* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Answers - MrsPalffysAPBio2013
DNA sequencing wikipedia , lookup
DNA repair protein XRCC4 wikipedia , lookup
DNA profiling wikipedia , lookup
Zinc finger nuclease wikipedia , lookup
Homologous recombination wikipedia , lookup
United Kingdom National DNA Database wikipedia , lookup
Eukaryotic DNA replication wikipedia , lookup
DNA nanotechnology wikipedia , lookup
Microsatellite wikipedia , lookup
DNA polymerase wikipedia , lookup
DNA replication wikipedia , lookup
Target I Explain the historical significance of the following scientists’ contributions to the study of DNA and utilize their data to support the claim that DNA is the source of heritable information: Griffith, Avery, Hershey/Chase, Franklin/Wilkins, Watson/Crick Covered by scientist jigsaw activity. He Ch exp OR gav ans 31. Pho 32. com DN the seq AG CT: no 33. TC 34. Target II Compare and contrast the structure of a single nucleotide (phosphate, nitrogen base, sugar) from both DNA and RNA. 3 Main Differences Target III Describe the structure of DNA. Be sure to use the following terms: deoxyribose, nucleotide, hydrogen bond, phosphodiester bond, purine, pyrimidine, 5’, 3’, A, T, C, G, and anti-parallel. You may be asked to label a diagram. Structure of a Nucleotide • A nucleotide is composed of three parts: – 5 carbon sugar: deoxyribose (DNA), ribose (RNA) – Phosphate group: PO43– Nitrogenous base: • Purine: double ring structure - Adenine & Guanine • Pyrimidine: single ring structure - Cytosine & Thymine • Phosphate is bonded to 5’ carbon of sugar • Nitrogenous base is bonded to 1’ carbon • Phosphodiester bonds join nucleotides together in backbone: phosphate of a nucleotide binds to sugar of next nucleotide Structure of a Nucleotide Nucleotide analysis of the DNA of a rat revealed 12% of nucleotides are adenine. Determine the percentage of GUANINE in the rat genome. What ‘rule’ allows you to answer the problem above?... Chargaff’s Rule Structure of a Nucleotide Structure of a Nucleotide Hydrogen bonding between nucleotides Structure of DNA • DNA is composed of two separate, linear strings of nucleotides that are antiparallel One strand is organized 5’ --> 3’ Other strand is organized 3’ --> 5’ DNA is described as a double helix • Hydrogen bonds form between nitrogenous bases of each strand to stabilize the helix A = T (2 hydrogen bonds) C G (3 hydrogen bonds) Sequence of nucleotides is significant b/c… How can nucleotide sequence be altered? How can nucleotide sequence be repaired? Structure of DNA Target IV Compare and contrast the genome structure and organization of prokaryotes and eukaryotes. h 5 a Nucleotides There are about 3.2 billion base pairs (6.4 billion total nucleotides) in the human genome Complementary pairing of A and T, C and G Smallest Unit of DNA- the monomer 1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441 1501 1561 Nucleotides in the GAA gene gcgcctgcgc cgccggtcac ggccagggcg gggccgggtc ttgtcgccgg gtgacgcgaa gaggctctgg ctgtccaggc gccgtctgcg gatttcctgc ccagctcacc cgtcccagag cctgacaagg aagcaggggc cccagctaca cgtaccaccc gagactgaga cccttggaga tccgaggagc acgacggtgg tcgcagtata accaggatca tctcaccctt aacagcaatg ggtgggatcc tacctggacg tgccgctggg gggaggccgc gtgacccgcc cgcgtgcgcg ggtggggcgg ggccgcgggt ggaccccggc gcctgccgca catctccaac ccctcgtgtc tggttccccg agcagggagc cagtgcccac ccatcaccca tgcagggagc agctggagaa ccaccttctt accgcctcca ccccgcgtgt ccttcggggt cgcccctgtt tcacaggcct ccctgtggaa tctacctggc ccatggatgt tggatgtcta ttgtgggata gctactcctc gtcacgtgac tctgcgcgcc gaggtgagcc tcggctgccc ggaggtcggg cacctctagg gctgacgggg catgggagtg cttggcaacc agagctgagt cagcagacca acagtgcgac ggaacagtgc ccagatgggg cctgagctcc ccccaaggac cttcacgatc ccacagccgg gatcgtgcac ctttgcggac cgccgagcac ccgggacctt gctggaggac ggtcctgcag catcttcctg cccgttcatg caccgctatc ccaccgcggc cccgggcacg gggccggggc gcgccggcct gatgaggcag ttctcctcgt aaactgaggc aggcacccgc gctgcactcc ggctcctccc gggccccggg gtccccccca gaggcccgcg cagccctggt