* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Physics 535 lecture notes: - 3 Sep 11th, 2007 Don`t forget homework
Symmetry in quantum mechanics wikipedia , lookup
Old quantum theory wikipedia , lookup
Quantum field theory wikipedia , lookup
Photon polarization wikipedia , lookup
Quantum tunnelling wikipedia , lookup
Probability amplitude wikipedia , lookup
Theory of everything wikipedia , lookup
Higgs mechanism wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Atomic nucleus wikipedia , lookup
Minimal Supersymmetric Standard Model wikipedia , lookup
Monte Carlo methods for electron transport wikipedia , lookup
Nuclear structure wikipedia , lookup
Canonical quantization wikipedia , lookup
Scalar field theory wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Double-slit experiment wikipedia , lookup
Identical particles wikipedia , lookup
Weakly-interacting massive particles wikipedia , lookup
Electric charge wikipedia , lookup
Renormalization group wikipedia , lookup
Technicolor (physics) wikipedia , lookup
ALICE experiment wikipedia , lookup
Introduction to quantum mechanics wikipedia , lookup
ATLAS experiment wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
History of quantum field theory wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Future Circular Collider wikipedia , lookup
Renormalization wikipedia , lookup
Grand Unified Theory wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Mathematical formulation of the Standard Model wikipedia , lookup
Electron scattering wikipedia , lookup
Quantum chromodynamics wikipedia , lookup
Strangeness production wikipedia , lookup
Physics 535 lecture notes: - 3 Sep 11th, 2007 Don’t forget homework due Thursday Homework: 1.1, 1.2, 1.3, 1.16(compare to particle data book online) Office hours: Tuesday’s 3PM 1) Forces Electromagnetic Force Quantum Field Theory: Quantum Electrodynamics Field Quanta, force carrier: Photon, m=0 Charge: Electric charge Couples to: All things with electric charge Diagrams: three line vertex with electron (positron), electron (positron) and photon Conserves: Energy and momentum, electric charge, baryone number, lepton number, quark generations(first, second and third generation), P Parity, C charge congregation, T time, CP, CPT Potential: V = -CqQ/r = -/r Range: infinite Strength: = e2/4hbar = 1/137 Cross section: 10-33 m2 Lifetime: 10-20 sec Charge conjugation: reverse all the charges. This interaction should occur with the same rate Parity: reverse all the special coordinates Time: reverse time to make the backwards reaction Examples: Basic vertex, electron absorbing a photon: Photon electron electron vertex Probability . Not a real process must actually happen in the field of a nucleus where it can absorb an additional photon to conserve energy. Each vertex contributes a factor of to the probability of the interaction. Electron positron annihilation and creation: Probability 2 Electron (positron) Electron (positron) scattering: Probability 2 Note for an electron and a positron the above two have the same result! To get the total probability we must sum them (Rutherford scattering relation) Brehmstrahlung (must be near nucleus): Probability 3 Pair production (must be near nucleus): Probability 3 These examples drive much of the function of particle detectors Could include higher order diagrams in the sums but they contribute less due to the extra factors of from each vertex. One more interesting effect: The virtual photons radiating from a charged particle can split into electrons and positrons and then annihilate back to a photon. These charges will orient with the positron toward the original charge (if negative) and the electron away from the charge. This effect, which is like a dielectric medium, tends to screen the original charge. As a result the effective coupling constant changes, becoming larger depending on how close you get to the original charge and smaller further away. We would say the coupling constant runs. Strong Force Quantum Field Theory: Quantum Chromo Dynamics Field Quanta, force carrier: 8 gluons , m=0 Charge: red green and blue color charge, 8 gluons carry different combinations of color anti-color Couples to: quarks Diagrams: three line vertex with qaurk (antiquark), quark (antiquark) and gluon Conserves: Energy and momentum, electric charge, baryon number, lepton number, quark generation, color charge, C, P, T, CP, CPT Potential: V =- s/r + kr Range 10-15 m – by confinement of color neutral combinations Strength: s = 1.3 Cross section: 10-30 m2 Lifetime: 10-23 sec Examples Strong quark annihilation… All gluon interactions Note quark annihilation would also have a contribution from the electromagnetic force but it is so small compared to the strong contribution that it can usually be ignored. These interactions explain the behavior of hadrons in dense matter particle detectors. Interesting effects. Virtual gluons can split into quarks or gluons and annihilate back to gluons. This effect tends to anti-screen. A bare quark would radiate a strong color field attracting other quarks. Until you have 3 (red green blue) or 2 (color anti-color) you don’t have a stable color neutral system. In fact as small distances inside hadrons the strength of the strong force is very small. Small enough that perturbation theory works and in fact quark inside a nucleon are essentially free – asymptotic freedom. As you get very close to the quark(takes very small wavelengths or high energy) the coupling constant get very small. Near EM level. If momentum is transferred to one of the quarks in this system the kr part of the potential will pull back the quark back. This is due to the strong color field. If the quark has enough momentum the gluon string between the quarks will build up enough energy to form two new quarks. The new configuration of two new quark and shorter gluon strings has a lower potential. Note: nucleons are held together by the residual color charge just as molecules are held together by the residual electric charge outside of the otherwise electrically neutral atoms. Weak Force Quantum Field Theory: Quantum Flavor dynamics Field Quanta, force carrier: W+ and W- m=81GeV and Z m=91GeV Charge: Flavor charge. Lepton number, quark flavor Couples to: All things with flavor charge (all the quarks and leptons) Diagrams: W, three line vertex with electron neutrino and W or quark quark and W. Three line vertex with lepton anti-lepton or quark anti-quark and Z. Conserves: Energy and momentum, electric charge, baryon number, lepton