* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 6 PUFA - SENS Research Foundation
G protein–coupled receptor wikipedia , lookup
Magnesium transporter wikipedia , lookup
Citric acid cycle wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Electron transport chain wikipedia , lookup
Lipid signaling wikipedia , lookup
Signal transduction wikipedia , lookup
NADH:ubiquinone oxidoreductase (H+-translocating) wikipedia , lookup
Free-radical theory of aging wikipedia , lookup
Western blot wikipedia , lookup
Oxidative phosphorylation wikipedia , lookup
Mitochondrion wikipedia , lookup
AGEING HEART & VESSELS Melbourne, Australia August 3-5, 2004 www.ishr.edu.au / ishr Current Understanding, New Research and the Challenge of Reducing the Health Care Impact of Age-Related Cardiovascular Disease Risk Factors for Cardiovascular Disease • hypertension • LDL/HDL cholesterol • diabetes • family history of CAD, gender • excess alcohol, tobacco use • physical inactivity • obesity • stress • diet • advanced age Aging Involves Cardiac Remodeling With Functional Adaptation Independent of Disease • Cell enlargement • Cell rigidity • Slower electrical properties • More vulnerable to nutrient deprivation (ischemia) • More vulnerable to heart attack (arrhythmia) • Membrane protein and lipid function changed (receptors, enzymes and signalling intermediates) •More free radical injury, less protective antioxidants (SOD, catalase, glutathione, vit E, Coenzyme Q10...) •Less capable of hard work or recovery from stress •Cell loss (death) Consequences of Membrane Modification Qualitative changes to lipids, proteins, lipid-protein interactions - receptors, channels, enzymes, - intracellular signaling - ion homeostasis - energy metabolism - altered membrane function “efficiency” - augmented perturbation after stress & lost “reserve” Carrier, i.e., ADP Translocase Channels Diet Is a Key Factor Involved in the Reduced Incidence of Death From Age-associated Diseases From epidemiological studies of Mediterranean, Japanese, Eskimo & other populations Fish-rich (omega-3 fatty acids) versus Animal-rich (omega-6 fatty acids) Dietary Antioxidants Polyunsaturated fatty acids, PUFA • long carbon chain (C>12, up to 24) O 1 • degree of unsaturation (double bonds) C • 0= “saturated”, 1=“monounsaturated” O 2 or more = “polyunsaturated” 2 3 ..n.. CH 2 CH 2 (CH2)n H • PUFA: increased membrane fluidity, lower melting point • omega-3 vs omega-6 : position of methyl group, between 3 &4 vs 6 &7 also affects fluidity and conformation • precursors of lipid peroxides and eicosanoids • signaling role CH 3 Fish or -3 PUFA Intake Reduces Heart Disease Risk • • • • • • • • • • Dart Study MRFIT Indian Heart Study Lyon Diet Heart Study Lancet 1989; : 757-761 Proc Soc Exp Biol Med 1992; 200: 177-82 Br Med J 1992; 304: 1015-19 Lancet 1994; 343: 1454-9 Circulation 1999; 99: 779-85 Health Professionals Study N Eng J Med 1995; 332: 977-82 Primary Cardiac Arrest JAMA 1995; 274: 1363-1367 Honolulu Heart Program Circulation 1996; 94: 952-56 Western Electric Study N Eng J Med 1997; 336: 1046-53 US Physicians Health Study JAMA 1998; 279: 23-28 GISSI Prevenzione Trial Circulation 2002; 105: 1897-1903 GISSI PREVENZIONE TRIAL n=5666, 850mg omega-3 PUFA, 3.5 years % of Patients 100 -15% -20% 80 -45% 60 40 20 NO OMEGA-3 0 OMEGA-3 CV Events Heart Attack Marchioli R et al. , Lancet 1999 354: 457-455 Total Mortality Circulation 2002; 105: 1897-1903 Omega-3 PUFA Attenuates the Rise in Arterial Blood Pressure