* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download GEO Carbon - GEPW
Surveys of scientists' views on climate change wikipedia , lookup
Iron fertilization wikipedia , lookup
Climate change and poverty wikipedia , lookup
Public opinion on global warming wikipedia , lookup
Climate-friendly gardening wikipedia , lookup
Fred Singer wikipedia , lookup
Mitigation of global warming in Australia wikipedia , lookup
Low-carbon economy wikipedia , lookup
Reforestation wikipedia , lookup
Citizens' Climate Lobby wikipedia , lookup
IPCC Fourth Assessment Report wikipedia , lookup
Years of Living Dangerously wikipedia , lookup
Carbon Pollution Reduction Scheme wikipedia , lookup
Climatic Research Unit documents wikipedia , lookup
Politics of global warming wikipedia , lookup
Climate change feedback wikipedia , lookup
GEO CARBON Toward a coordinated global carbon observation and analysis system A. Bombelli GEOCARBON Project Manager CMCC - Euro-Mediterranean Center on Climate Change Italy Outline • Why GEOCARBON? • Short history (just 1 slide!) of “EU-Carbon” Project • Link between GEOCARBON and GEO • GEOCARBON overview + some first result The Global Carbon Cycle What’s missing? The Global Carbon Cycle coordination needed for global integration The EU contribution to a global GEO carbon observing system past FP5/FP6, CARBOEUROPE cluster, CarboAfrica, CarboOcean, others: Experience put in place and/or enhance the EU carbon monitoring system; improved knowledge of the European (and African) C-cycle. FP7, COCOS: coordinated European and global carbon relevant Strategy initiatives; defined the GEO C-Strategy. FP7, ICOS: set up the infrastructure for a integrated and standardized Infrastructure monitoring of C-cycle at global level, starting from Europe. Present FP7, GEOCARBON: global coordination toward the design and Coordination development of an Operational Global Integrated Carbon Observation and Analysis System (built on EU projects’ experience). Future ? Operation (beyond research projects) Priority: sustain operational infrastructures for earth observation (particularly in situ) GEOCARBON European Commission (EC) / Seventh Framework Programme (FP7) Starting date: 01/10/2011 Duration: 36 months Total funds: 8.6 M€ (6.6 M€ from EC) Project Coordinator: Prof. Riccardo Valentini Euro-Mediterranean Center for Climate Change CMCC, Italy European project but global contribution! To develop a coordinated Global Carbon Observation and Analysis System, supporting the Group on Earth Observations (GEO) toward building a Global Earth Observation System of Systems (GEOSS) for carbon (last 3 years of the GEO WP). & Conceived in response to a FP7 call for proposals to support one EU project specifically contributing to GEO at global level in the area of C-cycle. Shaped around the GEO Work Plan + task CL-02, ‘Global Carbon Observations and Analysis’, to meet the “carbon side of the GEO 2015 Target on Climate: - better understanding of the global carbon cycle - development and facilitation of a comprehensive (atmosphere, ocean, land) global carbon observation and analysis system in support of monitoring based decision-making and related environmental treaty obligations. Activities embedded in the task CL-02 and coordinated with the GEO Secretariat and GEO global community monitoring C-cycle. Different from previous EC “Carbon” projects: not just independent research but a contribution to GEO! GEO Task CL-02 GEOCARBON linkages to GEO – inAnalysis practice: Task CL-02, Global Carbon Observation and Antonio Bombelli (Task•Coordinator & PoC) work aligned to the GEO Work Plan • regular update of the GEO Work Plan (2012-2015) Leading partners (open and volunteer partnership): • update the GEO task sheet on carbon (task CL-02) Australia (CSIRO), EC (GEOCARBON), France (LSCE), Italy of Tuscia), • (CMCC, updateUniversity the GEO C-strategy Japan (AIST, JAXA), Netherlands (University of Amsterdam), Norway (Bergen), UK • participate in relevant GEO meetings (University of Sheffield), USA (NASA, NOAA, USDA, USGS), CEOS, GTOS, WMO (GAW) • involve (and collaborate with) the global GEO community on C-cycle Planned activities • Improve information and products, Outreach, Carbon Portal • Improve global observation networks measuring carbon pools