Download Lithium Iodide Original Commentary - Groupe Charette

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Kinetic resolution wikipedia , lookup

Phenols wikipedia , lookup

Enantioselective synthesis wikipedia , lookup

Hydroformylation wikipedia , lookup

Petasis reaction wikipedia , lookup

Elias James Corey wikipedia , lookup

Ring-closing metathesis wikipedia , lookup

Bottromycin wikipedia , lookup

Alcohol wikipedia , lookup

Asymmetric induction wikipedia , lookup

Wolff rearrangement wikipedia , lookup

Alkene wikipedia , lookup

Ene reaction wikipedia , lookup

Wolff–Kishner reduction wikipedia , lookup

Haloalkane wikipedia , lookup

Stille reaction wikipedia , lookup

Nucleophilic acyl substitution wikipedia , lookup

Strychnine total synthesis wikipedia , lookup

Discodermolide wikipedia , lookup

Transcript
LITHIUM IODIDE
Lithium Iodide1
O
OBn
BnO
Physical Data: mp 449 ◦ C; bp 1180 ◦ C; d 4.076 g cm−3 .
Solubility: 165 g/100 mL H2 O (20 ◦ C); 433 g/100 mL H2 O
(80 ◦ C); 251 g/100 mL EtOH (20 ◦ C); 343 g/100 mL MeOH
(20 ◦ C); 43 g/100 mL acetone (18 ◦ C); very sol NH4 OH.
Form Supplied in: anhydrous white solid or as the hydrate.
Preparative Method: the anhydrous salt of high purity can be
prepared from lithium hydride and iodine in ether.5
Purification: crystallized from hot H2 O (0.5 mL g−1 ) by cooling
in CaCl2 –ice or from acetone. LiI is dried for 2 h at 120 ◦ C (0.1
mmHg, P2 O5 ) before use.
Handling, Storage, and Precautions: for best results, LiI should
be dried prior to use in anhydrous reactions.
O
O
CO2Me
EtO2C
LiI, THF
(5)
t-Bu
O
CO2Me
reflux
71%
O
O
OH
OTBDPS
N
H
Ph
–78 °C
96%
O
OH
OH
with LiI
without LiI
O
t-Bu
LiAlH4, Et2O
N
O
CO2Me
Ph
LiI as an Additive for Organometallic-mediated Transformations.16 The syn/anti selectivity in the reduction of βalkoxy ketones is drastically increased by the addition of LiI
(eq 6).17
N
LiI•2H2O
s-collidine
N
40 °C, 12 h
68%
CO2H (1)
91%
N
O
(4)
TMS
Heterolytic C–X Bond Cleaving Reactions. In the presence of amine bases, LiI has been extensively used as a mild
reagent for the chemoselective cleavage of methyl esters (eq 1).6
Decarboxylation of methyl esters usually occurs when an electronwithdrawing group is present at the α-position of the ester (eq 2).7
Ester-type glycosyl linkages of acidic tri- and diterpenes can also
be selectively cleaved under these conditions.8 Aryl methyl ethers
can be demethylated to afford the corresponding phenols upon
heating with LiI and s-collidine.9
LiI, py
reflux
CO2H
I
rt, 1 h
85%
C–C Bond Forming Reactions. LiI was shown to efficiently
catalyze the Michael addition of β-dicarbonyl compounds,14 and
the intramolecular allylsilane addition to imines to produce 4methylenepiperidine derivatives (eq 5).15
André B. Charette
Université de Montréal, Montréal, Québec, Canada
N
OH
Alkyl and Alkenyl Iodides. LiI has been used as a source
of iodide in nucleophilic substitution and addition reactions. Primary alcohols have been directly converted to alkyl iodides upon
treatment with a mixture of Triphenylphosphine, Diethyl Azodicarboxylate, and LiI.3 Tertiary alcohols can be converted into
