Download Esau`s Plant Anatomy - Wiley Online Library

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Endomembrane system wikipedia , lookup

Cell growth wikipedia , lookup

Cytokinesis wikipedia , lookup

Cell encapsulation wikipedia , lookup

Mitosis wikipedia , lookup

Extracellular matrix wikipedia , lookup

Cellular differentiation wikipedia , lookup

Cell culture wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

Tissue engineering wikipedia , lookup

Cell wall wikipedia , lookup

List of types of proteins wikipedia , lookup

Amitosis wikipedia , lookup

Transcript
Esau’s Plant Anatomy
ESAU’S PLANT ANATOMY
Meristems, Cells, and Tissues of the Plant Body:
Their Structure, Function, and Development
Third Edition
RAY F. EVERT
Katherine Esau Professor of Botany and Plant Pathology, Emeritus
University of Wisconsin, Madison
With the assistance of
Susan E. Eichhorn
University of Wisconsin, Madison
A John Wiley & Sons, Inc., Publication
Copyright © 2006 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the
web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book,
they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and
specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable
for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other
damages.
For general information on our other products and services or for technical support, please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.
Library of Congress Cataloging-in-Publication Data:
Evert, Ray Franklin.
Esau’s Plant anatomy : meristems, cells, and tissues of the plant body : their structure, function, and development /
Ray F. Evert.—3rd ed.
p. cm.
Rev. ed. of: Plant anatomy / Katherine Esau. 2nd. ed. 1965.
ISBN-13: 978-0-471-73843-5 (cloth)
ISBN-10: 0-471-73843-3 (cloth)
1. Plant anatomy. 2. Plant morphology. I. Esau, Katherine, 1898- Plant anatomy. II. Title.
QK671.E94 2007
571.3'2—dc22
2006022118
Printed in the United States of America.
10
9
8
7
6
5
4
3
2
1
Dedicated to the late Katherine Esau, mentor and close friend
“In recognition of her distinguished service to the American community of plant biologists, and for the excellence
of her pioneering research, both basic and applied, on plant structure and development, which has spanned more
than six decades; for her superlative performance as an educator, in the classroom and through her books; for the
encouragement and inspiration she has given a legion of young, aspiring plant biologists; for providing a special role
model for women in science.”
Citation, National Medal of Science, 1989
Katherine Esau
Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xvii
General References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xix
Chapter 1 Structure and Development of the Plant Body—An Overview . . . . . . . . . . . . . . . . . . . . . . . .
Internal Organization of the Plant Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Body of a Vascular Plant Is Composed of Three Tissue Systems . . . . . . . . . . . . . . . . . . . . .
Structurally Stem, Leaf, and Root Differ Primarily in the Relative
Distribution of the Vascular and Ground Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary of Types of Cells and Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Development of the Plant Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Body Plan of the Plant Is Established during Embryogenesis . . . . . . . . . . . . . . . . . . . . . . . .
With Germination of the Seed, the Embryo Resumes Growth and Gradually Develops into
an Adult Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
3
3
11
12
Chapter 2 The Protoplast: Plasma Membrane, Nucleus, and Cytoplasmic Organelles . . . . . . . . . . . . .
Prokaryotic and Eukaryotic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cytoplasm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plasma Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cell Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plastids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chloroplasts Contain Chlorophyll and Carotenoid Pigments . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
16
17
19
22
23
25
25
3
6
7
7
vii
viii | Contents
Chromoplasts Contain Only Carotenoid Pigments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leucoplasts Are Nonpigmented Plastids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
All Plastids Are Derived Initially from Proplastids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mitochondria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peroxisomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vacuoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ribosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 3 The Protoplast: Endomembrane System, Secretory Pathways, Cytoskeleton,
and Stored Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Endomembrane System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Endoplasmic Reticulum Is a Continuous, Three-dimensional
Membrane System That Permeates the Entire Cytosol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Golgi Apparatus Is a Highly Polarized Membrane System Involved in Secretion . . . . . . . . .
Cytoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microtubules Are Cylindrical Structures Composed of Tubulin Subunits . . . . . . . . . . . . . . . . . .
Actin Filaments Consist of Two Linear Chains of Actin Molecules in the Form of a Helix . . . .
Stored Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starch Develops in the Form of Grains in Plastids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Site of Protein Body Assembly Depends on Protein Composition . . . . . . . . . . . . . . . . . . . .
Oil Bodies Bud from Smooth ER Membranes by an Oleosin-mediated Process . . . . . . . . . . . . . .
Tannins Typically Occur in Vacuoles but Also Are Found in Cell Walls . . . . . . . . . . . . . . . . . . .
Crystals of Calcium Oxalate Usually Develop in Vacuoles but
Also Are Found in the Cell Wall and Cuticle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Silica Most Commonly Is Deposited in Cell Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 4 Cell Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Macromolecular Components of the Cell Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cellulose Is the Principal Component of Plant Cell Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Cellulose Microfibrils Are Embedded in a Matrix of Noncellulosic Molecules . . . . . . . . . .