tctgaaatgg atcctgaccc aaagatccag gcaccgtccc cggcagctgg cagttccttc ctcagtcccc gcgcccacgc ggcgggtcgg ccgagccctg ggcccagagc ccgccatact acccgccagg cccgccccgc accccggagt tgcggggctt ctcagttggg caggtaggac ccgcccgttg acggagcggg cctgctccca tggggcacat cagtcctgga atgcccaggc acagccgctt gctgctgcta gcttcttccc gctacacggc tgcggctgga ctaacaggcg cactctacag acggccgcgt agctgtccac tgatgctcag ccggtgcgaa cacacggggt cccttagctg ccaagagcgt ggggcctggg tggtggagaa gacgagctcc ctccgcgggc ccctgagcgc aaagctgagg agtgacctcg ttcagcgagg cctgtaggag ccggctcctg cctactccat ggagactcac acaccccggc cgattgcgcc catccctgca acccagctac caccctgacc cgtgatgatg ctacgaggtg cgtggagttc gctgctgaac ctcgctgccc caccagctgg cctctacggg gttcctgcta gaggtcgaca ggtgcagcag cttccacctg catgaccagg Nucleotides in the GAA gene 1621 1681 1741 1801 1861 1921 1981 2041 2101 2161 2221 2281 2341 2401 2461 2521 2581 2641 2701 2761 2821 2881 2941 gcccacttcc ttcacgttca ggcggccggc agctacaggc cagccgctga acagccctgg ggcatgtgga cccaacaatg gcggccacca ctctacggcc cgcccatttg acgggggacg tttaacctgc tcagaggagc cacaacagcc gccatgagga caccaggccc gactctagca ccagtgctcc gacctgcaga cgtgagccag atcaacgtcc acagagtccc ccctggacgt acaaggatgg gctacatgat cctacgacga ttgggaaggt cctggtggga ttgacatgaa agctggagaa tctgtgcctc tgaccgaagc tgatctcccg tgtggagctc tgggggtgcc tgtgtgtgcg tgctcagtct aggccctcac acgtcgcggg cctggactgt aggccgggaa cggtgccaat ccatccacag acctccgggc gccagcagcc ccaatggaac cttccgggac gatcgtggat gggtctgcgg atggcccggg ggacatggtg cgagccttcc cccaccctac cagccaccag catcgcctcc ctcgaccttt ctgggagcag tctggtcggg ctggacccag gccccaggag cctgcgctac ggagaccgtg ggaccaccag ggccgaagtg agaggccctt cgaggggcag tgggtacatc catggccctg gacctggact ttcccggcca cctgccatca aggggggttt tccactgcct gctgagttcc aacttcatca gtgcctgggg tttctctcca cacagggcgc gctggccacg ctcgcctcct gccgacgtct ctgggggcct ccgtacagct gcactcctcc gcccggcccc ctcctgtggg actggctact ggcagcctcc tgggtgacgc atccccctgc gctgtggccc acatggactc tggtgcagga gcagctcggg tcatcaccaa tccccgactt atgaccaggt gaggctctga tggttggggg cacactacaa tggtgaaggc gccgatacgc ccgtgccaga gcggcttcct tctacccctt tcagcgagcc cccacctcta tcttcctgga gggaggccct tccccttggg cacccccacc tgccggcccc agggccctgg tgaccaaggg ccggagggac gctgcaccag ccctgccggg cgagaccggc caccaacccc gcccttcgac ggacggctgc gaccctccag cctgcacaac tcgggggaca cggccactgg aatcctgcag gggcaacacc catgcggaac ggcccagcag cacactgttc gttccccaag gctcatcacc cacatggtac tgcagctccc cctggacacc cctcacaacc tggagaggcc 3001 3061 3121 3181 3241 3301 3361 3421 3481 3541 3601 3661 3721 3781 3841 Nucleotides in the GAA gene cgaggggagc acacaggtca agtgagggag cagcaggtcc gtcctggaca ccgggcggag tgtgcgggca taaccattcc aacgtgtcta tctgtgttaa ttagccaccc ggggtatgca cggctgccca ttcacaggac ggaatc tgttctggga tcttcctggc ctggcctgca tctccaacgg tctgtgtctc tgtgttagtc gcagctgtgt aagccgccgc ggagagcttt taagattgta ccctccatct cctgagctcc gagggctgga ttgggagatt cgatggagag caggaataac gctgcagaag tgtccctgtc gctgttgatg tctccagagg gcgggcctgg atcgcttgtt ctccctagat aggtttgccc gttcccagca tgcttcgcgc tgcctgccgg ctaaatctta agcctggaag acgatcgtga gtgactgtcc tccaacttca ggagagcagt gaggctggtt gggttgcatg tccacctcct cgcactgtgg tcctcacctg ccggagaagg ctgctgctct tccccgagca agtgcaatta tgctggagcg atgagctggt tgggcgtggc cctacagccc ttctcgtcag ccccagggaa tgtcacctgg gggccggggc gccggggcct ttgccggcat gggtgctcag gccccaacgc agcctgggaa ttttaataaa aggggcctac acgtgtgacc cacggcgccc cgacaccaag ctggtgttag gcagagcctg agctgggcac tctggccccc ggagggctgc gcgggtagta gtggaggtgt gaccgcttcc ctcaggaaaa aggggcattt Gene There are about 20,000 genes in the entire human genome There are thousands of nucleotides per gene. Ex: The GAA gene (which codes for an enzyme) has 3846 nucleotides on one strand. GAA Gene Map Chromosome Chromosomes are all different sizes and contain different numbers of genes and nucleotides. Each chromosome is one long molecule of DNA Ex: Chromosome 17 (where GAA is Found) has 1726 genes and 81 million nucleotides Chromosome 17 Map Human Genome46 chromosomes (23 pairs) Genome Represents ALL of the DNA present in an organism (human) Found in every