tertiary alkyl iodides upon treatment with Hydrogen Iodide in the
presence of LiI.12
(Z)-3-Iodopropenoates and -propenoic acids have been synthesized stereoselectively by the reaction of LiI and propiolates or
propiolic acid.13
Original Commentary
EtO2C
OBn (3)
BnO
LiI, THF
[10377-51-2]
ILi
(MW 133.84)
InChI = 1/HI.Li/h1H;/q;+1/p-1/fI.Li/h1h;/q-1;m
InChIKey = HSZCZNFXUDYRKD-IABDHUKHCQ
(ester cleavage and decarboxylation;2 source of nucleophilic
iodide;3 mild Lewis acid;1 salt effects in organometallic
reactions;1 epoxide opening4 )
I
LiI, AcOH
THF, rt
100%
LiI
1
OTBDPS
+ O
O
OH
OH
OTBDPS
(6)
syn:anti = 89:11
syn:anti = 79:21
(2)
CO2Me
1,2-Oxiranes are readily opened by LiI and a Lewis acid to produce iodohydrins (eq 3).4 Conversely, 1-oxaspiro[2.2]pentanes
and 1-oxaspiro[3.2]hexanes give rise to bond migration
products.10 β-Vinyl-β-propiolactone is efficiently opened by LiI
to produce the corresponding substituted allyl iodide (eq 4).11
The addition of Lithium Bromide and LiI was shown to
enhance the rate of organozinc formation from primary alkyl
chlorides, sulfonates, and phosphonates, and zinc dust.18 Beneficial effects of LiI addition have also been reported for Hecktype coupling reactions19 and in conjugate addition to chiral vinyl
sulfoximines.20
The (E)/(Z) alkenic ratio in Wittig-type alkenations was shown
to be dependent on the amount of Li salt present.21
Avoid Skin Contact with All Reagents
2
LITHIUM IODIDE
Reduction of α -Alkoxycarbonyl Derivatives. α-Halo
ketones are reduced to the corresponding ketones upon
treatment with a mixture of LiI and Boron Trifluoride
Etherate.22
presence of catalytic boron trifluoride-acetic acid (eq 9). Cyclic
ethers yield ring-opened alkyl iodides under these conditions
(eq 10). LiI/boron tribromide/acetic acid was more reactive than
iodotrimethylsilane in the debenzylation of the dibenzyloxydihydrobenzoxathiin substrate of eq 9, providing a higher yield and
improved impurity profile.26
LiI, SiCl4
BF3-AcOH (cat)
First Update
J. Kent Barbay & Wei He
Johnson & Johnson Pharmaceutical Research & Development,
Spring House, PA, USA
Heterocyclic C–X Bond Cleaving Reactions. LiI has been
employed in a variety of ring-opening reactions of aziridines and
their derivatives. The conversion of N-arylsulfonylaziridines to
β-haloamine derivatives was conducted using lithium halides (LiI,
as well as lithium chloride or lithium bromide) and β-cyclodextrin
in water (eq 7).23 N-Arylsulfonylaziridines react with isocyanates
in the presence of LiI to form imidazolidinones.24 Aziridines are
converted to oxazolidinones upon treatment with catalytic LiI and
carbon dioxide (eq 8).25
(10)
CH3CN, toluene, 70 °C
O
OH
90%
LiI/chromium(II) chloride in moist ethyl acetate cleaves
benzylic ethers; the preference of this reagent combination for
electron rich aryl ethers with coordinating functionality results in
the selective cleavage of 2,6-dimethoxybenzyl ethers in the presence of other benzyl ethers, enabling orthogonal deprotection of
bis-protected diols (eq 11).27
OMe
LiI, CrCl2
BnO
O
6
BnO
EtOAc:H2O
(1:0.005 v/v)
75 °C