Principal Hemicelluoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pectins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Callose Is a Widely Distributed Cell Wall Polysaccharide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lignins Are Phenolic Polymers Deposited Mainly in Cell Walls of Supporting and Conducting
Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cutin and Suberin Are Insoluble Lipid Polymers Found Most
Commonly in the Protective Surface Tissues of the Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cell Wall Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Middle Lamella Frequently Is Difficult to Distinguish from the Primary Wall . . . . . . . . . . .
The Primary Wall Is Deposited While the Cell Is Increasing in Size . . . . . . . . . . . . . . . . . . . . . .
The Secondary Wall Is Deposited inside the Primary Wall Largely, If Not Entirely, after the
Primary Wall Has Stopped Increasing in Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pits and Primary Pit-Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Origin of Cell Wall during Cell Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cytokinesis Occurs by the Formation of a Phragmoplast and Cell Plate . . . . . . . . . . . . . . . . . . .
Initially Callose Is the Principal Cell Wall Polysaccharide Present
in the Developing Cell Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Preprophase Band Predicts the Plane of the Future Cell Plate . . . . . . . . . . . . . . . . . . . . . . .
Growth of the Cell Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Orientation of Cellulose Microfibrils within the Primary Wall Influences the
Direction of Cell Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
When Considering the Mechanism of Wall Growth, It Is Necessary to Distinguish
between Growth in Surface (Wall Expansion) and Growth in Thickness . . . . . . . . . . . . . . . . . .
26
28
28
31
33
34
36
37
45
45
45
48
49
49
50
52
52
53
54
55
56
58
58
65
66
66
67
67
68
68
69
69
71
71
72
72
72
74
76
76
78
78
80
82
83
Contents | ix
Expansion of the Primary Cell Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cessation of Wall Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Intercellular Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plasmodesmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plasmodesmata May Be Classified as Primary or Secondary According to Their Origin . . . . . . .
Plasmodesmata Contain Two Types of Membranes: Plasma Membrane and Desmotubule . . . . .
Plasmodesmata Enable Cells to Communicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Symplast Undergoes Reorganization throughout the Course of Plant Growth and
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83
84
84
85
85
87
88
Chapter 5 Meristems and Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Meristems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Classification of Meristems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Common Classification of Meristems Is Based on Their Position in the Plant Body . . . . . .
Meristems Are Also Classified According to the Nature of
Cells That Give Origin to Their Initial Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics of Meristematic Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Growth Patterns in Meristems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Meristematic Activity and Plant Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terms and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Senescence (Programmed Cell Death) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cellular Changes in Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Cytologic Phenomenon Commonly Observed in Differentiating
Cells of Angiosperms Is Endopolyploidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
One of the Early Visible Changes in Differentiating Tissues Is the
Unequal Increase in Cell Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Intercellular Adjustment in Differentiating Tissue Involves
Coordinated and Intrusive Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Causal Factors in Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tissue Culture Techniques Have Been Useful for the Determination
of Requirements for Growth and Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Analysis of Genetic Mosaics Can Reveal Patterns of Cell Division
and Cell Fate in Developing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gene Technologies Have Dramatically Increased Our Understanding of Plant Development . . .
Polarity Is a Key Component of Biological Pattern Formation and
Is Related to the Phenomenon of Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plant Cells Differentiate According to Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plant Hormones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Auxins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cytokinins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Abscisic Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gibberellins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103
103
104
104
Chapter 6 Apical Meristems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Evolution of the Concept of Apical Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Apical Meristems Originally Were Envisioned as Having a Single Initial Cell . . . . . . . . . . . . . . .
The Apical-Cell Theory Was Superseded by the Histogen Theory . . . . . . . . . . . . . . . . . . . . . . . .
The Tunica-Corpus Concept of Apical Organization Applies Largely to Angiosperms . . . . . . . .
The Shoot Apices of Most Gymnosperms and Angiosperms Show a Cytohistological
Zonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inquiries into the Identity of Apical Initials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vegetative Shoot Apex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
133
134
134
134
135
90
91
106
106
107
108
110
110
111
113
113
113
114
115
115
117
117
119
119
120
121
122
123
123
123
123
136
136
138
x | Contents
The Presence of an Apical Cell Is Characteristic of Shoot Apices in Seedless Vascular
Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Zonation Found in the Ginkgo Apex Has Served as a Basis for the Interpretation of
Shoot Apices in Other Gymnosperms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Presence of a Zonation Superimposed on a Tunica-Corpus Configuration Is
Characteristic of Angiosperm Shoot Apices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Vegetative Shoot Apex of Arabidopsis thaliana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Origin of Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Throughout the Vegetative Period the Shoot Apical Meristem Produces Leaves in a
Regular Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Initiation of a Leaf Primordium Is Associated with an Increase
in the Frequency of Periclinal Divisions at the Initiation Site . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leaf Primordia Arise at Sites That Are Correlated with the Phyllotaxis of the Shoot . . . . . . . . .
Origin of Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Most Seed Plants Axillary Meristems Originate from Detached Meristems . . . . . . . . . . . . . . .
Shoots May Develop from Adventitious Buds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Root Apex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Apical Organization in Roots May Be either Open or Closed . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Quiescent Center Is Not Completely Devoid of Divisions under Normal Conditions . . . . .
