Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Eukaryotic transcription wikipedia , lookup

Gel electrophoresis of nucleic acids wikipedia , lookup

Replisome wikipedia , lookup

Cell-penetrating peptide wikipedia , lookup

RNA-Seq wikipedia , lookup

Promoter (genetics) wikipedia , lookup

Plasmid wikipedia , lookup

Molecular evolution wikipedia , lookup

Non-coding DNA wikipedia , lookup

Gene regulatory network wikipedia , lookup

Genetic engineering wikipedia , lookup

DNA supercoil wikipedia , lookup

Transcriptional regulation wikipedia , lookup

Molecular cloning wikipedia , lookup

Point mutation wikipedia , lookup

Community fingerprinting wikipedia , lookup

Gene expression wikipedia , lookup

DNA vaccination wikipedia , lookup

Cre-Lox recombination wikipedia , lookup

Deoxyribozyme wikipedia , lookup

List of types of proteins wikipedia , lookup

Nucleic acid analogue wikipedia , lookup

Silencer (genetics) wikipedia , lookup

Vectors in gene therapy wikipedia , lookup

Green fluorescent protein wikipedia , lookup

Transformation (genetics) wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Transcript
pGLO™ Transformation and Purification of
Green Fluorescent Protein (GFP)
Central
Framework of
Molecular
Biology
DNA
RNA
Protein
Trait
Transformation
Procedure
Overview
Day 1
Day 2
What is
Transformation?
• Uptake of foreign
DNA, often a circular
plasmid
GFP
Beta-lactamase
Ampicillin
Resistance
What is a
plasmid?
• A circular piece of
autonomously
replicating DNA
• Originally evolved
by bacteria
• May express
antibiotic
resistance gene
or be modified to
express proteins of
interest
Bacterial DNA
Bacterial cell
Plasmid DNA
Genomic DNA
Gene
Expression
• Beta Lactamase
– Ampicillin resistance
• Green Fluorescent
Protein (GFP)
– Aequorea victoria
jellyfish gene
• araC regulator
protein
– Regulates GFP
transcription
Bacterial
Transformation
Cell wall
GFP
Bacterial
chromosomal
DNA
Beta lactamase
(ampicillin resistance)
pGLO plasmids
Gene
Regulation
ara GFP Operon
ara Operon
ara
C
B
A D
araC
Effector (Arabinose)
Effector (Arabinose)
araC
B A D
araC
RNA Polymerase
araC
B A D
GFP Gene
GFP Gene
RNA Polymerase
araC
GFP Gene
Methods of
Transformation
• Electroporation
– Electrical shock makes cell membranes
permeable to DNA
• Calcium Chloride/Heat-Shock
– Chemically-competent cells uptake DNA after
heat shock
Transformation
Procedure
• Suspend bacterial colonies in
Transformation solution
• Add pGLO plasmid DNA
• Place tubes on ice
• Heat-shock at 42°C and place on ice
• Incubate with nutrient broth
• Streak plates
Reasons for
Performing
Each
Transformation
Step?
Ca++
Ca++
O
O P O
O
CH2
Base
O
Sugar
1. Transformation
solution = CaCI2
Positive charge of
Ca++ ions shields
negative
charge of DNA
phosphates
O
Ca++
O P O
Base
O
CH2
O
Sugar
OH
Why Perform
Each
Transformation
Step?
Cell wall
GFP
2. Incubate on ice
slows fluid cell
membrane
3. Heat-shock
Increases permeability
of membranes
4. Nutrient broth
incubation
Allows beta-lactamase
expression
Beta-lactamase
(ampicillin
resistance)
What is
Nutrient
Broth?
• Luria-Bertani (LB) broth
• Medium that contains nutrients for
bacterial growth and gene expression
– Carbohydrates
– Amino acids
– Nucleotides
– Salts
– Vitamins
Grow?
Glow?
• Follow protocol
• On which plates will colonies grow?
• Which colonies will glow?
Volume
Measurement