* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download EE 5342 Lecture
Coherent states wikipedia , lookup
Path integral formulation wikipedia , lookup
Probability amplitude wikipedia , lookup
Atomic orbital wikipedia , lookup
Quantum state wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Tight binding wikipedia , lookup
Dirac equation wikipedia , lookup
EPR paradox wikipedia , lookup
Elementary particle wikipedia , lookup
History of quantum field theory wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Copenhagen interpretation wikipedia , lookup
Hidden variable theory wikipedia , lookup
Schrödinger equation wikipedia , lookup
Canonical quantization wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Renormalization wikipedia , lookup
Renormalization group wikipedia , lookup
Wheeler's delayed choice experiment wikipedia , lookup
Wave function wikipedia , lookup
Atomic theory wikipedia , lookup
Double-slit experiment wikipedia , lookup
Electron scattering wikipedia , lookup
Hydrogen atom wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Particle in a box wikipedia , lookup
Matter wave wikipedia , lookup
Wave–particle duality wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Semiconductor Device Modeling and Characterization EE5342, Lecture 1-Spring 2010 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/ Web Pages * Bring the following to the first class • R. L. Carter’s web page – www.uta.edu/ronc/ • EE 5342 web page and syllabus – http://www.uta.edu/ronc/5342/syllabus.htm • University and College Ethics Policies www.uta.edu/studentaffairs/conduct/ www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf L1 January 20 2 First Assignment • e-mail to [email protected] – In the body of the message include subscribe EE5342 • This will subscribe you to the EE5342 list. Will receive all EE5342 messages • If you have any questions, send to [email protected], with EE5342 in subject line. L1 January 20 3 A Quick Review of Physics • Review of – Semiconductor Quantum Physics – Semiconductor carrier statistics – Semiconductor carrier dynamics L1 January 20 4 Bohr model H atom • Electron (-q) rev. around proton (+q) • Coulomb force, F=q2/4peor2, q=1.6E-19 Coul, eo=8.854E-14 Fd/cm • Quantization L = mvr = nh/2p • En= -(mq4)/[8eo2h2n2] ~ -13.6 eV/n2 • rn= [n2eoh]/[pmq2] ~ 0.05 nm = 1/2 Ao for n=1, ground state L1 January 20 5 Quantum Concepts • • • • Bohr Atom Light Quanta (particle-like waves) Wave-like properties of particles Wave-Particle Duality L1 January 20 6 Energy Quanta for Light 1 2 Tmax mv h f fo qVstop 2 • Photoelectric Effect: • Tmax is the energy of the electron emitted from a material surface when light of frequency f is incident. • fo, frequency for zero KE, mat’l spec. • h is Planck’s (a universal) constant h = 6.625E-34 J-sec L1 January 20 7 Photon: A particle -like wave • E = hf, the quantum of energy for light. (PE effect & black body rad.) • f = c/l, c = 3E8m/sec, l = wavelength • From Poynting’s theorem (em waves), momentum density = energy density/c • Postulate a Photon “momentum” p = h/l = hk, h = h/2p wavenumber, k = 2p /l L1 January 20 8 Wave-particle Duality • Compton showed Dp = hkinitial - hkfinal, so an photon (wave) is particle-like • DeBroglie hypothesized a particle could be wave-like, l = h/p • Davisson and Germer demonstrated wave-like interference phenomena for electrons to complete the duality model L1 January 20 9 Newtonian Mechanics • Kinetic energy, KE = mv2/2 = p2/2m Conservation of Energy Theorem • Momentum, p = mv Conservation of Momentum Thm • Newton’s second Law F = ma = m dv/dt = m d2x/dt2 L1 January 20 10 Quantum Mechanics • Schrodinger’s wave equation developed to maintain consistence with wave-particle duality and other “quantum” effects • Position, mass, etc. of a particle replaced by a “wave function”, Y(x,t) • Prob. density = |Y(x,t)• Y*(x,t)| L1 January 20 11 Schrodinger Equation • Separation of variables gives Y(x,t) = y(x)• f(t) • The time-independent part of the Schrodinger equation for a single particle with KE = E and PE = V. 2 2 y x 8 p m 2 E V ( x ) y x 0 2 x h L1 January 20 12 Solutions for the Schrodinger Equation • Solutions of the form of y(x) = A exp(jKx) + B exp (-jKx) K = [8p2m(E-V)/h2]1/2 • Subj. to boundary conds. and norm. y(x) is finite, single-valued, conts. dy(x)/dx is finite, s-v, and conts. * y x y x dx 1 L1 January 20 13 Infinite Potential Well • V = 0, 0 < x < a • V --> inf. for x < 0 and x > a • Assume E is finite, so y(x) = 0 outside of well 2 np x y x sin , n = 1,2,3,... a a 2 2 2 2 h n h k h hk En , p l 2p 8ma 2 4p 2 L1 January 20 14 Step Potential • • • • V = 0, x < 0 (region 1) V = Vo, x > 0 (region 2) Region 1 has free particle solutions Region 2 has free particle soln. for E > Vo , and evanescent solutions for E < Vo • A reflection coefficient can be def. L1 January 20 15 Finite Potential Barrier • • • • Region 1: x < 0, V = 0 Region 1: 0 < x < a, V = Vo Region 3: x > a, V = 0 Regions 1 and 3 are free particle solutions • Region 2 is evanescent for E < Vo • Reflection and Transmission coeffs. For all E L1 January 20 16 Kronig-Penney Model A simple one-dimensional model of a crystalline solid • V = 0, 0 < x < a, the ionic region • V = Vo, a < x < (a + b) = L, between ions • V(x+nL) = V(x), n = 0, +1, +2, +3, …, representing the symmetry of the assemblage of ions and requiring that y(x+L) = y(x) exp(jkL), Bloch’s Thm L1 January 20 17 K-P Potential Function* L1 January 20 18 K-P Static Wavefunctions • Inside the ions, 0 < x < a y(x) = A exp(jbx) + B exp (-jbx) b = [8p2mE/h]1/2 • Between ions region, a < x < (a + b) = L y(x) = C exp(ax) + D exp (-ax) a = [8p2m(Vo-E)/h2]1/2 L1 January 20 19 K-P Impulse Solution • Limiting case of Vo-> inf. and b -> 0, while a2b = 2P/a is finite • In this way a2b2 = 2Pb/a < 1, giving sinh(ab) ~ ab and cosh(ab) ~ 1 • The solution is expressed by P sin(ba)/(ba) + cos(ba) = cos(ka) • Allowed values of LHS bounded by +1 • k = free electron wave # = 2p/l L1 January 20 20 K-P Solutions* x x P sin(ba)/(ba) + cos(ba) vs. ba L1 January 20 21 K-P E(k) Relationship* L1 January 20 22 References *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. L1 January 20 23