 Myelination increases conduction
velocity of fiber due to saltatory
conduction of the action potential


Action potential jumps from node of
ranvier to the next without having to
travel the entire length of the neuron
Terminal

Once the Cell reaches threshold and
action potential is sent down the axon

Action potential reaches axon
 Calcium
is released into the cell
 Synaptic vesicles release neurotransmitter
into the synaptic cleft which diffuses to the
receptors on the post-synaptic cell.
Terminal
Bibliography

Widmaier, E.P., Raff, H., and Strang, K.T.; 2006.
Vander’s Human Physiology, 10th edition.
McGraw Hill.