Download BIO-NMD: Discovery and validation of biomarkers for NMDs * an EU

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Fetal origins hypothesis wikipedia , lookup

Genetic code wikipedia , lookup

Twin study wikipedia , lookup

Biology and consumer behaviour wikipedia , lookup

Gene expression programming wikipedia , lookup

Artificial gene synthesis wikipedia , lookup

Nutriepigenomics wikipedia , lookup

Genetic drift wikipedia , lookup

Site-specific recombinase technology wikipedia , lookup

RNA-Seq wikipedia , lookup

Gene therapy wikipedia , lookup

Quantitative trait locus wikipedia , lookup

Heritability of IQ wikipedia , lookup

Behavioural genetics wikipedia , lookup

Epigenetics of neurodegenerative diseases wikipedia , lookup

Population genetics wikipedia , lookup

Human genetic variation wikipedia , lookup

History of genetic engineering wikipedia , lookup

Designer baby wikipedia , lookup

Genetic testing wikipedia , lookup

Medical genetics wikipedia , lookup

Genetic engineering wikipedia , lookup

Pharmacogenomics wikipedia , lookup

Genetic engineering in science fiction wikipedia , lookup

Microevolution wikipedia , lookup

Genome (book) wikipedia , lookup

Public health genomics wikipedia , lookup

Transcript
Integrated Omics Technologies for Patients with Genetic Neuromuscular Diseases
Volker Straub
The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle
University, Central Parkway, Newcastle upon Tyne, United Kingdom
Genetic neuromuscular diseases (NMD) have a wide phenotypic spectrum, show an enormous
genetic heterogeneity, are usually incurable and can be associated with severe complications
including sudden death. In the past 25 years the strategies and methods applied have allowed us to
identify neuromuscular disease genes mainly in larger families and for more frequently occurring
genetic conditions. Using cost- and time-intense step-by-step single gene approaches only the most
frequent genetic causes and patients with characteristic phenotypes are normally being tested,
leaving many patients with very rare and clinically unspecific NMD without a precise diagnosis.
Depending on the health system and local access to diagnostic tools, between 30-80% of
neuromuscular patients in Europe remain undiagnosed. As a precise genetic diagnosis is a
prerequisite for the monitoring of disease complications, the counselling of families and therefore the
overall quality of life and life expectancy of a patient, it is a major challenge to identify the genetic
cause for all patients with NMD. Since the identification of the first gene associated with a genetic
muscle disease, namely Duchenne muscular dystrophy, an extensive body of research into genetics
and pathogenesis has resulted in the identification of genetic defects responsible for over 750 NMD,
revealed an increasingly varied phenotypic spectrum, and exposed the need to move towards a new
systems-based understanding of the conditions in terms of the molecular pathways affected. New
omics technologies including whole-exome and whole-genome sequencing are continuing to expand
the range of genes and phenotypes associated with NMD, and new computational approaches are
helping clinicians move into this new genomic medicine paradigm. However, 30 years on from the
DMD gene discovery, no curative therapies exist for any form of NMD, and systematic exploration of
their natural history is still lacking. In order that basic research can be more rapidly translated to the
clinic, well-phenotyped and genetically characterized patient cohorts are a necessity, and appropriate
outcome measures and biomarkers must be developed through natural history studies. International
collaborations are now addressing these translational research issues and are already showing that
the identification of novel NMD genes can facilitate personalized medicine, advance and standardise
NGS diagnosis, reduce ineffective interventions and burdensome investigations, improve standards of
care for patients and the development of target–driven therapies.