and fluxes, considering both CO2 and CH4 • Improve (resolution and accuracy) carbon budgets at different scales • Develop an integrated Carbon Cycle Data Assimilation System (CCDAS) ingesting data from multiple data sources at different scale • Validate space-based GHG observations and consolidate data requirements for the next-generation GHG monitoring missions GEO Task CL-02 partnership GEO Task CL-02 partnership GEOCARBON – the Partnership 1 Euro-Mediterranean Center for Climate Change (CMCC), Italy 2 University of East Anglia, United Kingdom 3 Swiss Federal Institute of Technology Zürich (ETHZ), Switzerland 4 University of Wageningen, The Netherlands 5 University of Oxford, United Kingdom 6 VU University of Amsterdam, The Netherlands 7 University of Leeds, United Kingdom 8 Max Planck Institute for Biogeochemistry, Germany 9 University of Versailles, LSCE France 10 Netherlands Institute for Space Research (SRON), The Netherlands 11 Second University of Naples, Italy 12 University of Edinburgh, United Kingdom 13 Nansen Environmental and Remote Sensing Center (NERSC), Norway 14 University of Tuscia, Italy 15 University of Bergen, Norway 16 GAMMA Remote Sensing Research and Consulting AG, Switzerland 17 Cameroon Biodiversity Conservation Society, Cameroon 18 FastOpt, Germany 19 University of Bristol, United Kingdom 20 International Institute for Applied Systems Analysis (IIASA), Austria 21 Research Institute of Nuclear Energy (IPEN), Brazil 22 Food and Agriculture Organisation of The United Nations (FAO) 23 Free University of Brussels, Belgium 24 National Center for Scientific Research (CNRS), France 25 University of Hamburg, Germany Components Project Management 1- Observation data streams 2- Data assimilation system (CCDAS) 4- Tropical hotspots 3- Specifications and Network Design 7- Cost benefit analysis 6- CH4 5- Global and regional synthesis Coordination links 8- Outreach and GEO Interface Data exchange Component 1 - Observations data streams WP1: Land stocks & change WP4: Ocean inv. & fluxes WP2: Land-atm fluxes WP5: Anthropogenic fluxes WP3: Lateral fluxes WP6: Atmospheric & other Provide an aggregated set of harmonized global carbon data. GEOCARBON as DATA PROVIDER to GEO community WP7: Integration & synthesis Component 2 Component 4 Carbon office Surface Ocean CO2 Atlas V2 SOCAT: world largest surface CO2 database: >9 million CO2 data (+ sea characteristics, i.e. temperature, salinity, etc.) • Time frame: 1968-2011 • Second version (blue lines) supported by GEOCARBON: 60% data more than previous vs (red) • • • • Uniform format Transparent, fully documented Open accessible by Spring 2013 Supported by UNESCO/SCOR’s IOCCP, SOLAS and IMBER CMP1 (example) www.socat.info Global land stocks and changes CMP1 (example) Land use www.rainfor.org Biomass Land stocks and change Fire Forest age and harvest M. Herold, Geocarbon WP1 Global Forest Biomass CMP1 Derive a global aboveground forest biomass dataset (example) (end of 2013) Strategy: COORDINATION WITH GFOI ENSURED: GEOCARBON WP1 leader, Martin Herold, member of advisory board for methods and guidance for GFOI • Combine existing datasets (weighted average approach) • Regional validation (independent field data and local maps) Specifications: • Spatial resolution: 1 Km • Variable: Aboveground live biomass of trees with dbh >10 cm (expansion for 0 – 10 cm may be also performed) • Reference period: circa 2005 – 2010 (depending on the reference years of the input maps) • Validation: Discrepancy map & Error statistics GSV - Santoro, 2012 GEOCARBON DATA PORTAL http://www.bgc-jena.mpg.de/geodb/geocarbon/Home.php GEOCARBON DATA POLICY Data treatment • Standardization, harmonization, storage and distribution of the products • Check: data format, time and space resolution, land/ocean mask etc. • QA/QC for all products to be delivered to the other components. • netCDF formats with tools and consultancy provided to partners who are not familiar with this. • Transparent web interface with user registration for file download according to GEOSS data sharing principles. Data Policy • Promoting easy data access and data sharing in compliance with the GEOSS data sharing principles. • Sharing data: mutual benefits between data providers and users • GEOCARBON database will