* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Stem cell
Hygiene hypothesis wikipedia , lookup
Adaptive immune system wikipedia , lookup
Polyclonal B cell response wikipedia , lookup
Molecular mimicry wikipedia , lookup
Psychoneuroimmunology wikipedia , lookup
Lymphopoiesis wikipedia , lookup
Cancer immunotherapy wikipedia , lookup
Innate immune system wikipedia , lookup
Sjögren syndrome wikipedia , lookup
Immunosuppressive drug wikipedia , lookup
Adoptive cell transfer wikipedia , lookup
X-linked severe combined immunodeficiency wikipedia , lookup
Hematopoietic Cell Transplantation Definition  Hematopoietic cell transplantation (HCT)  is a potentially curative treatment for malignant and nonmalignant diseases, including leukemia, lymphoma, multiple myeloma, aplastic anemia, hemoglobinopathies, and congenital immune deficiencies.  5/5/2017 Dr.yekehfallah.-phd of nursing 2015 2 History of Bone Marrow Transplantation  First successful human bone marrow transplantation procedure (1968). 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 3 Stem cells  Stem cells are ‘generic’ cells that develop into particular types of cells. So they may become nerve cells, muscle cells, blood cells… in fact, any cell in the body! Stem cells divide over and over to produce new cells. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 4 Stem cells, bone marrow and blood cells One of the main places you find stem cells is in bone marrow. Stem cells in bone marrow produce new blood cells to replace those that have died. When the cells are mature they are released into the bloodstream. A ‘bone marrow’ donation is really a donation of stem cells. Bone marrow is found in the cavities inside the long and flat bones of the body. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 5  Types of stem cells:  Pluripotent  Multipotent  Committed progenitor cells  Multipotent blood cells:  Common lymphoid  Common myeloid  Committed stem cell makes specific blood cells (CFU) – stimulated by erythropoietin, thrombopoietin, granulocyte-mononcyte Dr.yekehfallah.-phd of nursing 5/5/2017 2015 CSF 6 6 Leukocytes  White blood cells  Defend body through: the inflammatory process  phagocytosis  removal of cell debris  immune reactions  5/5/2017 Dr.yekehfallah.-phd of nursing 2015 7 7 White Blood Cell Types: Granulocytes and Agranulocytes  Granulocytes –visible granules in the cytoplasm.  Granules contain:  Enzymes  Other biochemicals that serve as signals and mediators of the inflammatory response 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 8 8 Granulocyte cell types:  Neutrophils – phagocytes  Eosinophils – red granules, associated with allergic response and parasitic worms  Basophils – deep blue granules Release heparin, histamine and serotonin 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 9 9 Agranulocytes  Granules too small to be visible  Monocytes – become macrophages  Lymphocytes – B cells and T cells = immune functions 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 10 10  WBC’s originate in red bone marrow from stem cells.  Granulocytes mature in the marrow and have a lifespan of hours to days  Agranulocytes finish maturing in blood, or in other locations. Monocytes live about 2 - 3 months, lymphocytes for years. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 11  Production of WBC’s increases in response to :  Infection  Presence of steroids  Decreased reserve of leukocyte pool in bone marrow 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 12 12 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 13 13 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 14 14 Diseases Treated with Bone Marrow Transplantation   Acute leukemia (ALL, AML) Chronic myelogenous leukemia             Aplastic Anemia Myeloproliferative Disorders Multiple Myeloma Non-Hodgkin’s lymphoma Hodgkin’s Disease Chronic lymphocytic leukemia Genetic Disorders (Thalassemia, others) Solid tumors (RCC, neuroblastoma, germ cell tumors) Congenital immunodeficiency diseases Lymphomas Metabolic disease of childhood Myelodisplasia 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 15 Stem cell (“bone marrow”) donation There are three ways to collect stem cells from a donor:  Bone marrow A donor has a small operation under general anesthetic. Marrow is harvested from the iliac crest under general anesthesia  Circulating blood A donor’s circulating stem cells are boosted with a special drug. Then they are connected to a cell separator machine, which collects the stem cells and returns the rest of the blood to the donor. Growth factors are frequently used alone (e.g., granulocyte colony-stimulating factor, or G-CSF) or in combination with chemotherapy (in autologous HCT) for mobilization• of hematopoietic stem cells, which are collected by blood leukapheresis. Mobilized― blood cells engraft faster than marrow-derived cells.  