* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 6-APA - Teknologi Industri Pertanian
Catalytic triad wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Metalloprotein wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Peptide synthesis wikipedia , lookup
Nicotinamide adenine dinucleotide wikipedia , lookup
Amino acid synthesis wikipedia , lookup
Biosynthesis wikipedia , lookup
Fatty acid synthesis wikipedia , lookup
15-Hydroxyeicosatetraenoic acid wikipedia , lookup
Specialized pro-resolving mediators wikipedia , lookup
Citric acid cycle wikipedia , lookup
Butyric acid wikipedia , lookup
Bioindustri Enzim Jurusan Teknologi Industri Pertanian, Fak Teknologi Pertanian Universitas Brawijaya Malang http://nurhidayat.lecture.ub.ac.id http://ptp2007.wordpress.com Enzim • Enzim, dihasilkanoleh sistem hidup, merupakan protein yg memiliki sifat katalitik. • Sebagai katalis, enzim efisien dan sangat spesifik terkait keterlibatanya dalam reaksi kimia. • Cofactors terlibat dalam reaksi dimana molekul dioksidasi, reduksi, dioecah ataupun digabung. Biotechnology • Teknik yang melibatkan penggunaan oragnisme hidup atau produknya untukmembuat atau memodifikasi produk untuk tujuan komerial. Main Enzyme Classes ____________________________________________________ Enzyme class Catalyzed reaction ____________________________________________________ Oxidirectadases Oxidation-reduction reaction Transferases Transfer of functional group Hydrolases Hydrolytic reactions Lyases Group elimination (forming double bonds) Isomerases Isomerizaion reaction Ligases Bond formation coupled with a triphosphate cleavage ____________________________________________________ Enzymes in Biotechnology • Enzymes in food and beverage production Dairy industry Beer industry Wine and juice industry Alcohol industry Protein industry Meat industry Baking industry Fat and Oil industry • Enzymes as industrial catalysts Starch processing industry Antibiotic industry Fine Chemicals industry Enzymes in Biotechnology • Enzymes as final products Detergent industry Cleaning agent industry Pharmaceutical industry Animal feed industry Analytical applications • Enzymes as processing aids Textile industry Leather industry Paper and pulp industry Sugar industry Coffee industry Faktor-faktor penting kenapa digunakan enzim • kemungkinan reaksi tidak dapat dilakukan secara kimia. • Reaksi spesifik • Mereduksi jumlah tahapan proses yang dibutuhkan. • Mengeliminasi kebutuhan pelarut organik dalam proses. • Enzim dapat digunakan ulang melalui imobilisasi. • Dapat dikombinasikan dengan proses lain. • Enzim dapat diperbaiki melalui rekayasa genetika. Industrial Enzyme Market Annual Sales: $ 1.6 billion Food and starch processing: 45 % Detergents: 34 % Textiles: 11 % Leather: 3 % Pulp and paper: 1.2 % Beberapa contoh enzim mikrobial • Protease: protease netral dari Aspergillus dan Alkali dari Bacillus – Deterjen biologi: subtilisin dari Bacillus licheniformis dan B. subtilis – Penjernihan wine – Pengolahan kulit – Pembuatan keju – Pengempukan daging dsb Lipase • Lipase terutama dari Bacillus, Aspergillus, Rhizopus, dan Rhodotorula – – – – Deterjen biologis Pengolahan kulit – penghilangan lemak Produksi senyawa flavor Pengolahan susu dan daging Alfa Amilase • • • • • • Sumber: Aspergillus dan Bacillus Untuk pengolahan pati menjadi sirup gula Modifikasi tepung dalam pembuatan roti Hidrolisis pati pada industri wine Detergen biologis Manufaktur tekstil Beta Amilase dan Amiloglukosidase • Bacillus