The Root Apex of Arabidopsis thaliana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Growth of the Root Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 7 Parenchyma and Collenchyma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parenchyma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parenchyma Cells May Occur in Continuous Masses as Parenchyma Tissue or Be
Associated with Other Cell Types in Morphologically Heterogeneous Tissues . . . . . . . . . . . . . .
The Contents of Parenchyma Cells Are a Reflection of the Activities of the Cells . . . . . . . . . . .
The Cell Walls of Parenchyma Cells May Be Thick or Thin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Some Parenchyma Cells—Transfer Cells—Contain Wall Ingrowths . . . . . . . . . . . . . . . . . . . . . . .
Parenchyma Cells Vary Greatly in Shape and Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Some Parenchyma Tissue—Aerenchyma—Contains Particularly Large Intercellular Spaces . . . . .
Collenchyma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Structure of the Cell Walls of Collenchyma Is the Most Distinctive Characteristic of
This Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collenchyma Characteristically Occurs in a Peripheral Position . . . . . . . . . . . . . . . . . . . . . . . . .
Collenchyma Appears to Be Particularly Well Adapted for Support of
Growing Leaves and Stems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 8 Sclerenchyma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fibers Are Widely Distributed in the Plant Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fibers May Be Divided into Two Large Groups, Xylary and Extraxylary . . . . . . . . . . . . . . . . . . .
Both Xylary and Extraxylary Fibers May Be Septate or Gelatinous . . . . . . . . . . . . . . . . . . . . . . .
Commercial Fibers Are Separated into Soft Fibers and Hard Fibers . . . . . . . . . . . . . . . . . . . . . . .
Sclereids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Based on Shape and Size, Sclereids May Be Classified into a Number of Types . . . . . . . . . . . . .
Sclereids Like Fibers Are Widely Distributed in the Plant Body . . . . . . . . . . . . . . . . . . . . . . . . . .
Sclereids in Stems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sclereids in Leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sclereids in Fruits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sclereids in Seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Origin and Development of Fibers and Sclereids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Factors Controlling Development of Fibers and Sclereids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
140
141
143
145
145
147
149
149
150
152
152
153
157
160
162
165
175
175
176
177
178
179
181
182
183
184
185
187
187
191
192
192
194
196
197
198
198
199
200
200
201
201
202
205
207
Contents | xi
Chapter 9 Epidermis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ordinary Epidermal Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Epidermal Cell Walls Vary in Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Most Distinctive Feature of the Outer Epidermal Wall Is the Presence of a Cuticle . . . . . .
Stomata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stomata Occur on All Aerial Parts of the Primary Plant Body . . . . . . . . . . . . . . . . . . . . . . . . . . .
Guard Cells Are Generally Kidney-shaped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Guard Cells Typically Have Unevenly Thickened Walls with Radially Arranged
Cellulose Microfibrils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Blue Light and Abscisic Acid Are Important Signals in the Control of
Stomatal Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Development of Stomatal Complexes Involves One or More Asymmetric Cell Divisions . . . . . .
Different Developmental Sequences Result in Different
Configurations of Stomatal Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trichomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trichomes Have a Variety of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trichomes May Be Classified into Different Morphological Categories . . . . . . . . . . . . . . . . . . . .
A Trichome Is Initiated as a Protuberance from an Epidermal Cell . . . . . . . . . . . . . . . . . . . . . . .
The Cotton Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Root Hairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Arabidopsis Trichome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cell Patterning in the Epidermis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Spatial Distribution of Stomata and Trichomes in Leaves Is Nonrandom . . . . . . . . . . . . . . .
There Are Three Main Types of Patterning in the Epidermis of Angiosperm Roots . . . . . . . . . .
Other Specialized Epidermal Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Silica and Cork Cells Frequently Occur Together in Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bulliform Cells Are Highly Vacuolated Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Some Epidermal Hairs Contain Cystoliths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
211
214
214
215
218
218
221
Chapter 10 Xylem: Cell Types and Developmental Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cell Types of the Xylem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tracheary Elements—Tracheids and Vessel Elements—Are the Conducting Cells of the
Xylem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Secondary Walls of Most Tracheary Elements Contain Pits . . . . . . . . . . . . . . . . . . . . . . . . . .
Vessels Are More Efficient Conduits of Water Than Are Tracheids . . . . . . . . . . . . . . . . . . . . . . . .
Fibers Are Specialized as Supporting Elements in the Xylem . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Living Parenchyma Cells Occur in Both the Primary and Secondary Xylem . . . . . . . . . . . . . . . .
In Some Species the Parenchyma Cells Develop Protrusions—Tyloses—That Enter the
Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phylogenetic Specialization of Tracheary Elements and Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Major Trends in the Evolution of the Vessel Element Are Correlated with Decrease in
Vessel Element Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Deviations Exist in Trends of Vessel Element Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Like Vessel Elements and Tracheids, Fibers Have Undergone a Phylogenetic Shortening . . . . .
Primary Xylem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Some Developmental and Structural Differences Exist between the Earlier and Later Formed
Parts of the Primary Xylem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Primary Tracheary Elements Have a Variety of Secondary Wall Thickenings . . . . . . . . . . .
Tracheary Element Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plant Hormones Are Involved in the Differentiation of Tracheary Elements . . . . . . . . . . . . . . . .