nucleus of every cell: 3.2 billion base pairs (nucleotides) 20,000 genes 46 chromosomes (23 pairs) Eukaryotic Packaging • Eukaryotic DNA is linear • Chromosomes of DNA packaged during interphase as chromatin • Chromatin condenses (further coils and folds) into chromosomes before mitosis • On average, chromosomes contain 2 x 108 nucleotide pairs • An ‘unpackaged’ chromosome of this size would be 6cm long! Eukaryotic Packaging Histone proteins contain large amounts of positivelycharged amino acids. Why? Histone protein + DNA called a nucleosome! Prokaryotic Packaging • Prokaryotic DNA is circular • Typically, one single chromosome in nucleoid region and many smaller plasmids floating in cytoplasm. • No histones • Fit inside cell via “supercoiling”-> Targets V & VI The “big picture” and details regarding the process of DNA Replication… see target sheet for full details… all of this is covered in great detail in the class notes and giant drawing we constructed together. Replication of DNA • Enzymes and special proteins facilitate the replication of DNA •When does DNA have to be replicated? WHY? •Be sure to determine the role in DNA replication for each of the following: –DNA polymerase (I and III) –DNA ligase –Primase –Helicase –Topoisomerase –Nuclease –Telomerase –Single strand binding protein Replication of DNA • Replication of DNA is semi-conservative… •Replication begins at origins of replication •Prokaryotes have only one origin of replication. Why? •Eukaryotes have many origins. Why? •Each origin of replication creates a replication bubble with 2 replication forks Replication of DNA Replication of DNA Replication of DNA Replication of DNA •DNA polymerase facilitates the creation of complementary strands of DNA using original strand as template •Energy required to create polymer comes from nucleoside triphosphates! (ATP, GTP, CTP, TTP) Replication of DNA •DNA polymerase only adds new nucleotides to the 3’ end of an existing nucleic acid. •First, an RNA primer of ~10 nucleotides is made by primase so that DNA polymerase has something to attach to & can begin constructing a new DNA strand •Therefore, at a replication fork, the complementary strands of DNA are not created at the same rate! •The leading strand is built faster and in a continuous manner (only one primer required) •The lagging strand is built slower and creates Okazaki fragments, each fragment has a primer Topoisomerase • Relieves tension of helix by making a cut, allowing it to “spin” and “relax”, then reconnects broken strands Telomeres & Telomerase • Telomeres protect the ends of chromosomes from degradation • Get shorter and shorter, disappearing after about 50 cell divisions (Hayflick Limit) • Telomerase prevents shortening by adding TTAGGG repeats to telomere end (3’), creates “immortal cell”, only found in stem cells and cancer cells CONCEPT GENERALIZATION: REPLICATION DNA nucleotides RNA nucleotides Topoisomerase DNA polymerase (III, I) Helicase Primase Ligase Leading strand/Lagging strand Okazaki fragments Replication fork/Replication bubble Single stranded binding proteins Orientation (5’ to 3’, 3’ to 5’) Fill In the Blank (Directionality) ALL ENZYMES MOVE IN A __________ DIRECTION ALONG THE TEMPLATE STRAND. ALL NUCLEIC ACID STRANDS ARE SYNTHESIZED IN A ________ DIRECTION. THE LEADING STRAND IN REPLICATION IS THE ONE THAT PROCEEDS _____________ INTO THE FORK. THE LAGGING STRAND IN REPLICATION IS THE ONE THAT PROCEEDS _____________ OUT OF THE FORK. Fill In the Blank (Answers) ALL ENZYMES MOVE IN A 3’ to 5’ DIRECTION ALONG THE TEMPLATE STRAND. ALL NUCLEIC ACID STRANDS ARE SYNTHESIZED IN A 5’ to 3’ DIRECTION. THE LEADING STRAND IN REPLICATION IS THE ONE THAT PROCEEDS 3’ to 5’ INTO THE FORK. THE LAGGING STRAND IN REPLICATION IS THE ONE THAT PROCEEDS 3’ to 5’ OUT OF THE FORK. Target VII Describe the process and significance of errors in DNA replication, DNA repair mechanisms, and mutagens. Covered by cancer article readings and reading book (16.2).