Cord blood Selected hospitals offer new mothers the chance to donate the blood that remains in the placenta and umbilical cord after their baby’s birth. Collected from the umbilical cord after delivery of a baby. Engraftment takes longer Dr.yekehfallah.-phd of nursing compared with other sources of stem cells. 5/5/2017 2015 16 Advantages / disadvantages for patients   Advantages: Cord blood:     Bone marrow and circulating blood:    tend to have a greater number of stem cells in the donation, so tend to be accepted into the patient’s body more quickly. Disadvantages Cord blood:   hasn’t been exposed to environment so less likely to contain viral infection; requires less stringent matching; once collected is banked and can be readily available at short notice. tends to have less stem cells in the donation. Bone marrow and circulating blood:  finding a match and arranging a donation can take weeks, or months (this is time the patient may not have). 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 17 SOURCE OF STEM CELLS  Bone Marrow  Cryopreserved  “Mobilized”  Fresh peripheral blood stem cells  Umbilical cord blood 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 18 Potential Donors  Self  HLA-matched sibling  HLA-mismatched sibling  Matched unrelated  Cord blood 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 19 Donor Limitations  25 – 30% of patients have an HLA-identical sibling.  Marrow procured from unrelated living donor  Marrow procured from related HLAidentical or HLA non –identical living donor  Autologous transolantation(marroe procured during remession) 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 20 Stages of Allogeneic Transplantation Preparation Immune suppression Disease treatment Transplantation IV Infusion Recovery GVHD Prevention Infection control Nutrition 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 Hematopoietic recovery 21 RATIONALE FOR BMT  High dose chemotherapy (dose - response curve)  Allogeneic effect (graft-versus- tumour effect)  Replacement of abnormal stem cells (aplastic anaemia, thalassaemia, sickle cell disease, gene therapy etc)  Immunological effect (autoimmune Dr.yekehfallah.-phd of nursing disease, solid organ 5/5/2017 2015 transplants) 22 RISKS OF BONE MARROW TRANSPLANT  Short term (TRM)  Sepsis,AGVHD, multi-organ failure or toxic death  Longer term  Chronic graft-versus-host disease (lung,liver, skin)  Relapse  Infection  Endocrine 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 23 Factors influencing survival  Disease factors  Remission, relapse, refractory  Transplant related mortality  Donor factors   Age, sex, conditioning Recipient factors  Age, CMV status, performance status  Risk of graft-versus-host disease  Donor factors   Recipient factors  5/5/2017 PBSC, matching, age, parity Age Dr.yekehfallah.-phd of nursing 2015 24 GENERAL PRINCIPLES  Epidemiology. Current estimates of annual numbers of HCT are 45,000 to 50,000 worldwide. Approximately two thirds of patients have autologous HCT and one third have allogeneic HCT 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 25 Risk factors  The likelihood of developing transplant-related complications depends on: 1/patient age 2/intensity of the preparative regimen 3/type and stage of the underlying disease 4/presence of comorbidities. 5/allogeneic HCT recipients have a greater risk of transplant-related morbidity and mortality than autologous HCT recipients 6/HLA disparity between donor and recipient further increases the risk owing to the greater likelihood of developing GVHD and graft rejection 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 26 Prognosis Prognosis after HCT is highly variable and is influenced by numerous factors that predict for mortality related to the transplant procedure itself and to recurrent malignancy after surviving the transplant: - Patients with chronic myelogenous leukemia (CML) in chronic phase who have HCT from an HLA-identical sibling, for example, have a greater than 80% to 90% chance of long-term survival -In contrast, less than 50% of patients with more advanced leukemia at the time of HCT will be cured Dr.yekehfallah.-phd of nursing 5/5/2017 2015 27 Transplantation Procedure 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 28 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 29 Anesthesic Management  Intravenouse anesthesia sould be procured.  Intravenouse, Thiopental, Fentanyl ,Vecuronium can be used in common doses  Maintanance can be provide with Propofol and Isoflurane. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 30 Step 1: Bone marrow transplant with less toxic recipient treatment that includes antibodies.Donor marrow is T cell depleted Blood cells are a mixture of donor and host: Mixed chimerism is achieved without GVHR Wait 1-2 months. Inflammation from preparative treatment subsides. Step 2: Infuse donor T cells. Donor T cells interact with “presenting cells” of mixed chimera to maximize GVHR Tumor is killed 5/5/2017 Donor T cells are armed to kill tumor cells that express recipient antigens. They stay inside the blood and lymph, where tumor is. Dr.yekehfallah.-phd nursing T cells don’tofgo to skin/gut/liver. There 2015 is no GVHD. 31 TRANSPLANT RELATED COMPLICATIONS 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 32  The problems after HCT that typically cause procedure-related morbidity and mortality can broadly be categorized into five groups: *hemolysis,  ** toxicity of the preparative regimen, ***infection,  **** bleeding,  ***** GVHD 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 33 Hemolysis  General principles.  The inheritance of blood group antigens (e.g., ABO, Rh) is independent of that of the HLA antigens. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 34 Hemolysis  Etiology/pathophysiology: 1/ Acute (at the time of infusion) or delayed (5 to 15 days after HCT) immunohemolytic complications due to ABO incompatibility occur in patients with minor ABO-incompatibility. 2/ Immediate hemolysis occurs if the graft contains preexisting isohemagglutinins that lyse recipient RBCs. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 35 Hemolysis  Etiology/pathophysiology: 3/ Delayed hemolysis is due to generation of new• isohemagglutinins by passenger lymphocytes•in the graft. 4/Delayed hemolysis due to minor ABO incompatibility is a rare complication but can be dramatic and life-threatening. 5/ Major ABO incompatibility (recipientderived isohemagglutinins directed against donor RBCs) may lead to chronic hemolysis and pure red cell anemia Dr.yekehfallah.-phd of nursing 5/5/2017 2015 36 (PRCA). Hemolysis  Diagnosis 1/Clinical presentation: a/ Mild hemolysis due to major ABO incompatibility may be associated with prolonged RBC transfusion requirements . b/Delayed hemolysis due to minor ABO incompatibility may cause rapid lysis of all recipient RBCs over a few days. This may lead to acute renal failure or pulmonary edema and may be fatal. Plasma exchange in the recipient and plasma removal or RBC removal from the graft are standard procedures that minimize the risk of preventable hemolytic complication after ABO-mismatched HCT. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 37 Hemolysis  Diagnosis 2/Laboratory and radiologic studies: a/Emergence of donor-derived RBC and isohemagglutinin titers should be monitored after allogeneic HCT b/Serum levels of (indirect) bilirubin and lactate dehydrogenase (LDH), reticulocyte counts, and the direct agglutinin test (DAT) are useful markers of hemolysis 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 38 Hemolysis Diagnosis 3/Differential diagnosis: a/Parvovirus 19 infection may cause PRCA after HCT. b/NonABO-related Coombs-positive autoimmune hemolytic anemia (AIHA) may develop late after HCT c/Drugs such as fluarabine or infections with mycoplasm may also produce hemolysis. Thrombotic microangiopathy (TM) is frequently related to cyclosporine or tacrolimus and associated with RBC fragmentation (schistocytes) d/Hyperbilirubinemia after HCT may have many other causes (e.g., sinusoidal obstruction syndrome [SOS] of the liver; drug effects) e/Dimethylsulfoxide (DMSO), a cryoprotectant used to store autologous stem cells, may cause anaphylactic and nonallergic reactions (e.g., hypotension, dyspnea, flushing, diarrhea) during infusion of thawed stem cell products. Dr.yekehfallah.-phd of nursing 5/5/2017 2015 39 Hemolysis Treatment: 1/ Chronic hemolysis due to major ABO incompatibility is usually self-limited. 2/ Patients with refractory or more acute immune hemolysis may require interventions aimed at suppressing ongoing donor-directed isohemagglutinin production (corticosteroids, donor lymphocyte infusion, rituximab) or removal of the offending antibody (plasma exchange). 3/Supportive care measures to maintain renal function are critical 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 40 Toxicity of the preparative regimen  Cytotoxic chemotherapy with or without total body irradiation (TBI) may compromise the function of the lungs, heart, kidneys, nervous system, and gastrointestinal tract including the liver. This type of toxicity occurs predominantly within the first 3 to 4 weeks after HCT. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 41 Infection General principles Infections are frequent complications after autologous and allogeneic HCT. Their pattern of occurrence is determined by a number of factors, including the recipient's pretransplant history and underlying disease, the intensity of the preparative regimen, the regimen used for infection prevention, the microbiological flora of the patient and of the individual transplant unit, and the degree of immunosuppression after transplant . 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 42 Bleeding Etiology/pathophysiology: Bleeding can occur as a result of thrombocytopenia or coagulopathy. Breakdown of mucosal barriers as a result of regimen-related toxicity and/or GVHD increases the likelihood of hemorrhage. CNS hemorrhage can be rapidly fatal. Highdose cyclophosphamide and BK virus infection are causes of hemorrhagic cystitis 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 43 Bleeding Diagnosis: Oropharyngeal bleeding and epistaxis are obvious. Endoscopic evaluation (colonoscopy, esophagogastroduodenoscopy, bronchoscopy) or CNS imaging may be indicated according to the clinical picture 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 44 Bleeding Treatment: A platelet count below 10,000/mm3 increases the risk of spontaneous bleeding and should be treated prophylactically with platelet transfusion. The decision to transfuse platelets above the prophylactic•threshold of 10,000/mm3 should be guided by the clinical situation. Patients who have received multiple transfusions can become alloimmunized and demonstrate poor response to platelet transfusion. Transfusion of unpooled (single-donor) or HLAmatched platelets may be helpful. Bleeding can be seen on bronchoscopy. The treatment consists of high doses of corticosteroidsDr.yekehfallah.-phd (e.g., 1 g per day- for 3 days). of nursing 5/5/2017 2015 45 Graft-versus-host disease General principles GVHD is a major cause of morbidity and mortality after allogeneic HCT. Patients who develop GVHD, however, have lower relapse rates than patients without GVHD, which can be explained by an immunologic graft-versus-tumor effect that helps eradicate the underlying malignancy 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 46 Graft-versus-host disease Etiology/pathophysiology The GVHD syndrome is caused by donor T cells that are activated by immunologically disparate HLA or nonHLA antigens in the recipient, resulting in an inflammatory immune response. Older patient age, HCT from a mismatched and/or unrelated donor, and a female donor increase the risk of developing GVHD Dr.yekehfallah.-phd of nursing 5/5/2017 2015 47 Graft-versus-host disease Diagnosis Clinical presentation: Acute GVHD (defined as occurring before posttransplant day 100) tends to have a more sudden onset and may involve the skin, gastrointestinal tract, and liver. Signs and symptoms include an erythematous rash, nausea, vomiting, diarrhea, and liver function abnormalities. Clinical features of chronic GVHD (defined as occurring after posttransplant day 100), which typically has a more insidious onset, may involve the skin, eyes, joints, and liver and are reminiscent of autoimmune diseases such as Dr.yekehfallah.-phd of nursing systemic sclerosis. 5/5/2017 2015 48 Graft-versus-host disease  Laboratory and radiologic studies: Skin punch biopsy, gastrointestinal endoscopy with biopsy, and liver biopsy confirm the diagnosis in the appropriate clinical setting. Cholestatic jaundice is the hallmark of liver involvement. Pulmonary function test and lung biopsy in patients with presumed BOOP to rule out infectious etiologies . Dr.yekehfallah.-phd of nursing 5/5/2017 2015 49 Graft-versus-host disease Treatment: Despite prophylaxis against GVHD (e.g., cyclosporine plus methotrexate), 40% to 80% of allogeneic HCT recipients develop this complication. Corticosteroids are standard first-line therapy of GVHD (e.g., prednisone 2 mg/kg per day; slow taper after 2 weeks). 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 50 Graft-versus-host disease Treatment: Immunosuppressive treatment of GVHD with corticosteroids contributes to the increased susceptibility of patients with GVHD to a variety of bacterial, viral, and fungal infections. Steroid-refractory patients require secondline immunosuppressive therapy and usually have a poor prognosis. 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 51 Complications  Rejection by hte host of the marow graft  Acute graft-vs,-host disease (GVHD)  Infections  Chronic GVHD  Prolonged immunodeficiency  Disease recurrence 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 52 ? 5/5/2017 Dr.yekehfallah.-phd of nursing 2015 53