Isolated Mesophyll Cells in Culture Can Transdifferentiate Directly into
Tracheary Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
255
256
222
224
225
228
229
229
230
230
230
234
235
237
237
238
239
239
241
242
243
256
260
263
266
266
267
268
268
270
271
271
271
273
276
280
281
283
xii | Contents
Chapter 11 Xylem: Secondary Xylem and Variations in Wood Structure . . . . . . . . . . . . . . . . . . . . . . . . .
Basic Structure of Secondary Xylem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Secondary Xylem Consists of Two Distinct Systems of Cells, Axial and Radial . . . . . . . . . .
Some Woods Are Storied and Others Are Nonstoried . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Growth Rings Result from the Periodic Activity of the Vascular Cambium . . . . . . . . . . . . . . . .
As Wood Becomes Older, It Gradually Becomes Nonfunctional in Conduction and Storage . . .
Reaction Wood Is a Type of Wood That Develops in Branches
and Leaning or Crooked Stems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Woods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Wood of Conifers Is Relatively Simple in Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Axial System of Conifer Woods Consists Mostly or Entirely of Tracheids . . . . . . . . . . . . . .
The Rays of Conifers May Consist of Both Parenchyma Cells and Tracheids . . . . . . . . . . . . . . .
The Wood of Many Conifers Contains Resin Ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Wood of Angiosperms Is More Complex and Varied Than That of Conifers . . . . . . . . . . . .
On the Basis of Porosity, Two Main Types of Angiosperm Wood Are Recognized: Diffuseporous and Ring-porous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Distribution of Axial Parenchyma Shows Many Intergrading Patterns . . . . . . . . . . . . . . . . .
The Rays of Angiosperms Typically Contain Only Parenchyma Cells . . . . . . . . . . . . . . . . . . . . .
Intercellular Spaces Similar to the Resin Ducts of Gymnosperms
Occur in Angiosperm Woods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Some Aspects of Secondary Xylem Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identification of Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
291
293
293
294
294
297
Chapter 12 Vascular Cambium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Organization of the Cambium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Vascular Cambium Contains Two Types of Initials: Fusiform Initials and Ray Initials . . . .
The Cambium May Be Storied or Nonstoried . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Formation of Secondary Xylem and Secondary Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initials Versus Their Immediate Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Developmental Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Formation of New Ray Initials from Fusiform Initials or Their Segments Is a Common
Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Domains Can Be Recognized within the Cambium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Seasonal Changes in Cambial Cell Ultrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cytokinesis of Fusiform Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Seasonal Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Size of the Xylem Increment Produced during One Year Generally Exceeds That of the
Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Distinct Seasonality in Cambial Activity Also Occurs in Many Tropical Regions . . . . . . . . . . .
Causal Relations in Cambial Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
323
323
323
325
326
327
330
Chapter 13 Phloem: Cell Types and Developmental Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cell Types of the Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Angiospermous Sieve-Tube Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Some Taxa the Sieve-Tube Element Walls Are Remarkably Thick . . . . . . . . . . . . . . . . . . . . . .
Sieve Plates Usually Occur on End Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Callose Apparently Plays a Role in Sieve-Pore Development . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Changes in the Appearance of the Plastids and the Appearance of P-protein Are Early
Indicators of Sieve-Tube Element Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nuclear Degeneration May Be Chromatolytic or Pycnotic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Companion Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Mechanism of Phloem Transport in Angiosperms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Source Leaf and Minor Vein Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
357
359
360
361
364
364
299
302
302
302
303
304
306
307
309
310
312
312
315
316
332
335
336
338
341
343
344
346
348
365
372
372
379
382
Contents | xiii
Several Types of Minor Veins Occur in Dicotyledonous Leaves . . . . . . . . . . . . . . . . . . . . . . . . . .
Type 1 Species with Specialized Companion Cells, Termed Intermediary Cells, Are
Symplastic Loaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Species with Type 2 Minor Veins Are Apoplastic Loaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Collection of Photoassimilate by the Minor Veins in Some Leaves May Not Involve an
Active Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Some Minor Veins Contain More Than One Kind of Companion Cell . . . . . . . . . . . . . . . . . . . . .
The Minor Veins in Leaf Blades of the Poaceae Contain Two Types of Metaphloem Sieve
Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Gymnospermous Sieve Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Walls of Sieve Cells Are Characterized as Primary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Callose Does Not Play a Role in Sieve-Pore Development in Gymnosperms . . . . . . . . . . . . . . . .
Little Variation Exists in Sieve-Cell Differentiation among Gymnosperms . . . . . . . . . . . . . . . . .
Strasburger Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Mechanism of Phloem Transport in Gymnosperms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parenchyma Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sclerenchyma Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Longevity of Sieve Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trends in Specialization of Sieve-Tube Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sieve Elements of Seedless Vascular Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Primary Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
384
384
385
385
385
386
386
387
387
388
390
390
391
391
391
392
393
393
398
Chapter 14 Phloem: Secondary Phloem and Variations in Its Structure . . . . . . . . . . . . . . . . . . . . . . . . . .
Conifer Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angiosperm Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Patterns Formed by the Fibers Can Be of Taxonomic Significance . . . . . . . . . . . . . . . . . . . .