98%
MeO
6
OH
(11)
Ts
N
I
LiI, β-cyclodextrin
H2O, rt
76%
Ph
OMe
NHTs
Ph
(7)
H2 (1 atm), Pd/C
BnO
6
N
LiI (cat.), CO2
THF
90%
Ph
hexane/EtOAc
95%
OMe
N
O
O
MeO
O
Ph
Ph
(8)
HO
O
MeO
S
1. LiI, SiCl4
BF3-AcOH (cat)
CH3CN, toluene, 70 °C
O
2. HCl, EtOH
90%
The stereoselective ring opening of an allylic epoxide to an (E)allylic iodide was achieved using a combination of LiI and scandium trifluoromethanesulfonate (eq 12).28 In contrast, 9-bromo9-borabicyclo[3.3.1]nonane furnished the corresponding (Z)allylic bromide selectively. LiI transforms 2,3-epoxy alcohols to
1-iodo-2,3-diols upon heating in DME.29 α,β-Epoxy ketones30
and allylic epoxides31 are deoxygenated to α,β-unsaturated ketones and dienes, respectively, with LiI and Amberlyst 15 resin.
O
N
O
H
CH3
O
OH
LiI, Sc(OTf)3
OTIPS
H3C
HO
6
Ph
OBn
BnO
I
S
CH3
(9)
THF, −25 °C
92%
CH3
O
I
O
HO
HCl N
CH3
O
OTIPS
Combinations of LiI and other Lewis acidic reagents are useful in the O-dealkylation of ethers. Aryl methyl, allyl, and benzyl
ethers are cleaved to phenols using LiI/tetrachlorosilane in the
A list of General Abbreviations appears on the front Endpapers
H3C
CH3
CH3
(12)
LITHIUM IODIDE
Dealkoxycarbonylation of 1-carbomethoxypyridazines occurred upon refluxing with LiI in DMF (eq 13).32
MeO
3
O Na
CO2Me
Me
Ph
MeO2C
N
N
O
[PdCl(π-C3H5)]2
PPh3, THF, 0 °C
OAc
LiI, DMF
reflux
59%
N
Ph
Me CO2Me
Ph
O
N
+
CO2Me
MeO2C
linear
Me
CO2Me
(16)
branched
N
Additive
O
N
(13)
O
C–C Bond Forming Reactions. LiI displayed a beneficial
effect on the acid-promoted intramolecular cyclization of 1,4dihydropyridines (eq 14).33 In this case, reversible trapping of an
iminium ion by iodide was proposed to shift the reaction equilibrium away from an unproductive fragmentation pathway.
SPh
1.
2.
3.
4.
N
LiI, TsOH
N
5.
6.
benzene, THF
40%
O
7.
8.
CO2Me
SPh
9.
H
N
(14)
10.
N
O
CO2Me
H
11.
12.
13.
No desired product in absence of LiI
14.
LiI as an Additive for Organometallic-mediated Transformations. Diastereoselectivity in the cyclization of 5-hexenyllithiums was shown to be influenced by LiI.34 As an additive in
the reduction of α,β-unsaturated ketones by Bu2 SnH2 /Bu2 SnF2 ,
LiI has a dramatic effect on the selectivity for 1,2- versus 1,4reduction (eq 15).35 Catalytic LiI improves regioselectivity in
favor of the linear isomer in the palladium-catalyzed alkylation
of allylic acetates (eq 16).36
LiI
Ph
Ph
85%
Ph
Ph
O
Bu2SnH2/Bu2SnF2
(15)
THF, rt
15.
16.
17.
18.
19.
20.
21.
O
HMPA
Ph
Ph
69%
OH
22.
Yield (%) Linear:Branched
None
96
LiI (10 mol %)
99
77:23
100:0
Loupy, A.; Tchoubar, B. Salt Effects in Organic and Organometallic
Chemistry; VCH: Weinheim, 1992.
(a) McMurry, J., Org. React. 1976, 24, 187. (b) Krapcho, A. P., Synthesis
1982, 805. (c) Krapcho, A. P., Synthesis 1982, 893.
Manna, S.; Falck, J. R.; Mioskowski, C., Synth. Commun. 1985, 15,
663.
(a) Bonini, C.; Giuliano, C.; Righi, G.; Rossi, L., Synth. Commun. 1992,
22, 1863. (b) Shimizu, M.; Yoshida, A.; Fujisawa, T., Synlett 1992,
204. (c) Bajwa, J. S.; Anderson, R. C., Tetrahedron Lett. 1991, 32,
3021.
Taylor, M. D.; Grant, L. R., J. Am. Chem. Soc. 1955, 77, 1507.
