* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lithium Iodide Original Commentary - Groupe Charette
Kinetic resolution wikipedia , lookup
Enantioselective synthesis wikipedia , lookup
Hydroformylation wikipedia , lookup
Petasis reaction wikipedia , lookup
Elias James Corey wikipedia , lookup
Ring-closing metathesis wikipedia , lookup
Bottromycin wikipedia , lookup
Asymmetric induction wikipedia , lookup
Wolff rearrangement wikipedia , lookup
Ene reaction wikipedia , lookup
Wolff–Kishner reduction wikipedia , lookup
Stille reaction wikipedia , lookup
Nucleophilic acyl substitution wikipedia , lookup
LITHIUM IODIDE Lithium Iodide1 O OBn BnO Physical Data: mp 449 ◦ C; bp 1180 ◦ C; d 4.076 g cm−3 . Solubility: 165 g/100 mL H2 O (20 ◦ C); 433 g/100 mL H2 O (80 ◦ C); 251 g/100 mL EtOH (20 ◦ C); 343 g/100 mL MeOH (20 ◦ C); 43 g/100 mL acetone (18 ◦ C); very sol NH4 OH. Form Supplied in: anhydrous white solid or as the hydrate. Preparative Method: the anhydrous salt of high purity can be prepared from lithium hydride and iodine in ether.5 Purification: crystallized from hot H2 O (0.5 mL g−1 ) by cooling in CaCl2 –ice or from acetone. LiI is dried for 2 h at 120 ◦ C (0.1 mmHg, P2 O5 ) before use. Handling, Storage, and Precautions: for best results, LiI should be dried prior to use in anhydrous reactions. O O CO2Me EtO2C LiI, THF (5) t-Bu O CO2Me reflux 71% O O OH OTBDPS N H Ph –78 °C 96% O OH OH with LiI without LiI O t-Bu LiAlH4, Et2O N O CO2Me Ph LiI as an Additive for Organometallic-mediated Transformations.16 The syn/anti selectivity in the reduction of βalkoxy ketones is drastically increased by the addition of LiI (eq 6).17 N LiI•2H2O s-collidine N 40 °C, 12 h 68% CO2H (1) 91% N O (4) TMS Heterolytic C–X Bond Cleaving Reactions. In the presence of amine bases, LiI has been extensively used as a mild reagent for the chemoselective cleavage of methyl esters (eq 1).6 Decarboxylation of methyl esters usually occurs when an electronwithdrawing group is present at the α-position of the ester (eq 2).7 Ester-type glycosyl linkages of acidic tri- and diterpenes can also be selectively cleaved under these conditions.8 Aryl methyl ethers can be demethylated to afford the corresponding phenols upon heating with LiI and s-collidine.9 LiI, py reflux CO2H I rt, 1 h 85% C–C Bond Forming Reactions. LiI was shown to efficiently catalyze the Michael addition of β-dicarbonyl compounds,14 and the intramolecular allylsilane addition to imines to produce 4methylenepiperidine derivatives (eq 5).15 André B. Charette Université de Montréal, Montréal, Québec, Canada N OH Alkyl and Alkenyl Iodides. LiI has been used as a source of iodide in nucleophilic substitution and addition reactions. Primary alcohols have been directly converted to alkyl iodides upon treatment with a mixture of Triphenylphosphine, Diethyl Azodicarboxylate, and LiI.3 Tertiary alcohols can be converted into tertiary alkyl iodides upon treatment with Hydrogen Iodide in the presence of LiI.12 (Z)-3-Iodopropenoates and -propenoic acids have been