Secondary Sieve-Tube Elements Show Considerable Variation in Form and Distribution . . . . . .
Differentiation in the Secondary Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sclerenchyma Cells in the Secondary Phloem Commonly Are Classified as Fibers, Sclereids,
and Fiber-Sclereids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Conducting Phloem Constitutes Only a Small Part of the Inner Bark . . . . . . . . . . . . . . . . .
Nonconducting Phloem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Nonconducting Phloem Differs Structurally from the Conducting Phloem . . . . . . . . . . . . .
Dilatation Is the Means by Which the Phloem Is Adjusted to the Increase in Circumference
of the Axis Resulting from Secondary Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
407
409
412
413
415
417
Chapter 15 Periderm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics of the Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Phellogen Is Relatively Simple in Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Several Kinds of Phellem Cells May Arise from the Phellogen . . . . . . . . . . . . . . . . . . . . . . . . . . .
Considerable Variation Exists in the Width and Composition of Phelloderm . . . . . . . . . . . . . . .
Development of Periderm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Sites of Origin of the Phellogen Are Varied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Phellogen Is Initiated by Divisions of Various Kinds of Cells . . . . . . . . . . . . . . . . . . . . . . . .
The Time of Appearance of the First and Subsequent Periderms Varies . . . . . . . . . . . . . . . . . . .
Morphology of Periderm and Rhytidome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polyderm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protective Tissue in Monocotyledons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wound Periderm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lenticels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Three Structural Types of Lenticels Are Recognized in Woody Angiosperms . . . . . . . . . . . . . . .
The First Lenticels Frequently Appear under Stomata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
427
427
429
429
429
431
433
433
434
434
437
438
438
438
440
441
442
442
418
420
422
423
423
424
xiv | Contents
Chapter 16 External Secretory Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Salt Glands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Salt Bladders Secrete Ions into a Large Central Vacuole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other Glands Secrete Salt Directly to the Outside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Two-celled Glands of the Poaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Multicellular Glands of Eudicotyledons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hydathodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nectaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Nectaries of Lonicera japonica Exude Nectar from Unicellular Trichomes . . . . . . . . . . . .
The Nectaries of Abutilon striatum Exude Nectar from Multicellular Trichomes . . . . . . . . . . .
The Nectaries of Vicia faba Exude Nectar via Stomata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Most Common Sugars in Nectar Are Sucrose, Glucose, and Fructose . . . . . . . . . . . . . . . . .
Structures Intermediate between Nectaries and Hydathodes Also Exist . . . . . . . . . . . . . . . . . . .
Colleters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Osmophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Glandular Trichomes Secreting Lipophilic Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Glandular Trichome Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Glandular Structures of Carnivorous Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stinging Hairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
447
449
449
449
449
450
451
452
455
456
456
456
459
459
461
462
463
465
466
466
Chapter 17 Internal Secretory Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Secretory Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oil Cells Secrete Their Oils into an Oil Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mucilage Cells Deposit Their Mucilage between the Protoplast and the Cellulosic Cell
Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tannin Is the Most Conspicuous Inclusion in Numerous Secretory Cells . . . . . . . . . . . . . . . . . .
Secretory Cavities and Ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Best-Known Secretory Ducts Are the Resin Ducts of Conifers . . . . . . . . . . . . . . . . . . . . . . .
Development of Secretory Cavities Appears to Be Schizogenous . . . . . . . . . . . . . . . . . . . . . . . . .
Secretory Ducts and Cavities May Arise under the Stimulus of Injury . . . . . . . . . . . . . . . . . . . . .
Kino Veins Are a Special Type of Traumatic Duct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laticifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On the Basis of Their Structure, Laticifers Are Grouped in Two Major Classes: Articulated
and Nonarticulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Latex Varies in Appearance and in Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Articulated and Nonarticulated Laticifers Apparently Differ from One Another
Cytologically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laticifers Are Widely Distributed in the Plant Body, Reflecting Their Mode of
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nonarticulated Laticifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Articulated Laticifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Principal Source of Commercial Rubber Is the Bark of the Para Rubber Tree, Hevea
brasiliensis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Function of Laticifers Is Not Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
473
473
475
476
477
478
478
479
481
482
483
484
486
487
489
489
491
493
495
495
Addendum: Other Pertinent References Not Cited in the Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
503
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
521
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
541
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
567
Preface
It has been over 40 years since the second edition of
Esau’s Plant Anatomy was completed. The enormous
expansion of biological knowledge that has taken place
during this period is unprecedented. In 1965, electron
microscopy was just beginning to have an impact on
plant research at the cellular level. Since then, new
approaches and techniques, particularly those used in
molecular-genetic research, have resulted in emphasis
and direction toward the molecular realm of life. Old
concepts and principles are being challenged at virtually every level, often, however, without a clear understanding of the bases upon which those concepts and
principles were established.
A biologist, regardless of his or her line of specialization, cannot afford to lose sight of the whole organism,
if his or her goal is an understanding of the organic
world. Knowledge of the grosser aspects of structure is
basic for effective research and teaching at every level
of specialization. The ever-increasing trend toward a
reduction of emphasis on factual information in contemporary teaching and the apparent diminution of plant
anatomy and plant morphology courses at many colleges and universities make a readily accessible source
of basic information on plant structure more important
than ever. One consequence of these phenomena is a
less precise use of terminology and an inappropriate
adoption of animal terms for plant structures.
