Download Section10.7

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Law of large numbers wikipedia , lookup

Infinitesimal wikipedia , lookup

Infinity wikipedia , lookup

Georg Cantor's first set theory article wikipedia , lookup

Positional notation wikipedia , lookup

Non-standard analysis wikipedia , lookup

Large numbers wikipedia , lookup

Hyperreal number wikipedia , lookup

Arithmetic wikipedia , lookup

Location arithmetic wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Real number wikipedia , lookup

Number wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Addition wikipedia , lookup

Elementary mathematics wikipedia , lookup

Transcript
10.7 Complex Numbers
Up to this point, we have not been able to take the square root of a negative
number. If the radicand is negative, we have to stop and say the expression is
โ€œnot a real numberโ€ or it is โ€œundefined.โ€ This problem with the set of real
numbers can be overcome by coming up with (inventing) a new number that
does allow us to take the square root of negative numbers.
We define the new number, called the imaginary unit, ๐’Š, to be the principal
square root of โˆ’1.
Definition of ๐’Š
Thus, ๐‘– 2 = (โˆšโˆ’1)
๐‘– 2 = โˆ’1
๐‘– = โˆšโˆ’1
2
With this definition and the product rule for square roots, we can find the
square root of any negative number in terms of ๐‘–.
โˆšโˆ’5 = โˆšโˆ’1 โˆ™ 5 = โˆšโˆ’1 โˆ™ โˆš5 = ๐‘–โˆš5
โˆšโˆ’36 = โˆšโˆ’1 โˆ™ 36 = โˆšโˆ’1 โˆ™ โˆš36 = ๐‘– โˆš36 = 6๐‘–
Square Root of Any Negative Number
โˆšโˆ’๐‘ = โˆšโˆ’1 โˆ™ ๐‘ = ๐‘–โˆš๐‘ where ๐‘ is any positive real number
Examples:
โˆšโˆ’9 = ๐‘–โˆš9 = 3๐‘–
โˆšโˆ’
9
16
= ๐‘–โˆš
9
16
3
= ๐‘–
4
โˆšโˆ’6 = ๐‘– โˆš6
โˆšโˆ’8 = ๐‘– โˆš8 = 2๐‘–โˆš2
โˆšโˆ’80 = ๐‘– โˆš80 = ๐‘–โˆš16 โˆ™ 5 = 4๐‘–โˆš5
Complex Numbers
The numbers in our examples are not real numbers. They are a new type of
number called imaginary numbers or just imaginaries. We now form a new
set of numbers, the set of complex numbers, that consists of two mutually
exclusive sets: the set of real numbers and the set of imaginary numbers.
See the diagram at the top of page 720.
Standard Form of a Complex Number
A complex number is written in the standard form of
๐’‚ + ๐’ƒ๐’Š where ๐‘Ž and ๐‘ are real numbers
๐‘Ž is the ๐ซ๐ž๐š๐ฅ ๐ฉ๐š๐ซ๐ญ and ๐‘ is the ๐ข๐ฆ๐š๐ ๐ข๐ง๐š๐ซ๐ฒ ๐ฉ๐š๐ซ๐ญ of the complex number
๏‚ท if ๐‘ = 0 then ๐‘Ž + 0๐‘– = ๐‘Ž is a ๐ซ๐ž๐š๐ฅ ๐ง๐ฎ๐ฆ๐›๐ž๐ซ
2
2
6 + 0๐‘– = 6
+ 0๐‘– =
โˆš5 + 0๐‘– = โˆš5
3
3
๏‚ท if ๐‘Ž โ‰  0 and ๐‘ โ‰  0 then ๐‘Ž + ๐‘๐‘– is an ๐ข๐ฆ๐š๐ ๐ข๐ง๐š๐ซ๐ฒ ๐ง๐ฎ๐ฆ๐›๐ž๐ซ
1
3
3 + 2๐‘–
4 โˆ’ 7๐‘–
+ ๐‘–
2
4
๏‚ท if ๐‘Ž = 0 and ๐‘ โ‰  0 then 0 + ๐‘๐‘– = ๐‘๐‘– is an imaginary number
called a ๐ฉ๐ฎ๐ซ๐ž ๐ข๐ฆ๐š๐ ๐ข๐ง๐š๐ซ๐ฒ
0 + 2๐‘– = 2๐‘–
0 โˆ’ 8๐‘– = โˆ’8๐‘–
0 + 0.7๐‘– = 0.7๐‘–
--------------------------------------------------------------------------------------------Operations with Complex Numbers
Adding and Subtracting
We add and subtract complex numbers by combining the real parts and
combining the imaginary parts.
(2 + 3๐‘–) + (โˆ’4 + 5๐‘–) = (2 + (โˆ’4)) + (3๐‘– + 5๐‘–) = โˆ’2 + 8๐‘–
--------------------------------------------------------------------------------------------(5 โˆ’ 11๐‘–) + (7 + 4๐‘–) = (5 + 7) + (โˆ’11๐‘– + 4๐‘–) = 12 โˆ’ 7๐‘–