number, CPT Violates: quark generation (W only, no Flavor changing neutral current involving the neutral Z), C, P, CP(at a very small level) Potential: V = -W/r = -/M(W,Z)2r Range: 10-18 Strength: W = 10-5 Cross section: 10-44 m2 Lifetime: 10-8 sec or longer Examples: Same types of diagrams as for the other two forces but now the W(not the Z) changes particle types. Note that the weak boson couple to each other also but the interactions are very low probability so you don’t see them very often. They don’t lead to interesting new effects like in QCD. Interesting effect. Weak decays involving the W can change particle generations. This is the only way particles from second and third generations can decay to the lowest energy generation. This is why they all have long lifetimes. However, you can produce particles from the second and third generations by strong or electromagnetic pair production of particle and antiparticles pairs. Flavor changing between the quark generations can be explained by the idea that the three down type particles d, s, and b and the three up type particles u, c, and t are eigenstates of the strong force, but that the eigenstates of the weak force are slightly different for the down type particles d’, s’ and b’ which can be expressed as a linear combination of the d, s and b strong eigenstates. These coefficients can be summed up in the 3x3 CKM rotation matrix. The W particle could convert b’ to t’ type eigenstates(particles) b(-1/3) -> W- t(2/3) – ignoring the mass of the t quark. However, the b quark was in a meson or baryon coupled to other particles by gluons so it was definitely in a strong eigenstate. Therefore, it was in some superposition of d’, s’, and b’. When it interacts with the W+ it might interact as any of the three with a probability governed by the components of the linier combination is was in(CKM matrix) If it interacts as a d’ what you will see is -> W- u or if a s’ what you will see is -> W- c. Therefore there is a finite probability of decaying to a c or a u quark. T is forbidden by energy conservation. According to the CKM matrix constants c is much more likely. Flavor changing neutral current b->Zd are not allowed.(Part of my research is investigating such interactions) 2)Particles Leptons: electron, electron neutrino Charges: q=1,0, weak lepton number = 1 Interacts electromagnetically (electron only) and weakly Quarks, u and d quarks Charges: q=2/3,-1/3, weak quark flavor u and d, color red, green and blue Interacts electromagnetically, strongly and weakly 2 and third generations can only decay via weak quark flavor changing decays involving the W boson. Generations: muon and tau leptons and c,s,t and b quarks 3) Unification A milestone toward the standard model was the Z particle. A third quanta of the weak force. This particle was neutral and had similar interactions to the electromagnetic force such as e+e- -> Z -> e+e-. However it took a long time to find this particle since no one expected it! Later it was seen that as you observed this type of interactions at higher and higher energies the constants that governed the electromagnetic and weak interactions changed and eventually unified at a high value. Essentially at energies well above the Z mass(91 times the proton mass) the mass of the carrier becomes irrelevant to the interaction. This was the first strong hint that there had to be some unifying theory behind all the diverse quantum field theories that had existed. Another way to put this is the both interactions have the same coupling constant and it’s just the extra factor of the mass of the gauge boson in the denominator that makes that gives the difference between the strengths of the interaction. Doing that calculation using the measured strength of the weak and electromagnetic interactions in similar configurations involving photons and Zs gives mZ=91GeV. Exactly what was later measured. Also a milestone for theory since it was predicted before it was found! In addition the strong force is seen to weaken at higher energies so it may also unify. One mystery is still present. Why do the W and Z have large mass. To explain this you need to introduce an additional particle that by coupling with particles can give them mass. This is the Higgs particle. The Higgs also gives mass to all the other massive particles. Still unfound. The Higgs particle is the subject of my research at CDF(Collider Detector at Fermilab) where I lead the Higgs Discovery effort. These quantum field theories including the unified electroweak theory with the Higgs particle to explain the mass of the W and Z make up the standard model (SM). 4) New physics The above set of quantum field theories account for every process we have observed and measured in collider experiments. So why would be we interested in new theories of particle physics. The answer is that we have observed a number of phenomena that can’t be explained by the SM. Also the Higgs piece of the SM is undiscovered 1) Neutrinos have mass 2) Dark matter. Observations of galactic rotation curves, the expansion of the Universe and gravitational lensing indicate that there is some sort of particle out there that doesn’t interact via any of the forces except gravity. This matter would not radiate so we call it dark matter. 3) Dark energy. The universal expansion rate is bigger than expected given the amount of matter and dark matter. Something is pushing it apart. We call this dark energy 4) Why is everything in the Universe made of matter? CP violating processes can result in antimatter decaying slightly more often than matter, but nothing like the observed rate.(Another part of my research is investigating CP violating and matter antimatter conversion processes) There are a number of other problems as well. 1) We would like the forces to unify at high energy. If you try to calculate the strengths of the interaction at very high energies, like those at the big bang, you find that they get very close to each other but don’t match up. 2) Some diagrams in the SM have divergent contributions at high energy. Probabilities greater than 1 or 100%. 3) Why three generations, why all the masses we observe, why the coupling constants we measure and why so complex? However, even though we know the SM has to be wrong it’s very important to understand it in detail so we can understand how our particle detectors work and when we have seen something new that we need to pursue it to start understanding the new physics. Next time: experimental particle physics