Magnus, P.; Gallagher, T., J. Chem. Soc., Chem. Commun. 1984,
389.
Johnson, F.; Paul, K. G.; Favara, D., J. Org. Chem. 1982, 47, 4254.
Ohtani, K.; Mizutani, K.; Kasai, R.; Tanaka, O., Tetrahedron Lett. 1984,
25, 4537.
(a) Kende, A. S.; Rizzi, J. P., J. Am. Chem. Soc. 1981, 103, 4247.
(b) Harrison, I. T., J. Chem. Soc., Chem. Commun. 1969, 616.
(a) Salaün, J.; Conia, J. M., J. Chem. Soc., Chem. Commun. 1971, 1579.
(b) Aue, D. H.; Meshishnek, M. J.; Shellhamer, D. F., Tetrahedron Lett.
1973, 4799.
Fujisawa, T.; Sato, T.; Takeuchi, M., Chem. Lett. 1982, 71.
Masada, H.; Murotani, Y., Bull. Chem. Soc. Jpn. 1980, 53, 1181.
(a) Ma, S.; Lu, X., Tetrahedron Lett. 1990, 31, 7653. (b) Ma, S.; Lu, X.,
J. Chem. Soc., Chem. Commun. 1990, 1643.
Antonioletti, R.; Bonadies, F.; Monteagudo, E. S.; Scettri, A.,
Tetrahedron Lett. 1991, 32, 5373.
Bell, T. W.; Hu, L.-Y., Tetrahedron Lett. 1988, 29, 4819.
For the effect of LiI on organocopper reagents see: Lipshutz, B. H.;
Kayser, F.; Siegmann, K., Tetrahedron Lett. 1993, 34, 6693.
(a) Mori, Y.; Kuhara, M.; Takeuchi, A.; Suzuki, M., Tetrahedron Lett.
1988, 29, 5419. (b) Mori, Y.; Takeuchi, A.; Kageyama, H.; Suzuki, M.,
Tetrahedron Lett. 1988, 29, 5423.
Jubert, C.; Knochel, P., J. Org. Chem. 1992, 57, 5425.
Cabri, W.; Candiani, I.; DeBernardinis, S.; Francalanci, F.; Penco, S.;
Santi, R., J. Org. Chem. 1991, 56, 5796.
(a) Pyne, S. G., J. Org. Chem. 1986, 51, 81. (b) Pyne, S. G., Tetrahedron
Lett. 1986, 27, 1691.
(a) Soderquist, J. A.; Anderson, C. L., Tetrahedron Lett. 1988, 29, 2425.
(b) Soderquist, J. A.; Anderson, C. L., Tetrahedron Lett. 1988, 29, 2777.
(c) Buss, A. D.; Warren, S.; Leake, J. S.; Whitham, G. H., J. Chem. Soc.,
Perkin Trans. 1 1983, 2215. (d) Buss, A. D.; Warren, S., J. Chem. Soc.,
Perkin Trans. 1 1985, 2307.
Townsend, J. M.; Spencer, T. A., Tetrahedron Lett. 1971, 137.
Avoid Skin Contact with All Reagents
4
23.
24.
25.
26.
27.
28.
29.
LITHIUM IODIDE
Srilakshmi Krishnaveni, N.; Surendra, K.; Narender, M.; Nageswar, Y.
V. D.; Rama Rao, K., Synthesis 2004, 4, 501.
Nadir, U. K.; Joshi, S., Indian J. Chem., Sect. B 2003, 42B, 2875.
Hancock, M. T.; Pinhas, A. R., Tetrahedron Lett. 2003, 44, 5457.
Zewge, D.; King, A.; Weissman, S.; Tschaen, D., Tetrahedron Lett. 2004,
45, 3729.
Falck, J. R.; Barma, D. K.; Baati, R.; Mioskowski, C., Angew. Chem.,
Int. Ed. 2001, 40, 1281.
Myers, A. G.; Siu, M., Tetrahedron 2002, 58, 6397.
Bonini, C.; Giuliano, C.; Righi, G.; Rossi, L., Tetrahedron Lett. 1992,
33, 7429.
A list of General Abbreviations appears on the front Endpapers
30.
Righi, G.; Bovicelli, P.; Sperandio, A., Tetrahedron 2000, 56,
1733.
31. Antonioletti, R.; Bovicelli, P.; Fazzolari, E.; Righi, G., Tetrahedron Lett.
2000, 41, 9315.
32. González-Gómez, J. C.; Uriarte, E., Synlett 2002, 12, 2095.
33. Bennasar, M.-L.; Jiménez, J.-M.; Sufi, B. A.; Bosch, J., Tetrahedron Lett.
1996, 37, 7653.
34. Bailey, W. F.; Jiang, X., Tetrahedron 2005, 61, 3183.
35. Moriuchi-Kawakami, T.; Matsuda, H.; Shibata, I.; Miyatake, M.; Suwa,
T.; Baba, A., Bull. Chem. Soc. Jpn. 1999, 72, 465.
36. Kawatsura, M.; Uozumi, Y.; Hayashi, T., Chem. Commun. 1998, 217.