* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Sep 12 - BYU Physics and Astronomy
Ensemble interpretation wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Basil Hiley wikipedia , lookup
Perturbation theory (quantum mechanics) wikipedia , lookup
Casimir effect wikipedia , lookup
Scalar field theory wikipedia , lookup
Molecular Hamiltonian wikipedia , lookup
Quantum dot wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Renormalization wikipedia , lookup
Renormalization group wikipedia , lookup
Quantum computing wikipedia , lookup
Quantum field theory wikipedia , lookup
Quantum fiction wikipedia , lookup
Density matrix wikipedia , lookup
Wave function wikipedia , lookup
Erwin Schrödinger wikipedia , lookup
Schrödinger equation wikipedia , lookup
Orchestrated objective reduction wikipedia , lookup
Double-slit experiment wikipedia , lookup
Quantum entanglement wikipedia , lookup
Coherent states wikipedia , lookup
Measurement in quantum mechanics wikipedia , lookup
Quantum machine learning wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Bell's theorem wikipedia , lookup
Probability amplitude wikipedia , lookup
Many-worlds interpretation wikipedia , lookup
Quantum teleportation wikipedia , lookup
Quantum group wikipedia , lookup
Wave–particle duality wikipedia , lookup
Quantum key distribution wikipedia , lookup
History of quantum field theory wikipedia , lookup
Matter wave wikipedia , lookup
Hydrogen atom wikipedia , lookup
Copenhagen interpretation wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Particle in a box wikipedia , lookup
Path integral formulation wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Quantum state wikipedia , lookup
EPR paradox wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Physics 451 Quantum mechanics I Fall 2012 Sep 12, 2012 Karine Chesnel Quantum mechanics Announcements Homework remaining this week: • Extended Friday Sep 14 by 7pm: HW # 5 Pb 2.4, 2.5, 2.7, 2.8 Note: Penalty on late homework: - 2pts per day Credit for group presentations: Homework 2: 20 points Quiz 5: 5 points Quantum mechanics Announcements No student assigned to the following transmitters: 2214B68 17A79020 1E5C6E2C 1E71A9C6 Please register your i-clicker at the class website! Quantum mechanics Ch 2.1 Time-independent Schrödinger equation • Space dependent part: 2 2   d  V ( x) y  Ey  2  2m dx  Solution y(x) depends on the potential function V(x). ( x, t )  y ( x)e iEt / Stationary state Associated to energy E Quantum mechanics Ch 2.1 Stationary states Properties: • Expectation values are not changing in time (“stationary”):  Q    Q ( x, )dx i x * with ( x, t )  y ( x)eiEt /  Q  y Q ( x , )y dx i x * Q is independent of time p m v m d x dt 0 The expectation value for the momentum is always zero In a stationary state! (Side note: does not mean that  x and  p are zero!) Quantum mechanics Ch 2.1 Stationary states Properties: • Hamiltonian operator - energy 2   d2  V ( x) y  Ey  2  2m dx  ^ H ^ ^ H  y H y dx  E y *y dx  E ^ * ^ H 2  y * H 2 y dx  E 2 y *y dx  E 2 H  0 Quantum mechanics Ch 2.1 Stationary states • General solution   ( x, t )   cn  n ( x, t ) n 1 where  n ( x, t )  y n ( x)eiEnt / • Associated expectation value for energy  H   cn2 En n 1 Quantum mechanics Quiz 6a A particle, is in a combination of stationary states:   ( x, t )   cn  n ( x, t ) n 1 What will we get if we measure its energy? A. H B. c E n n n C. one of the values D.  n En En Quantum mechanics Quiz 6b A particle, is in a combination of stationary states:   ( x, t )   cn  n ( x, t ) n 1 What is the probability of measuring the energy En? A. 0 B. cn C. cn  cn D. cn 2 E. 1 2 cn Quantum mechanics Ch 2.2 Time-independent potential Expectation value for the energy:  *      H     cm  m  H   cn  n    n1    m 1 ^ ^    H   c c m 1 n 1 ^ * m n H y n  Eny n   ^  H  n dx * m  ^   H   cm* cn En e m 1 n 1 ^  H   cn En n 1 2  i ( En  Em ) t  nm Quantum mechanics Ch 2.2 Infinite square well V(x)=0 for 0<x<a V=∞ 0 a The particle can only exist in this region else x Shape of the wave function? Quantum mechanics Ch 2.2 Infinite square well Solutions to Schrödinger equation: d y   E y 2 2m dx 2 2 d 2y 2   k y 2 dx Simple harmonic oscillator differential equation with k 2mE Quantum mechanics Ch 2.2 Infinite square well Solutions to Schrödinger equation: y ( x)  A sin kx  B cos kx Boundary conditions: At x=0: y (0)  0 At x=a: y (a)  0 y ( x)  A sin kx with n kn  a Quantum mechanics Ch 2.2 Infinite square well Possible states and energy values: 2  n yn  sin  a  a  x  n 2 2 2 En  2 2ma Quantization of the energy Each state yn is associated to an energy En ^ H y n  Eny n Quantum mechanics Ch 2.2 Infinite square well Properties of the wave functions yn: y 3 , E3 1.They are alternatively even and odd around the center y 2 , E2 2. Each successive state has one more node y 1 , E1 3. They are orthonormal Excited states Ground state 0 a * y  my n   nm x 4. Each state evolves in time with the factor e  iEn t / Quantum mechanics Ch 2.2 Infinite square well Pb 2.4 x Pb 2.5 Particle in one stationary state x 2 p  x p  p2 2 Particle in a combination of two stationary states   x, 0  A(y 1 y 2 )   x, t    ( x, t ) oscillates in time 2 x H p evolution in time? expressed in terms of E1 and E2 Quantum mechanics Ch 2.2 Infinite square well Expectation value for the energy: ^  H   cn En 2 n 1 The probability that a measurement 2 yields to the value En is cn Normalization  c n 1 n 2 1