synthesized stereoselectively by the reaction of LiI and propiolates or propiolic acid.13 Original Commentary EtO2C OBn (3) BnO LiI, THF [10377-51-2] ILi (MW 133.84) InChI = 1/HI.Li/h1H;/q;+1/p-1/fI.Li/h1h;/q-1;m InChIKey = HSZCZNFXUDYRKD-IABDHUKHCQ (ester cleavage and decarboxylation;2 source of nucleophilic iodide;3 mild Lewis acid;1 salt effects in organometallic reactions;1 epoxide opening4 ) I LiI, AcOH THF, rt 100% LiI 1 OTBDPS + O O OH OH OTBDPS (6) syn:anti = 89:11 syn:anti = 79:21 (2) CO2Me 1,2-Oxiranes are readily opened by LiI and a Lewis acid to produce iodohydrins (eq 3).4 Conversely, 1-oxaspiro[2.2]pentanes and 1-oxaspiro[3.2]hexanes give rise to bond migration products.10 β-Vinyl-β-propiolactone is efficiently opened by LiI to produce the corresponding substituted allyl iodide (eq 4).11 The addition of Lithium Bromide and LiI was shown to enhance the rate of organozinc formation from primary alkyl chlorides, sulfonates, and phosphonates, and zinc dust.18 Beneficial effects of LiI addition have also been reported for Hecktype coupling reactions19 and in conjugate addition to chiral vinyl sulfoximines.20 The (E)/(Z) alkenic ratio in Wittig-type alkenations was shown to be dependent on the amount of Li salt present.21 Avoid Skin Contact with All Reagents 2 LITHIUM IODIDE Reduction of α -Alkoxycarbonyl Derivatives. α-Halo ketones are reduced to the corresponding ketones upon treatment with a mixture of LiI and Boron Trifluoride Etherate.22 presence of catalytic boron trifluoride-acetic acid (eq 9). Cyclic ethers yield ring-opened alkyl iodides under these conditions (eq 10). LiI/boron tribromide/acetic acid was more reactive than iodotrimethylsilane in the debenzylation of the dibenzyloxydihydrobenzoxathiin substrate of eq 9, providing a higher yield and improved impurity profile.26 LiI, SiCl4 BF3-AcOH (cat) First Update J. Kent Barbay & Wei He Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA, USA Heterocyclic C–X Bond Cleaving Reactions. LiI has been employed in a variety of ring-opening reactions of aziridines and their derivatives. The conversion of N-arylsulfonylaziridines to β-haloamine derivatives was conducted using lithium halides (LiI, as well as lithium chloride or lithium bromide) and β-cyclodextrin in water (eq 7).23 N-Arylsulfonylaziridines react with isocyanates in the presence of LiI to form imidazolidinones.24 Aziridines are converted to oxazolidinones upon treatment with catalytic LiI and carbon dioxide (eq 8).25 (10) CH3CN, toluene, 70 °C O OH 90% LiI/chromium(II) chloride in moist ethyl acetate cleaves benzylic ethers; the preference of this reagent combination for electron rich aryl ethers with coordinating functionality results in the selective cleavage of 2,6-dimethoxybenzyl ethers in the presence of other benzyl ethers, enabling orthogonal deprotection of bis-protected diols (eq 11).27 OMe LiI, CrCl2 BnO O 6 BnO EtOAc:H2O (1:0.005 v/v) 75 °C 98% MeO 6 OH (11) Ts N I LiI, β-cyclodextrin H2O, rt 76% Ph OMe NHTs Ph (7) H2 (1 atm), Pd/C BnO 6 N LiI (cat.), CO2 THF 