due to Age or Omega-6 PUFA Systolic Pressure (mmHg) 180 * 160 * 140 * 120 80 6 mo 24 mo 60 n=8 SD rats 100 40 20 0 Omega-6 PUFA PEPE, et al, 1999 Omega-3 PUFA Mitochondrial Membrane PUFA -6 PUFA Age (mo) -3 PUFA 6 24 6 24 16:0 10.0±0.29 14.0±0.69* 9.5±0.35 11.0±0.64 18:0 23.0±1.15 26.0±1.73 10.1±0.72A 12.0±0.81A 16:1 0.22±0.05 0.3±0.12 0.7±0.10 0.8±0.05 18:1 9.0±0.81 9.0±0.43 9.5±0.40 10.0±0.58 17.0±1.21 11.0±1.44* 12.0±0.58A 24.0±1.44 32.0±1.79* 9.2±0.64A 12.0±0.58A 1.1±0.18 1.6±0.15 0.1±0.03 0.1±0.01 0.2±0.03 0.2±0.03 1.8±0.06 2.0±0.17 0.1±0.03 0.1±0.05 6.0±0.17A 5.2±0.29A 2.0±0.12 0.8±0.12* 2.2±0.05 5.0±0.58A 9.0±0.64 2.0±0.43* 27.0±1.01A 30.0±1.15A 18:2 ( -6) LA 20:4 ( -6) AA 22:4 ( -6) 18:3 ( -3) 20:5 ( -3) EPA 22:5 ( -3) 22:6 ( -3) DHA -6 -3 PEPE, et al, 1999 42.1±0.85 11.3±0.69 44.6±1.58 3.1±0.44* 9.0±0.69 21.3±0.50A 1.1±0.33A 37.1±1.1A 42.2±1.35A Values (mol/100mol) are presented as mean ±SEM, n=5. *= P<0.05 vs 6 mo; A = P<0.05 vs n-6 PUFA -3 : -6 PUFA -3 : -6 PUFA A A 2 1.5 6mo 24mo 1 0.5 * 0 Omega-6 PUFA PEPE, et al, 1999 Omega-3 PUFA *=p<0.05 vs 6mo; A p<0.05 vs-6 PUFA; n=5 Mitochondrial Membrane Phospholipids -6 PUFA Age (mo) 6 DPG 12±1.0 - 3 PUFA 24 8.5±0.9 * * 6 24 15±0.9 14±0.8 A 42±1.8 42±1.6 A PC 46±1.5 53±1.7 PE 35±1.8 33±1.4 38±1.9 40±1.8 PS 2.4±0.7 2.5±0.5 2.2±0.2 2.4±0.3 PI 1.3±0.2 1.4±0.3 1.1±0.4 1.2±0.6 *=p<0.05 vs 6mo; A = p<0.05 vs -6 PUFA PEPE, et al mean +/- SD; n=5; % of total mitochondrial phospholipids Cardiolipin (DPG) 20 % Total Phospholipids 6mo 24mo A 15 10 * 5 0 Omega-6 PUFA PEPE, et al Omega-3 PUFA *=p<0.05 vs 6mo; A=p<0.05 vs-6 PUFA; n=5 CARDIOLIPIN Phosphatidylglycerol Unique ability to interact with proteins - physico-chemical - sensitive to oxidation Low or absent: activity of respiratory chain complexes mitochondrial membrane potential Inner membrane ADP-ATP carrier phosphate carrier pyruvate carrier carnitine carrier NADH dehydrogenase succinate dehydrogenase complex III cytochrome C oxidase ATP synthase Intermembrane space creatine kinase cytochrome C Cardiolipin Q ANT O• O• Krebs Cycle (PDH, KGDH) The Inner Mitochondrial Membrane The Post-Ischemic Decline in Contractile Recovery is Attenuated by Omega-3 PUFA % Control PSP (Normoxia) 100 80 I/R I/R+RR A A A * 60 40 A * 20 0 6 24 Omega-6 PUFA PEPE, et al, 1999 6 24 Omega-3 PUFA *=p<0.05 vs 6mo; A p<0.05 vs -6 PUFA; n=6 Increased Omega-3 PUFA Incorporation into Cardiac Membranes Augments Cardiac Efficiency AND prevents Fatal VF Incidence of Ventricular Arrhythmia 100 7.5 5.0 2.5 % Ventricular Fibrillation (mL/min/g dry wt) normalised per unit work MVO 2 Myocardial Oxygen Consumption 0.0 0 omega-6 PUFA Pepe & McLennan, 2002 50 omega-3 PUFA Mitochondrial Calcium 2.5 C I/R I/R+RR Total [Ca 2+] nmol/mg protein 2 1.5 1 0.5 0 6 24 Omega-6 PUFA PEPE, et al, 1999 6 24 Omega-3 PUFA Pyruvate Dehydrogenase Activation 100 PDHA (% Total PDH) 90 C I/R I/R+RR 80 70 60 50 40 30 20 10 0 6 24 Omega-6 PUFA PEPE, et al, 1999 6 24 Omega-3 PUFA ADP:O Efficiency Ratio A A 2 ADP:0 1.5 1 * 6 mo 24 mo p<0.01 vs 6mo *A p<0.01 vs -6 0.5 0 Omega-6 PUFA PEPE, et al, 1999 Omega-3 PUFA 37C by oxidation of pyruvate (5mM)+ malate (0.5mM) during complete conversion of 0.5mM ADP to ATP Summary omega -6/ omega -3 ratio is increased with age Cardiolipin is significantly decreased with age whereas PC is increased with age. For the same level of contractile work, PDHA, and mito [Ca]2+ values are higher after omega -6 PUFA-rich diet and is augmented by age. omega-3 PUFA -rich diet