include data also from external providers, according to their respective data policy; providers will be involved in scientific activities and data use. • Tracked record of data downloaders: data providers receive a notification when a user download their data; use of data should be authorized. • Data will be made available after a minimum time delay (6-12 months). Data directly available without authorization after 2 ys from the end of the project. • Identification of the data generated by GEOCARBON will be guaranteed by the Digital Object Identifier (DOI). GEOCARBON DATA PORTAL Data owner perspetive: Functioning of the the data-portal Registration get username and password Data upload Decide if data should be publicly available Define owners and co-owners Provide additional information on the dataset, e.g. Title, description, version ... (optional) Data consistency check Done by data manager at MPI-BGC check of data format and meta-information, Units, method description, etc Dataset is visible on the geocarbon data portal Title, description and metainformation of the file are visible and Searchable for everyone Maybe added to GEOSS search index in the future GEOCARBON DATA PORTAL Data user perspective: Functioning of the the data-portal Is the dataset flagged as publicly available? yes no Is the downloader a member of the GEOCARBON project? no yes Accept data policy grant download You are asked to write a request message, which is sent to the data owner, he can ... Not grant No download Notification email to data owner Component 2 Carbon Cycle Data Assimilation System Land imager (SAR: Biomass) Ocean & terrestrial in situ data Remote sensing CO2 conc. (GOSAT, OCO2,…) Wind & Temp. profile Natural & Human GHG emission map Ocean model Land use & forest data ecosystem model Atmospheric model atmospheric data Anthropogenic emissions 5 global data assimilation systems (simultaneously integrating models and observations of the land, ocean and atmosphere carbon cycle) + 2 ocean-only process models. Satellite column observations Component 3 - Global Carbon Observing System accuracy requirements and network design Atmospheric in situ observations Single datastream network optimization: Multiple datastream network optimization Inventories Determination of error of target quantity versus network/observation density (e.g. no of stations, towers, satellite measurements, etc.) Determination of error of target quantity versus network/observation density for combinations of several networks Nominal network cost determination for different network combinations O2/N2 # of observations 13C/12C Fossil-fuel radiocarbon observations Target Threshold Target Threshold Target Cost Error of target quantity Error of target quantity Fluxtowers bs 1 # o o rk tw ne Threshold Error of target quantity # n e o bs two rk 2 Define the detailed requirements for an operational integrated global carbon observing system. Considering: different (ground and space based) networks sampling the ocean, the land and the atmospheric carbon reservoirs. Including: accuracy requirements, network performance, gap analysis, and feasibility. GEOCARBON Component 4 C- cycle in the tropics Biomass Ecosystem EOS River Combining: Atmospheric inventories fluxes concentrations land carbon use Case study: the observing system in the tropics: Amazon and Africa Reduce the uncertainty of the net carbon balance and trends of tropical South America and Africa in order to improve regional Cbudgets. GEO IX PLENARY – European Commission side event. Foz do Iguaçu, Brazil, 21-23 November RAINFOR monitoring in S. America www.rainfor.org www.afritron.org www.forestplots.net RAINFOR: more than 200 partners & 30 nations. Global collaborative measurements of >800 plots since 2000. Common protocols, for field monitoring of forests’ biomass, biodiversity and long-term carbon balance + data analysis RAINFOR in South America: > 350 field plots, of which 139 in Brazil 1985 – now! Now coordinated with GEOCARBON! RAINFOR Moore funded plots Intensive plots Collaborators' plots Pre 2008 plots RAINFOR includes O. Phillips1, Y. Malhi2, J. Lloyd1, T. Baker1, G. Lopez Gonzalez1, L. Arroyo3,4, N. Higuchi5, T. Killeen3,6, W. Laurance7,8, S. Lewis1,9, A. Monteagudo10,11, F. Ramirez, D. Neill4, P. Núñez