90% Ph hexane/EtOAc 95% OMe N O O MeO O Ph Ph (8) HO O MeO S 1. LiI, SiCl4 BF3-AcOH (cat) CH3CN, toluene, 70 °C O 2. HCl, EtOH 90% The stereoselective ring opening of an allylic epoxide to an (E)allylic iodide was achieved using a combination of LiI and scandium trifluoromethanesulfonate (eq 12).28 In contrast, 9-bromo9-borabicyclo[3.3.1]nonane furnished the corresponding (Z)allylic bromide selectively. LiI transforms 2,3-epoxy alcohols to 1-iodo-2,3-diols upon heating in DME.29 α,β-Epoxy ketones30 and allylic epoxides31 are deoxygenated to α,β-unsaturated ketones and dienes, respectively, with LiI and Amberlyst 15 resin. O N O H CH3 O OH LiI, Sc(OTf)3 OTIPS H3C HO 6 Ph OBn BnO I S CH3 (9) THF, −25 °C 92% CH3 O I O HO HCl N CH3 O OTIPS Combinations of LiI and other Lewis acidic reagents are useful in the O-dealkylation of ethers. Aryl methyl, allyl, and benzyl ethers are cleaved to phenols using LiI/tetrachlorosilane in the A list of General Abbreviations appears on the front Endpapers H3C CH3 CH3 (12) LITHIUM IODIDE Dealkoxycarbonylation of 1-carbomethoxypyridazines occurred upon refluxing with LiI in DMF (eq 13).32 MeO 3 O Na CO2Me Me Ph MeO2C N N O [PdCl(π-C3H5)]2 PPh3, THF, 0 °C OAc LiI, DMF reflux 59% N Ph Me CO2Me Ph O N + CO2Me MeO2C linear Me CO2Me (16) branched N Additive O N (13) O C–C Bond Forming Reactions. LiI displayed a beneficial effect on the acid-promoted intramolecular cyclization of 1,4dihydropyridines (eq 14).33 In this case, reversible trapping of an iminium ion by iodide was proposed to shift the reaction equilibrium away from an unproductive fragmentation pathway. SPh 1. 2. 3. 4. N LiI, TsOH N 5. 6. benzene, THF 40% O 7. 8. CO2Me SPh 9. H N (14) 10. N O CO2Me H 11. 12. 13. No desired product in absence of LiI 14. LiI as an Additive for Organometallic-mediated Transformations. Diastereoselectivity in the cyclization of 5-hexenyllithiums was shown to be influenced by LiI.34 As an additive in the reduction of α,β-unsaturated ketones by Bu2 SnH2 /Bu2 SnF2 , LiI has a dramatic effect on the selectivity for 1,2- versus 1,4reduction (eq 15).35 Catalytic LiI improves regioselectivity in favor of the linear isomer in the palladium-catalyzed alkylation of allylic acetates (eq 16).36 LiI Ph Ph 85% Ph Ph O Bu2SnH2/Bu2SnF2 (15) THF, rt 15. 16. 17. 18. 19. 20. 21. O HMPA Ph Ph 69% OH 22. Yield (%) Linear:Branched None 96 LiI (10 mol %) 99 77:23 100:0 Loupy, A.; Tchoubar, B. Salt Effects in Organic and Organometallic Chemistry; VCH: Weinheim, 1992. (a) McMurry, J., Org. React. 1976, 24, 187. (b) Krapcho, A. P., Synthesis 1982, 805. (c) Krapcho, A. P., Synthesis 1982, 893. Manna, S.; Falck, J. R.; Mioskowski, C., Synth. Commun. 1985, 15, 663. (a) Bonini, C.; Giuliano, C.; Righi, G.; Rossi, L., Synth. Commun. 1992, 22, 1863. (b) Shimizu, M.; Yoshida, A.; Fujisawa, T., Synlett 1992, 204. (c) Bajwa, J. S.; Anderson, R. C., Tetrahedron Lett. 1991, 32, 3021. Taylor, M. D.; Grant, L. R., J. Am. Chem. Soc. 1955, 77, 1507. Magnus, P.; Gallagher, T., J. Chem. Soc., Chem. Commun. 