polymyxa, Streptomyces, Rhizopus – Untuk produksi sirup maltosa – Industri beer: meningkatkan gula yg dapat difermentasi. • Amiloglukosidase: A. niger, R. niveus – – – – Produksi sirup glukosa Roti, Beer, wine Juice buah Production of High Fructose Corn Syrups from Starch Corn Starch Slurry (30-35% DS, pH 6.0-6.5, Ca2+ 50 ppm) Liquefaction Thermostable a-Amylase Gelatinization (105°C, 5 min) Dextrinization (95°C, 2h) Liquefied Starch DE 10-15 Saccharification Glucoamylase (60°C, pH 4.0-4.5, 24-72 h) Glucose Syrups DE 95-96 Isomerization Glucose isomerase (pH 7.5-8.0, 55-60°C, 5 mM Mg2+) High Fructose Corn Syrups (42% fructose) Production of Glucose from Starch _______________________________________________________________ Liquefaction Saccharification DE Glucose _______________________________________________________________ Acid Acid 92 85 Acid Glucoamylase 95 91 Acid/α-amylase Glucoamylase 96 92 α-Amylase/High pressure cooking/ α-amylase Glucoamylase 97 93 α-Amylase (thermostable) Glucoamylase 97 94 α-Amylase (thermostable) Glucoamylase 97-98.5 95-97.5 _______________________________________________________________ Conversion of Glucose to Fructose HO OH O OH glucose isomerase HO O OH HO OH HO OH OH Enzim mikrobial komersial • Enzim detergent • Enzim dalam pengolahan Pati dan karbohidrat • Enzim dalam produksi keju • Enzim dalam produksi juice • Enzim dalam Manufaktur tekstil • Enzim dalam manufaktur kulit • Enzim dalam penanganan pulp kayu • Enzim dalam sintesis bahan organik 6-Aminopenicillanic Acid (6-APA) Penicillin: First discovered by Fleming in 1932 19% of worldwide antibiotic market. Superior inhibitory action on bacterial cell wall synthesis Broad spectrum of antibacterial activity Low toxicity Outstanding efficacy against various bacterial strains Excessive use has led to development of resistant pathogens 6-APA: Raw material for production of new semisynthetic penicillins (amoxycillin and ampicillin) Fewer side effects Diminished toxicity Greater selectivity against pathogens Broader antimicrobial range Improved pharmacological properties Chemical and Enzymatic Deacylation of Penicillins to 6-APA R C H N S O N CH3 CH3 Penicillin acylase COOH O Penicillin V or G [R=Ph or PhO] Alkaline [Enzymatic] N O (6-APA) PCl5 ROH H2O [Chemical] Pyridine Me3SiCl R S NH2 C H N S O N O CH3 CH3 COOSiMe3 CH3 CH3 COOH 6-Aminopenicillanic Acid (6-APA) Chemical method: Use of hazardous chemicals - pyridine, phosphorous pentachloride, nitrosyl chloride Enzymatic method: Regio- and stereo-specific Mild reaction conditions (pH 7.5, 37 oC) Enzymatatic process is cheaper by 10% Enzymes: Penicillin G acylase (PGA)- Escherichia coli, Bacillus megaterium, Streptomyces lavendulae Penicillin V acylases (PVA)- Beijerinckia indica var. Penicillium, Fusarium sp., Pseudomonas acidovorans Immobilized Enzyme: Life, 500-2880 hours Enzymatic Modification of Penicillins to 6-APA and Semisynthetic Penicillins R C H N S O N O CH3 CH3 COOH Penicillin V or G Penicillin acylase Alkaline [Deacylation] S NH2 N CH3 CH3 COOH O (6-APA) Penicillin acylase [Acylation] Acidic Semisynthetic Penicillins Synthesis of Acrylamide • • • Monomeric raw material for the manufacture of polymers and synthetic polymers Obtained by hydration of the cyanide function of acrylonitrile World market, 200,000 tpa Chemical Process: • • • Reaction of acrylonitrile with water in the presence of H2SO4 (90 oC) or a metal catalyst (80-140 oC) Formation of toxic waste (HCN) The reaction must be stopped to