* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Any antibody binds to only a portion of the
Human leukocyte antigen wikipedia , lookup
Anti-nuclear antibody wikipedia , lookup
Complement system wikipedia , lookup
Immune system wikipedia , lookup
Major histocompatibility complex wikipedia , lookup
Duffy antigen system wikipedia , lookup
Immunocontraception wikipedia , lookup
Innate immune system wikipedia , lookup
Adaptive immune system wikipedia , lookup
Adoptive cell transfer wikipedia , lookup
DNA vaccination wikipedia , lookup
Immunosuppressive drug wikipedia , lookup
Cancer immunotherapy wikipedia , lookup
Monoclonal antibody wikipedia , lookup
بسم اهلل الرحمن الرحيم Antigen Samira Rajaei, MD, PhD. Assistant professor Department of Immunology Tehran University of Medical Sciences Antigen definition Antigen • Antigen • Immunogen • Tolerogen Anti(body)+ generator Which cells are the main players of adaptive immunity? Antigen Any substance that may be specifically recognized by an antibody molecule (BCR) or T cell receptor (TCR) Difference between Ag recognition Antibodies can recognize as antigens almost every kind of biologic molecule: Lipids Carbohydrates Proteins Nucleic acids TCRs mainly recognize peptides Immunogen Antigens are capable of activating lymphocyte True/False All antigens are recognized by specific lymphocytes ① true ②false All antigens are capable of activating lymphocyte ① true ②false Tolerogen Foreign antigens may be administered in ways that preferentially induce tolerance rather than immune responses. These antigens are tolerogen. Hapten Small chemicals (dinitrophenol) may bind to antibodies, and are therefore antigens, but cannot activate B cells on their own (they are not immunogenic) Immunogenicity Foreignness Molecular size Chemical structure complexity Dosage, Route, individual difference, timing of administration Foreignness Foreignness is essential to immunogenicity Self-responsive cells are eliminated during lymphocyte ontogeny More Foreignness; more immunogenicity Molecular size >100000 Dalton <10000 Dalton Chemical structure complexity Composition Proteins (most potent) Polysaccharides (second potent) Nucleic acids and lipids (are not immunogenic unless …) Chemical complexity Homopolymrs of amino acids? Which one of protein structures are more immunogen? More complex molecules are more immunogen Dosage High doses of immunogen may cause a lack of responsiveness (tolerance) Intermediate doses of immunogen are generally the best immune response inducers Low doses of immunogen may not induce immune responses Route of immunogen administration Route of administration influences which cells (and how many of them) are stimulated s.c. (subcutaneous) i.d. (intradermal) i.m. (intramuscular) i.v. (intravenous) Oral administration i.n. (intranasal) How to generate antibody against haptens? Hapten+Carrier attach them to a protein before immunization which is called carrier. attaching a number of hapten molecules to a single molecule of a polysaccharide (render it multivalent) Adjuvant An adjuvant is any substance that enhances the immunogenicity of substances mixed with it Many adjuvants in experimental use are microbial products, such as killed mycobacteria and LPS, that engage TLRs What are the differences between Adjuvant and carrier? do not form stable linkages with the immunogen adjuvants are needed primarily for initial immunizations, whereas carriers are required to elicit not only primary but also subsequent responses to haptens. Physicochemical structure of Antigens Soluble : (proteins , polysaccharides) + Adjuvants Particulate: bacteria, virus and RBCs (Adjuvants are not necessary) Colloidal (non robust immunogens) How adjuvants enhance immunogenicity of proteins? Delayed release of antigens Adjuvants convert soluble protein antigens into particulate material, which is more readily ingested by antigen-presenting cells such as macrophages adjuvants activate dendritic cells to express more MHC, increase the expression of costimulators, and cytokines needed for T cell activation, stimulate migration of the dendritic cells to lymph nodes . Types of adjuvants Freund’s adjuvant Incomplete (oil in water emulsion) Complete (oil in water emulsion and dead mycobacteria) Alum (aluminum hydroxide or aluminum phosphate) Epitope/Determinant Macromolecules (proteins, polysaccharides, and nucleic acids) are usually much bigger than the antigen-binding region of an antibody molecule Any antibody binds to only a portion of the macromolecule, which is called a determinant or an epitope Most of the macromolecules have multiple determinants. Polyvalency/multivalency The presence of multiple identical determinants in an antigen is referred to as polyvalency or multivalency. Polysaccharides nucleic acids Surface of microbs Polyvalent antigens can induce clustering of the B cell receptors and initiate the process of B cell activation Globular proteins Most globular proteins do not contain multiple identical epitopes and are not polyvalent Proteins could not cross link the B cell receptors. They need the help of T lymphocytes. Proteins are T-dependent antigens. Spatial arrangement of epitopes Nonoverlapping determinants 2 or more antibody bind to a protein antigen No steric interference Overlapping determinants Steric interference Allosteric Effects Allosteric effects (conformational changes positively or negatively effects another antibody binding without Steric interference) Linear determinants Epitopes formed by several adjacent amino acid residues are called linear determinants. The antigen-binding site of an antibody can usually accommodate a linear determinant made up of about 6 amino acids. If linear determinants appear on the external surface or in a region of extended conformation in the native folded protein, they may be accessible to antibodies More often, linear determinants may be inaccessible in the native conformation and appear only when the protein is denatured. Conformational determinants Conformational determinants are formed by amino acid residues that are not in a sequence but become spatially juxtaposed in the folded protein. Neoantigenic determinants Proteins may be subjected to modifications such as glycosylation, phosphorylation, ubiquitination, acetylation, and proteolysis. Modifications produce new epitopes. Epitopes determined by T cells T lymphocytes recognize linear peptide determinants in combination with MHC residues. Mitogens These molecules are able to bind to TCR complex and CD2, causing them to cluster on the cell surface, thereby mimicking the clustering caused by antigen presentation. They activate the T cells regardless of their antigen specificity. Phytohemagglutinin (PHA), a lectin Concanavalin-A Superantigens Molecules that can activate T cells non-specifically Superantigens bind to MHC class II molecules on APCs and are recognized by TCRs, but not in the same way as an MHC molecule-peptide complex. Binding is to the Vβ chain of the TCR Staphylococcal enterotoxins Toxic shock syndrome toxin