Vargas10, N. Silva12,13, J. Terborgh14, R. Vásquez Martínez11, S. Almeida16, R. Brienen1, J. Chave18, J. A. Comiskey19, C. Czimczik, A. Di Fiore20, T. Erwin19, T. Feldpausch1, E. Jimenez, S. Patiño1, 22, J. Peacock1, N. Pitman15, A. Prieto, C.A. Quesada23,1, M. Saldias3, M. Silveira, A. Torres Lezama24, B. Vinceti25, E. Alvarez26, M.C. Peñuela, A. Rudas-Ll27, L. Anderson2, L. Aragao2, S. Brown17, N.D. Cardozo, K.J. Chao1, M. Garcia-Hernandez1, J. Silva, E. Honorio, I. Huamantupa, A. Peña Cruz, H. Ramirez, R. Salomão, N. Salinas, M. Schwarz, A. Sota, H. ter Steege, J. Stropp, G. van der Heijden1, H. Keeling1, C. Kuebler6, S. Laurance7,8, H. Nascimento7,8, J. Olivier18, W. Palacios21 1. University of Leeds, UK. 2. University of Oxford, U.K. 3. Museo Noel Kempff Mercado, Santa Cruz, Bolivia. 4. Missouri Botanical Garden, St. Louis MO, USA. 5. Instituto National de Pesquisas Amazônicas, Manaus, Brazil. 6. Center for Applied Biodiversity Science, Conservation International, Washington DC, USA. 7. Smithsonian Tropical Research Institute, Panama. 8. Biological Dynamics of Forest Fragments Program, Manaus, Brazil. 9. School of Geosciences, University of Edinburgh, UK. 10. Herbario Vargas, Universidad Nacional San Antonio Abad del Cusco, Peru. 11. Proyecto Flora del Perú, Jardin Botanico de Missouri, Oxapampa, Perú. 12. CIFOR, Tapajos, Brazil. 13. EMBRAPA Amazonia Oriental, Belém, Brazil. 14. Center for Tropical Conservation, Duke University, Durham NC, USA. 15. New York Botanical Garden, Bronx NY, USA. 16. Museu Paraense Emilio Goeldi, Belem, Brazil. 17. Winrock International, Arlington VA, USA. 18. Laboratoire Evolution et Diversité Biologique, CNRS/UPS Toulouse, France. 19. Smithsonian Institution, Washington DC, USA. 20. Department of Anthropology, New York University NY, USA. 21. Fundacion Jatun Sacha, Quito, Ecuador. 22. Alexander von Humboldt Biological Research Institute, Bogotá, Colombia. 23. Departamento de Ecología, Universidade de Brasilia, Brazil. 24. INDEFOR, Universidad de Los Andes, Mérida, Venezuela. 25. International Plant Genetic Resources Institute, Rome, Italy. 26. Equipo de Gestión Ambiental, Interconexión Eléctrica S.A. ISA., Medellín, Colombia 27. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia. CO2 vertical profiles over Amazon supported by GEOCARBON 2 sites currently funded by GEOCARBON: - Tabatinga, Amazonas state - Alta Floresta, Mato Grosso state Recent results for Amazonia • Amazonian intact forests were/are a carbon sink • This sink is vulnerable to climate change! • Fires, high temperature and drought can neutralize it! GEO IX PLENARY – European Commission side event. Foz do Iguaçu, Brazil, 21-23 November Component 5 Integrated CO2 budgets and uncertainties GEOCARBON + Global carbon budget presented at UNFCCC COP 18, Doha 2012 Source: Le Quéré et al. 2012 Global Carbon Project 2012 Carbon Budget Contributors 35 people from 10 countries Corinne Le Quéré (Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom) Glen Peters (Center for International Climate and Environmental Research – Oslo (CICERO), Norway) Robbie Andrew (Center for International Climate and Environmental Research – Oslo (CICERO), Norway) Bob Andres (Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Tennessee, United States) Tom Boden (Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Tennessee, United States) Thomas Conway (National Oceanic & Atmosphere Administration, Earth System Research Laboratory (NOAA/ESRL), Colorado, United States) Skee Houghton (Woods Hole Research Centre (WHRC), United States) Jo House (Cabot Institute, Department of Geography, University of Bristol, United Kingdom) Gregg Marland (Research Institute for Environment, Energy, and Economics, Appalachian State University, North Carolina, United States) Guido van der Werf (VU University Amsterdam, Netherlands) Anders Ahlström (Department of Physical Geography and Ecosystem Science, Lund University, Sweden) Laurent Bopp (Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif sur Yvette Cedex, France) Pep Canadell (Global Carbon Project, CSIRO Marine and Atmospheric Research, Australia) Philippe Ciais (Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif sur Yvette Cedex, France) Scott Doney (Woods Hole Oceanographic Institution (WHOI), United States) C. Enright (Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom) Pierre Friedlingstein (University of Exeter, United Kingdom) Chris Huntingford (Centre for Ecology and Hydrology (CEH), United Kingdom) Atul Jain (Department of Atmospheric Sciences, University of Illinois, United States) Charlotte Jourdain (Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom) Etsushi Kato (Center for Global Environmental Research (CGER), National Institute for Environmental Studies (NIES), Japan) Ralph Keeling (University of California - San Diego, Scripps Institution of Oceanography, California, United States) Kees Klein Goldewijk (Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands) Samuel Levis (National Center for Atmospheric Research (NCAR), Colorado, United States) Peter Levy (Centre for Ecology and Hydrology (CEH), United Kingdom) Mark Lomas (Centre for Terrestrial Carbon Dynamics (CTCD), Sheffield University, United Kingdom) Ben Poulter (Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif sur Yvette Cedex, France) Mike Raupach (Global Carbon Project, CSIRO Marine and Atmospheric Research, Australia) Jörg Schwinger (Geophysical Institute, University of Bergen & Bjerknes Centre for Climate Research, Bergen, Norway) Stephen Sitch (University of Exeter, United Kingdom) Benjamin Stocker (Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Switzerland) Nicolas Viovy (Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif sur Yvette Cedex, France) Charlie Wilson (Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom) Soenke Zaehle (Max-Planck-Institut für Biogeochemie, Jena, Germany) Ning Zeng (Department of Atmospheric and Oceanic Science, University of Maryland, United States) www.globalcarbonproject.org Now also GEOCARBON! Observed Emissions and Emission Scenarios The current emissions’ trend is along the worse IPCC scenario! SA90 (1990-1992, not shown), IS92 (1992-2000), SRES (2000-2012), RCPs (2012+) Source: Peters et al. 2012a; Global Carbon Project 2012 Fate of Anthropogenic CO2 Emissions (2002-2011 average) Not all the emissions remain into the atmosphere: ocean & land sinks “discount” 8.3±0.4 PgC/yr 4.3±0.1 PgC/yr 46% 1.0±0.5 PgC/yr + 2.6±0.8 PgC/yr 28% Calculated as the residual of all other flux components >50% discount! 26% 2.5±0.5 PgC/yr Changes in the Global C-Budget over Time Averaged sinks over 50 years: 44% atmosphere, 28% land, 29% ocean The sinks have continued to grow with increasing emissions It is uncertain how efficient the sinks will be in the future! We cannot rely forever on this 50% discount! Source: Le Quéré et al. 2012; Global Carbon Project 2012 GEO-Carbon-Office (GCO) Component 8 Both for GEOCARBON and CL-02 Dissemination and • Interface with EC exploitation of the results. • Liaise with GEO Secretariat andGFOI GFOI COORDINATION WITH Turn the results into policy UNDER DEVELOPMENT • Strengthen the effectiveness of the global relevant information. carbon community participation in GEO Liaise with relevant • Enhance the communication flow among the partners and decision different communities makers. • Support the Carbon Community of Practice • Mediate between science and policy • Outreach Currently: sustained and coordinated by the GEOCARBON Project, with a global perspective (not Europe only!) Ambition: engage a wider community and become an international coordinating office sustained by an international organization or partnership, after the project’s end (from 2015 onwards). GEO Conference “Towards a global Carbon Observing and Analysis System: Progresses and Challenges” Geneva, 1-2 October 2013 • Tropical C-budget and hotspots • Observations from space • In situ observations • Global CH4 cycle • Model data fusion at global and regional scale • Carbon and policy Please circulate the announcement GEO CL-02 "Global Carbon Observation and Analysis" Task meeting Geneva, 3-4 October 2013 • To revamp the work of the CL-02 task • Consolidate and enlarge the GEO community contributing to the “carbon” task • Improve the global coordination Short declaration / • Ensure commitment list of recommendations • Plan the next activities for the Ministerial Summit? • Establish the new GEO Carbon Community of Practice THANKS! GEO CARBON [email protected] www.cmcc.it