prevent the acrylamide itself being converted to acrylic acid Enzymatic Process: 99.9% yield Kg quantity product/g cells Acrylic acid is not produced Fewer process steps are involved Much more environmental friendly Nitto Chemical Industry: 6,000 tons annually Synthesis of Acrylamide Copper-catalysed process Microbial process Nitrile hyratase and amidase reactions Aspartame (L-Asp-L-Phe-Methyl Ester) • Aspartame is dipeptide sweetener formed by linking the methyl ester of phenylalanine with aspartic acid Extensively used in food and beverages 200 times as sweet as sucrose Annual sale: 200 million Ibs, $ 850 million Nutrasweet Corp. retains 75% of the US market Chemical method: The amino group of aspartic acid needs to be protected to prevent its reacting with another molecule of aspartic acid to give unwanted by-products The correct single enantiomer of each of the reactants must be used to give the required stereochemistry of aspartame (beta-aspartame is bitter tasting) Enzymatic method: Thermolysin promotes reaction only at the alpha-functionality Mild condition, pH 6-8, 40 oC Cbz, benzyloxycarbonyl Biocatalytic Production of Aspartame HO2C Ph + PhCH2OCNH CO2H H2N CO2Me O N-Cbz-aspartic acid D,L-phenylalanine Methyl ester thermolysin H2O HO2C PhCH2OCNH O Ph CNH CO2Me O Cbz-aspartame Cbz, benzyloxycarbonyl L-Carnitine Thyroid inhibitor Slimming agent Dietary supplement for athletes Only one enantiomer of the compound is used Two biocatalytic routes are available to make L-carnithine. Saccharomyces cerevisiae Rhizobiaceae Synthesis of L-Carnitine O O Cl reductase H O Cl OC8H17 g-chloroacetoacetic acid octyl ester HO OC8H17 (R)-g-chloro-b-hydroxybutanoic acid octyl ester HO Me3N H O OH L-carnitine O Me3N OH g-butyrobetaine hydroxylase HO Me3N HO L-carnitine OH Synthesis of Naproxene CO2H * biocatalysts CH3O CH3O CO2H CO2H * multistep * resolution (D/L) CH3O CH3O O C CH2CH3 CH3O CH3O 1) Tartaric acid 2) Br2 3) Hydrolysis CH3O CO2H * Synthesis of Calcium – Antagonist Drug Diltiazem OMe O OMe O (R,R) esterase MeO2C HO2C racemate OMe S (S, S) O Diltiazem N H O O Synthesis of L-malic Acid and L-Aspartic Acid from Fumaric Acid HO2C fumarase HO2C H CO2H H2O fumaric acid HO2C HO CO2H L-malic acid aspartase HO2C H CO2H fumaric acid NH3 HO CO2H L-aspartic acid Environmentally Compatible Synthesis of Catechol from Glucose acetone a hydroquinone b HO benzene cumene CO2H OH O HO d OH D-glucose (a) (b) (c) (d) CO2H OH OH OH HO d d O c phenol OH catechol HO OH OH 3-dehydroshikimic protocatechuic acid acid propylene, solid H3PO4 catalyst, 200-260°C, 400-600 psi. O2, 80-130°C then SO2, 60-100°C. 70% H2O2, EDTA, Fe2+ or Co2, 70-80°C. E. coli AB2834/pKD136/pKD9.069A, 37°C. Draths and Frost, 1995 Debittering of Protein Hydrolyzates • • • • • • Treatment with activated carbon Extraction with alcohol Isoelectric precipitation Chromatographic separation Masking of bitter taste Enzymatic hydrolysis of bitter peptides with aminopeptidase with alkaline/neutral protease with carboxypeptidase • Condensation reactions using protease Mill Scale Xylanase-aided Bleaching Trials ____________________________________________________ Sequence after Pulp Total active chlorine Enzyme treatment consumption decrease (%) ____________________________________________________ (CD)EDED Softwood kraft 21 (CD)EoDED Pine kraft 18.4 (CD)EpDEpD Birch kraft 18 (CD)EopDEpD Pine kraft 12 DEopDED Softwood kraft 15 ____________________________________________________ C, elemental chlorine (Cl2), D, chlorine