--------------------------------------------------------------------------------------------(โˆ’5 + 7๐‘–)โ€” (11 โˆ’ 6๐‘–) = โˆ’5 + 7๐‘– โˆ’ 11 + 6๐‘– =
(โˆ’5 โˆ’ 11) + (7๐‘– + 6๐‘–) = โˆ’16 + 13๐‘–
--------------------------------------------------------------------------------------------6 โˆ’ (2 + ๐‘–) = 6 โˆ’ 2 โˆ’ ๐‘– = (6 โˆ’ 2) โˆ’ ๐‘– = 4 โˆ’ ๐‘–
--------------------------------------------------------------------------------------------โˆ’2๐‘– โˆ’ (3 โˆ’ 9๐‘–) = โˆ’2๐‘– โˆ’ 3 + 9๐‘– = โˆ’3 + (โˆ’2๐‘– + 9๐‘–) = โˆ’3 + 7๐‘–
Multiplying
When multiplying complex numbers, you may get a factor of ๐‘– 2 .
When this occurs, remember to replace ๐‘– 2 with โˆ’ 1 and continue
simplifying.
2(3 โˆ’ 4๐‘–) = 2 โˆ™ 3 โˆ’ 2 โˆ™ 4๐‘– = 6 โˆ’ 8๐‘–
--------------------------------------------------------------------------------------------3๐‘–(6 + ๐‘–) = 3๐‘– โˆ™ 6 + 3๐‘– โˆ™ ๐‘– = 18๐‘– + 3๐‘– 2 = 18๐‘– + 3(โˆ’1) =
18๐‘– โˆ’ 3 = โˆ’3 + 18๐‘–
--------------------------------------------------------------------------------------------(โˆ’5 + 2๐‘–)(7 โˆ’ 6๐‘–) = โˆ’5 โˆ™ 7 + 5 โˆ™ 6๐‘– + 2๐‘– โˆ™ 7 โˆ’ 2๐‘– โˆ™ 6๐‘– =
โˆ’35 + 30๐‘– + 14๐‘– โˆ’ 12๐‘– 2 = โˆ’35 + 44๐‘– โˆ’ 12(โˆ’1) =
โˆ’35 + 44๐‘– + 12 = โˆ’23 + 44๐‘–
Dividing
Divisor is a Monomial and Real
Use the distributive property and simplify the division in each term.
3+9๐‘–
3
3
=3+
9๐‘–
3
= 1 + 3๐‘–
Divisor is a Monomial and Imaginary
Multiply the numerator and denominator by i then use the distributive
property and simplify the division in each term.
โˆ’2+4๐‘–
5๐‘–
=
(โˆ’2+4๐‘–)๐‘–
5๐‘–โˆ™๐‘–
=
โˆ’2๐‘–+4๐‘– 2
5๐‘– 2
=
โˆ’4โˆ’2๐‘–
โˆ’5
=
โˆ’4
โˆ’5
+
โˆ’2
โˆ’5
4
2
5
5
๐‘–= + ๐‘–
Divisor is a Binomial of the form a + bi
Multiply the numerator and denominator by the complex conjugate of the
denominator.
๐’‚ + ๐’ƒ๐’Š and ๐’‚ โˆ’ ๐’ƒ๐’Š are complex conjugates.
When complex conjugates are multiplied together, the result is a real number.
(๐‘Ž + ๐‘๐‘–)(๐‘Ž โˆ’ ๐‘๐‘–) = ๐‘Ž2 โˆ’ (๐‘๐‘–)2 = ๐‘Ž2 โˆ’ ๐‘ 2 ๐‘– 2 = ๐‘Ž2 โˆ’ ๐‘ 2 (โˆ’1) = ๐‘Ž2 + ๐‘ 2
2โˆ’3๐‘–
4+๐‘–
=
(2โˆ’3๐‘–)(4โˆ’๐‘–)
(4+๐‘–)(4โˆ’๐‘–)
=
8โˆ’2๐‘–โˆ’12๐‘–+3๐‘– 2
4 2 +12
=
5โˆ’14๐‘–
17
=
5
17
โˆ’
14
17
๐‘–
--------------------------------------------------------------------------------------------Powers of i
The powers of i are cyclical. They repeat in a cycle of 4.
๐‘–1 = ๐‘–
๐‘– 2 = โˆ’1
๐‘– 3 = ๐‘– 2 โˆ™ ๐‘– = โˆ’1 โˆ™ ๐‘– = โˆ’๐‘–
๐‘– 4 = ๐‘– 2 โˆ™ ๐‘– 2 = (โˆ’1)(โˆ’1) = 1
๐‘– 5 = ๐‘– 4 โˆ™ ๐‘– = 1๐‘– = ๐‘–
๐‘– 7 = ๐‘– 4 โˆ™ ๐‘– 3 = 1 โˆ™ โˆ’๐‘– = โˆ’๐‘–
๐‘– 6 = ๐‘– 4 โˆ™ ๐‘– 2 = 1 โˆ™ โˆ’1 = โˆ’1
๐‘–8 = ๐‘–4 โˆ™ ๐‘–4 = 1 โˆ™ 1 = 1
To simplify powers of i, divide the exponent by 4.
๏‚ท If the remainder is 1, the value of the expression is ๐‘–.
๏‚ท If the remainder is 2, the value of the expression is โˆ’1.
๏‚ท If the remainder is 3, the value of the expression is โˆ’๐‘–.
๏‚ท If the remainder is 0, the value of the expression is 1.
๐‘– 23
23 ÷ 4 = 5 remainder 3
๐‘– 23 = โˆ’๐‘–
๐‘– 81
81 ÷ 4 = 20 remainder 1
๐‘– 81 = ๐‘–
NOTE: On your calculator,
1โ„
a remainder of 1 will show as the decimal .25
4
2โ„ = 1โ„
a remainder of 2 will show as the decimal .5
4
2
3
a remainder of 3 will show as the decimal .75
โ„4
a remainder of 0 will show a whole number answer