attenuates ALL of these effects. Conclusions Manipulating cardiac membrane phospholipids and the omega-3/ omega -6 PUFA ratio alters the flux of Ca2+ across the mitochondrial membrane and this may markedly impact intramitochondrial Ca2+-dependent processes. Conclusions Evidence for thermodynamic inefficiency in omega -6 PUFA or aging compared to omega -3 PUFA 2+ Potential for Ca overload after ischemia is greater and thus more rapid onset of MPT opening and cell de-energization in omega -6 PUFA or with aging vs omega -3 PUFA . Age-related reduction of cardiolipin augments this effect. 4-hydroxy-2-nonenal, 4-HNE Specific aldehydic product of oxygen free-radical induced lipid peroxidation of Omega-6 PUFAs 4-HNE -a second “toxic” messenger cytotoxic, mutagenic, genotoxic, chemotactic PUFA ROS alkanes conjugated dienes alkoxyl radicals aldehydes (MDA 4HNE) lipid hydroperoxides peroxyl radicals isoprostanes hydroxylated FA Consequences of 4-HNE formation Michael-addition reactions with proteins at: sulfhydryl gp of cysteine, imidazole N of histidine, -amine of lysine Proarrhythmic changes to membrane excitability -Activates PLC -Inhibits Na+-K+ ATPase -Inactivates glucose-6-phosphatase -Induces heat shock protein synthesis -Inactivates glutathione peroxidase (inhibits glutathione recycling) -Apolipoprotein B adducts in atherosclerosis Omega-3 PUFA Reduces Post-ischemic Coronary Release of HNE Omega-6 PUFA Omega-3 PUFA Reperfusion Time (min) PEPE, et al After 30 min global ischemia Omega-3 PUFA Reduces Post-Ischemic Mitochondrial 4-HNE Omega-6 PUFA PEPE, et al Omega-3 PUFA Conclusions 4-HNE a marker of free radical-induced peroxidation of omega-6 PUFA is increased in the post-ischemic myocardium of senescent rats vs young, due to the agerelated differences in total omega-6 PUFA. Conclusions Replacing membrane omega-6 PUFA with omega-3 PUFA reduces the amount of 4-HNE formed during ischemia and reperfusion, abolishing age-associated differences in 4HNE formation. This may impact pathogenesis and the consequences of cardiac ischemia. What Governs Mitochondrial Survival? Mitochondrial Membrane Permeability Transition and the MPT pore Ca-dependent opening of a high-conductance channel in the inner mitochondrial membrane -regulates membrane permeability may cause loss of membrane potential & ATP Mitochondrial Membrane Permeability Transition and the MPT pore Both regulated by High CaM; Pi, long chain acyl CoA, spermine, ADP, ROS, protein sulfhydryl and thiol group modification (after peroxidation) AND CARDIOLIPIN! Collapse of the membrane potential leads to mitochondrial swelling, rapid MPT and pore opening, Loss of ATP production results in cell run down and death. MPT pore opening releases mitochondrial contents -incl cytochrome c and can trigger caspase activation and the apoptotic cascade. Mitochondrial Membrane Permeability Transition Confocal measurement of in situ mitochondrial membrane potential and ROS using TMRE and DCF in real time TMRM fluorescence (mitochondrial membrane potential) Isolated Mitochondria Modulators of Mean Time to Mito Membrane Permeability Transition SCAVENGING ROS INHIBITS THE MPT MITOCHONDRIA OF SENESCENT CARDIOCYTES ARE MORE SUSCEPTIBLE TO ROS; RESCUE BY CoQ10 Total Coenzyme Q10 Concentration in Cardiac Myocytes from 6 and 24 mo S-D rats Reversal of membrane aging requires Omega-3 : Omega-6 PUFA + Intrinsic Antioxidant Systems for improved mitochondrial response to stress that matches the response of young hearts