dioxide (ClO3), E, alkaline extraction (NaOH), Eo/Ep, oxygen/hydrogen peroxide reinforced alkaline extraction • • • • • Mannitol Food additive Reduces the crystallization tendency of sugars and is used as such to increase the shelf-life of foodstuffs Used in chewing gum Pharmaceutical formulation of chewable tablets and granulated powders Prevents moisture adsorption from the air, exhibits excellent mechanical compressing properties, does not interact with the active components, and its sweet cool taste masks the unpleasant taste of many drugs • • • • • • Mannitol Mannitol hexanitrate is a well-known vasodilator, used in the treatment of hypertension The complex of boric acid with mannitol is used in the production of dry electrolytic capacitors It is an extensively used polyol for the production of resins and surfactants It has low solubility in water of only 18% (w/w) at 25 oC In alkaline solutions, it is a powerful sequestrant of metallic ions It is about half as sweet as sucrose Hydrogenation of D-Fructose H 2C C HO OH O CH H2, catalyst HO H 2C OH HC OH CH H 2C + HO CH HO CH OH HC OH HC OH HC OH HC OH HC OH HC OH H 2C OH H 2C OH H 2C OH D-Fructose D-Sorbitol D-Mannitol Heterofermentative Conversion Pathway of Fructose into Mannitol Fructose 2 Fructose ATP ADP Fructose – 6-P Glucose – 6-P NADP+ NADPH + H+ 6 - Phosphogluconate NADP+ NADPH + H+ CO2 Ribulose – 5-P Xylulose – 5-P Glyceraldehyde - 3-P 2 ADP NAD+ NADH + H+ 2 ATP Pyruvate + NADH + H NAD+ Acetyl - P ADP ATP Lactate Acetate 2 Mannitol Mannitol Production from Fructose in pH-Controlled Batch Fermentation Fructose (g/L) Time (h) Mannitol (g/g) Lactic Acid (g/g) Acetic Acid (g/g) 150 15 0.720.00 0.17±0.00 0.12±0.00 200 40 0.69±0.03 0.17±0.00 0.13±0.00 250 64 0.70±0.02 0.16±0.00 0.12±0.00 300 136 0.66±0.03 0.15±0.01 0.11±0.00 At 37oC, 130 rpm, Initial pH 6.5, pH controlled at 5.0, 500 ml fleaker with 300 ml medium. Fructose and Glucose (2:1) Co-Utilization and Mannitol Production Substrate or Product (g/L) 100 Fructose Mannitol O 37 C pH 5.0 50 Lactic acid Acetic acid Glucose 0 0 12 36 24 Time (h) 48 Mannitol Production in pHControlled Fed-Batch Fermentation Substrate or Product (g/L) O 37 C pH 5.0 200 150 Mannitol 100 Fructose Fructose used: 300 g/L (final concentration) Lactic acid 50 Acetic acid 0 0 24 48 Time (h) 72 96 Fermentation Catalytic Hydrogenation All fructose converted to mannitol Only half of fructose converted to mannitol Co-product: lactic acid and acetic acid one half of mannitol Co-product: sorbitol in large excess (3) Glucose is hydrogen source in hydrogenation Highly pure hydrogen gas necessary Nitrogen source essential for Nickel catalyst essential growth Ion exchanger for nickel Electrodialysis for removing ions removal organic acids Highly pure substrates to avoid catalyst Use of less pure substrates necessary inactivation poses no problem Enzymatic Conversion of Fructose to Mannitol CH2OH CH2OH O HO H H Mannitol 2-Dehydrogenase OH NAD(P)H H OH CH2OH D-fructose NAD(P) HO H HO H H OH H OH CH2OH Mannitol Cofactor Regeneration • • • • • Chemical Photochemical Electrochemical Biological Enzymatic Enzymatic Conversion of Fructose to Mannitol with Simultaneous Cofactor Regeneration Mannitol Dehydrogenase Mannitol D-Fructose NADH CO2 + H20 NAD Na-Formate Formate Dehydrogenase Enzymatic Conversion of Fructose to Mannitol with Simultaneous Cofactor Regeneration Mannitol Dehydrogenase Mannitol D-Fructose NADH NAD+ Gluconic acid Glucose Dehydrogenase Glucose + H20