Research in plant structure has benefited greatly
from the new approaches and techniques now available.
Many plant anatomists are participating effectively in
the interdisciplinary search for integrated concepts of
growth and morphology. At the same time comparative
plant anatomists continue to create new concepts on
the relationships and evolution of plants and plant
tissues with the aid of molecular data and cladistic analyses. The integration of ecological and systematic plant
anatomy—ecophyletic anatomy—is bringing about a
clearer understanding of the driving forces behind
evolutionary diversifications of wood and of leaf
attributes.
A thorough knowledge of the structure and development of cells and tissues is essential for a realistic interpretation of plant function, whether the function
concerned is photosynthesis, the movement of water,
the transport of food, or the absorption of water and
minerals by roots. A full understanding of the effects of
pathogenetic organisms on the plant body can only be
achieved if one knows the normal structure of the plant
concerned. Such horticultural practices as grafting,
pruning, vegetative propagation, and the associated
phenomena of callus formation, wound healing, regeneration, and development of adventitious roots and buds
are more meaningful if the structural features underlying these phenomena are properly understood.
xv
xvi | Preface
A common belief among students and many researchers alike is that we know virtually all there is to know
about the anatomy of plants. Nothing could be further
from the truth. Although the study of plant anatomy
dates back to the last part of the 1600s, most of our
knowledge of plant structure is based on temperate,
often agronomic, plants. The structural features of
plants growing in subtropical and tropical environments
are frequently characterized as exceptions or anomalies
rather than as adaptations to different environments.
With the great diversity of plant species in the tropics,
there is a wealth of information to be discovered on the
structure and development of such plants. In addition,
as noted by Dr. Esau in the preface of the first edition
of Anatomy of Seed Plants (John Wiley & Sons, 1960)
“ . . . plant anatomy is interesting for its own sake. It is
a gratifying experience to follow the ontogenetic and
evolutionary development of structural features and
gain the realization of the high degree of complexity
and the remarkable orderliness in the organization of
the plant.”
A major goal of this book is to provide a fi rm foundation in the meristems, cells, and tissues of the plant
body, while at the same time nothing some of the many
advances being made in our understanding of their
function and development through molecular research.
For example, in the chapter on apical meristems, which
have been the object of considerable molecular-genetic
research, a historical review of the concept of apical
organization is presented to provide the reader with an
understanding of how that concept has evolved with the
availability of more sophisticated methodology. Throughout the book, greater emphasis is made on structurefunction relationships than in the previous two editions.
As in the previous editions, angiosperms are empha-
sized, but some features of the vegetative parts of
gymnosperms and seedless vascular plants are also
considered.
These are exciting times for plant biologists. This is
reflected, in part, in the enormity of literature output.
The references cited in this book represent but a fraction of the total number of articles read in preparation
of the third edition. This is particularly true of the
molecular-genetic literature, which is cited most selectively. It was important not to lose focus on the anatomy.
A great many of the references cited in the second
edition were read anew, in part to insure continuity
between the second and third editions. A large number
of selected references are listed to support descriptions
and interpretations and to direct the interested person
toward wider reading. Undoubtedly, some pertinent
papers were inadvertently overlooked. A number of
review articles, books, and chapters in books with
helpful reference lists are included. Additional pertinent
references are listed in the addendum.
This book has been planned primarily for advanced
students in various branches of plant science, for
researchers (from molecular to whole plant), and for
teachers of plant anatomy. At the same time, an effort
has been made to attract the less-advanced student
by presenting the subject in an inviting style, with
numerous illustrations, and by explaining and analyzing
terms and concepts as they appear in the text. It is my
hope that this book will enlighten many and inspire
numerous others to study plant structure and
development.
R. F. E.
Madison, Wisconsin
July, 2006
Acknowledgments
Illustrations form an important part of a book in plant
anatomy. I am indebted to various persons who kindly
provided illustrations of one kind or another for inclusion in the book and to others, along with publishers
and scientific journals, for permission to reproduce in
one form or another their published illustrations. Illustrations whose source(s) are not indicated in the figure
captions are original. Numerous figures are from
research articles by me or coauthored with colleagues,
including my students. A great many of the illustrations
are the superb work—line art and micrographs—of Dr.
Esau. Some figures are expertly rendered electronic
illustrations by Kandis Elliot.
Sincere thanks are extended to Laura Evert and Mary
Evert for their able assistance with the process of obtaining permissions.
I am grateful to the following people, who so generously gave of their time to review parts of the manu-
script: Drs. Veronica Angyalossy, Pieter Baas, Sebastian
Y. Bednarek, C. E. J. Botha, Anne-Marie Catesson, Judith
L. Croxdale, Nigel Chaffey, Abraham Fahn, Donna
Fernandez, Peter K. Helper, Nels R. Lersten, Edward
K. Merrill, Regis B. Miller, Thomas L. Rost, Alexander
Schulz, L. Andrew Staehelin, Jennifer Thorsch, and
Joseph E. Varner. Two of the reviewers, Judith L.