1984, 389. Johnson, F.; Paul, K. G.; Favara, D., J. Org. Chem. 1982, 47, 4254. Ohtani, K.; Mizutani, K.; Kasai, R.; Tanaka, O., Tetrahedron Lett. 1984, 25, 4537. (a) Kende, A. S.; Rizzi, J. P., J. Am. Chem. Soc. 1981, 103, 4247. (b) Harrison, I. T., J. Chem. Soc., Chem. Commun. 1969, 616. (a) Salaün, J.; Conia, J. M., J. Chem. Soc., Chem. Commun. 1971, 1579. (b) Aue, D. H.; Meshishnek, M. J.; Shellhamer, D. F., Tetrahedron Lett. 1973, 4799. Fujisawa, T.; Sato, T.; Takeuchi, M., Chem. Lett. 1982, 71. Masada, H.; Murotani, Y., Bull. Chem. Soc. Jpn. 1980, 53, 1181. (a) Ma, S.; Lu, X., Tetrahedron Lett. 1990, 31, 7653. (b) Ma, S.; Lu, X., J. Chem. Soc., Chem. Commun. 1990, 1643. Antonioletti, R.; Bonadies, F.; Monteagudo, E. S.; Scettri, A., Tetrahedron Lett. 1991, 32, 5373. Bell, T. W.; Hu, L.-Y., Tetrahedron Lett. 1988, 29, 4819. For the effect of LiI on organocopper reagents see: Lipshutz, B. H.; Kayser, F.; Siegmann, K., Tetrahedron Lett. 1993, 34, 6693. (a) Mori, Y.; Kuhara, M.; Takeuchi, A.; Suzuki, M., Tetrahedron Lett. 1988, 29, 5419. (b) Mori, Y.; Takeuchi, A.; Kageyama, H.; Suzuki, M., Tetrahedron Lett. 1988, 29, 5423. Jubert, C.; Knochel, P., J. Org. Chem. 1992, 57, 5425. Cabri, W.; Candiani, I.; DeBernardinis, S.; Francalanci, F.; Penco, S.; Santi, R., J. Org. Chem. 1991, 56, 5796. (a) Pyne, S. G., J. Org. Chem. 1986, 51, 81. (b) Pyne, S. G., Tetrahedron Lett. 1986, 27, 1691. (a) Soderquist, J. A.; Anderson, C. L., Tetrahedron Lett. 1988, 29, 2425. (b) Soderquist, J. A.; Anderson, C. L., Tetrahedron Lett. 1988, 29, 2777. (c) Buss, A. D.; Warren, S.; Leake, J. S.; Whitham, G. H., J. Chem. Soc., Perkin Trans. 1 1983, 2215. (d) Buss, A. D.; Warren, S., J. Chem. Soc., Perkin Trans. 1 1985, 2307. Townsend, J. M.; Spencer, T. A., Tetrahedron Lett. 1971, 137. Avoid Skin Contact with All Reagents 4 23. 24. 25. 26. 27. 28. 29. LITHIUM IODIDE Srilakshmi Krishnaveni, N.; Surendra, K.; Narender, M.; Nageswar, Y. V. D.; Rama Rao, K., Synthesis 2004, 4, 501. Nadir, U. K.; Joshi, S., Indian J. Chem., Sect. B 2003, 42B, 2875. Hancock, M. T.; Pinhas, A. R., Tetrahedron Lett. 2003, 44, 5457. Zewge, D.; King, A.; Weissman, S.; Tschaen, D., Tetrahedron Lett. 2004, 45, 3729. Falck, J. R.; Barma, D. K.; Baati, R.; Mioskowski, C., Angew. Chem., Int. Ed. 2001, 40, 1281. Myers, A. G.; Siu, M., Tetrahedron 2002, 58, 6397. Bonini, C.; Giuliano, C.; Righi, G.; Rossi, L., Tetrahedron Lett. 1992, 33, 7429. A list of General Abbreviations appears on the front Endpapers 30. Righi, G.; Bovicelli, P.; Sperandio, A., Tetrahedron 2000, 56, 1733. 31. Antonioletti, R.; Bovicelli, P.; Fazzolari, E.; Righi, G., Tetrahedron Lett. 2000, 41, 9315. 32. González-Gómez, J. C.; Uriarte, E., Synlett 2002, 12, 2095. 33. Bennasar, M.-L.; Jiménez, J.-M.; Sufi, B. A.; Bosch, J., Tetrahedron Lett. 1996, 37, 7653. 34. Bailey, W. F.; Jiang, X., Tetrahedron 2005, 61, 3183. 35. Moriuchi-Kawakami, T.; Matsuda, H.; Shibata, I.; Miyatake, M.; Suwa, T.; Baba, A., Bull. Chem. Soc. Jpn. 1999, 72, 465. 36. Kawatsura, M.; Uozumi, Y.; Hayashi, T., Chem. Commun. 1998, 217.