Croxdale, who reviewed Chapter 9 (Epidermis), and
Joseph E. Varner, who reviewed an early draft
of Chapter 4 (Cell Wall), are now deceased. The
reviewers offered valuable suggestions for improvement. The fi nal responsibility for the contents of the
book, including all errors and omissions, however, is
mine.
Very special acknowledgment is accorded Susan E.
Eichhorn. Without her assistance it would not have been
possible for me to revise the second edition of Esau’s
Plant Anatomy.
xvii
General References
ALEKSANDROV, V. G. 1966. Anatomiia Rastenii (Anatomy of Plants),
4th ed. Izd. Vysshaia Shkola, Moscow.
B AILEY, I. W. 1954. Contributions to Plant Anatomy. Chronica
Botanica, Waltham, MA.
CARLQUIST, S. 1961. Comparative Plant Anatomy: A Guide to Taxonomic and Evolutionary Application of Anatomical Data in Angiosperms. Holt, Rinehart and Winston, New York.
BIEBL , R., and H. GERM. 1967. Praktikum der Pflanzenanatomie, 2nd
ed. Springer-Verlag, Vienna.
CARLQUIST, S. 2001. Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood, 2nd ed.
Springer-Verlag, Berlin.
BIERHORST, D. W. 1971. Morphology of Vascular Plants. Macmillan,
New York.
CHAFFEY, N. 2002. Wood Formation in Trees: Cell and Molecular
Biology Techniques. Taylor and Francis, London.
BOLD, H. C. 1973. Morphology of Plants, 3rd ed. Harper and Row,
New York.
CUTLER , D. F. 1969. Anatomy of the Monocotyledons, vol. IV, Juncales. Clarendon Press, Oxford.
BOUREAU, E. 1954–1957. Anatomie végétale: l’appareil végétatif des
phanérogrames, 3 vols. Presses Universitaires de France,
Paris.
CUTLER , D. F. 1978. Applied Plant Anatomy. Longman, London.
BOWES , B. G. 2000. A Color Atlas of Plant Structure. Iowa State
University Press, Ames, IA.
CUTTER , E. G. 1978. Plant Anatomy, part 1, Cells and Tissues, 2nd
ed. Addison-Wesley, Reading, MA.
BOWMAN, J., ed. 1994. Arabidopsis: An Atlas of Morphology and
Development. Springer-Verlag, New York.
DAVIES , P. J., ed. 2004. Plant Hormones: Biosynthesis, Signal Transduction, Action!, 3rd ed. Kluwer Academic, Dordrecht.
BRAUNE, W., A. LEMAN, and H. TAUBERT. 1971 (© 1970). Pflanzenanatomisches Praktikum: zur Einführung in die Anatomie der
Vegetationsorgane der höheren Pflanzen, 2nd ed. Gustav Fischer,
Stuttgart.
DE B ARY, A. 1884. Comparative Anatomy of the Vegetative Organs
of the Phanerogams and Ferns. Clarendon Press, Oxford.
BUCHANAN, B. B., W. GRUISSEM, and R. L. JONES , eds. 2000. Biochemistry and Molecular Biology of Plants. American Society of
Plant Physiologists, Rockville, MD.
DIGGLE, P. K., and P. K. ENDRESS , eds. 1999. Int. J. Plant Sci. 160
(6, suppl.: Development, Function, and Evolution of Symmetry in
Plants), S1–S166.
CUTTER , E. G. 1971. Plant Anatomy: Experiment and Interpretation,
part 2, Organs. Addison-Wesley, Reading, MA.
DICKISON, W. C. 2000. Integrative Plant Anatomy. Harcourt/Academic Press, San Diego.
xix
xx | General References
E AMES , A. J. 1961. Morphology of Vascular Plants: Lower Groups.
McGraw-Hill, New York.
E AMES , A. J., and L. H. MACDANIELS. 1947. An Introduction to Plant
Anatomy, 2nd ed. McGraw-Hill, New York.
ESAU, K. 1965. Plant Anatomy, 2nd ed. Wiley, New York.
ESAU, K. 1977. Anatomy of Seed Plants, 2nd ed. Wiley, New
York.
ESCHRICH, W. 1995. Funktionelle Pflanzenanatomie. Springer,
Berlin.
FAHN, A. 1990. Plant Anatomy, 4th ed. Pergamon Press, Oxford.
GIFFORD, E. M., and A. S. FOSTER . 1989. Morphology and Evolution
of Vascular Plants, 3rd ed. Freeman, New York.
HABERLANDT, G. 1914. Physiological Plant Anatomy. Macmillan,
London.
Handbuch der Pflanzenanatomie (Encyclopedia of Plant
Anatomy). 1922–1943; 1951– . Gebrüder Borntraeger,
Berlin.
HARTIG, R. 1891. Lehrbuch der Anatomie und Physiologie der Pflanzen unter besonderer Berücksichtigung der Forstgewächse.
Springer, Berlin.
HAYWARD, H. E. 1938. The Structure of Economic Plants. Macmillan,
New York.
HIGUCHI, T. 1997. Biochemistry and Molecular Biology of Wood.
Springer, Berlin.
HOWELL , S. H. 1998. Molecular Genetics of Plant Development.
Cambridge University Press, Cambridge.
HUBER , B. 1961. Grundzüge der Pflanzenanatomie. Springer-Verlag,
Berlin.
IQBAL , M., ed. 1995. The Cambial Derivatives. Gebrüder Borntraeger, Berlin.
JANE, F. W. 1970. The Structure of Wood, 2nd ed. Adam and
Charles Black, London.
JEFFREY, E. C. 1917. The Anatomy of Woody Plants. University of
Chicago Press, Chicago.
JURZITZA , G. 1987. Anatomie der Samenpflanzen. Georg Thieme
Verlag, Stuttgart.
K AUSSMANN, B. 1963. Pflanzenanatomie: unter besonderer
Berücksichtigung der Kultur- und Nutzpflanzen. Gustav Fischer,
Jena.
KAUSSMANN, B., and U. SCHIEWER. 1989. Funktionelle Morphologie
und Anatomie der Pflanzen. Gustav Fischer, Stuttgart.
METCALFE, C. R., and L. CHALK. 1950. Anatomy of the Dicotyledons:
Leaves, Stems, and Wood in Relation to Taxonomy with Notes on
Economic Uses, 2 vols. Clarendon Press, Oxford.
METCALFE, C. R., and L. CHALK, eds. 1979. Anatomy of the
Dicotyledons, 2nd ed., vol. I. Systematic Anatomy of Leaf and
Stem, with a Brief History of the Subject. Clarendon Press,
Oxford.
METCALFE, C. R., and L. CHALK, eds. 1983. Anatomy of the Dicotyledons, 2nd ed., vol. II. Wood Structure and Conclusion of the
General Introduction. Clarendon Press, Oxford.
RAUH, W. 1950. Morphologie der Nutzpflanzen. Quelle und Meyer,
Heidelberg.
ROMBERGER , J. A. 1963. Meristems, Growth, and Development in
Woody Plants: An Analytical Review of Anatomical, Physiological,
and Morphogenic Aspects. Tech. Bull. No. 1293. USDA, Forest
Service, Washington, DC.
ROMBERGER , J. A., Z. HEJNOWICZ , and J. F. HILL . 1993. Plant Structure: Function and Development: A Treatise on Anatomy and Vegetative Development, with Special Reference to Woody Plants.
Springer-Verlag, Berlin.
RUDALL , P. 1992. Anatomy of Flowering Plants: An Introduction to
Structure and Development, 2nd ed. Cambridge University
Press, Cambridge.
SACHS , J. 1875. Text-Book of Botany, Morphological and Physiological.
Clarendon Press, Oxford.
SINNOTT, E. W. 1960. Plant Morphogenesis. McGraw-Hill, New
York.
SOLEREDER , H. 1908. Systematic Anatomy of the Dicotyledons: A
Handbook for Laboratories of Pure and Applied Botany, 2 vols.
Clarendon Press, Oxford.
SOLEREDER , H., and F. J. MEYER . 1928–1930, 1933. Systematische
Anatomie der Monokotyledonen, No. 1 (Pandales, Helobiae, Triuridales), 1933; No. 3 (Principes, Synanthae, Spathiflorae), 1928;
No. 4 (Farinosae), 1929; No. 6 (Scitamineae, Microspermae),
1930. Gebrüder Borntraeger, Berlin.
SRIVASTAVA , L. M. 2002. Plant Growth and Development: Hormones
and Environment. Academic Press, Amsterdam.
STEEVES , T. A., and I. M. SUSSEX. 1989. Patterns in Plant Development, 2nd ed. Cambridge University Press, Cambridge.
STRASBURGER , E. 1888–1909. Histologische Beiträge, nos. 1–7.
Gustav Fisher, Jena.
L ARSON, P. R. 1994. The Vascular Cambium. Development and
Structure. Springer-Verlag, Berlin.
TOMLINSON, P. B. 1961. Anatomy of the Monocotyledons, vol. II.
Palmae. Clarendon Press, Oxford.
MANSFIELD, W. 1916. Histology of Medicinal Plants. Wiley, New
York.
TOMLINSON, P. B. 1969. Anatomy of the Monocotyledons, vol. III.
Commelinales—Zingiberales. Clarendon Press, Oxford.
MAUSETH, J. D. 1988. Plant Anatomy. Benjamin/Cummings, Menlo
Park, CA.
TROLL, W. 1954. Praktische Einführung in die Pflanzenmorphologie,
vol. 1, Der vegetative Aufbau. Gustav Fischer, Jena.
METCALFE, C. R. 1960. Anatomy of the Monocotyledons, vol. I, Gramineae. Clarendon Press, Oxford.
TROLL, W. 1957. Praktische Einführung in die Pflanzenmorphologie,
vol. 2, Die blühende Pflanze. Gustav Fischer, Jena.
METCALFE, C. R. 1971. Anatomy of the Monocotyledons, vol. V,
Cyperaceae. Clarendon Press, Oxford.
WARDLAW, C. W. 1965. Organization and Evolution in Plants.
Longmans, Green and Co., London.