* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Podlesnyak, Andrey: Spin crossover phenomena in transition metal
Cross section (physics) wikipedia , lookup
State of matter wikipedia , lookup
Nuclear physics wikipedia , lookup
Magnetic field wikipedia , lookup
Electromagnetism wikipedia , lookup
Lorentz force wikipedia , lookup
Electron mobility wikipedia , lookup
Spin (physics) wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Magnetic monopole wikipedia , lookup
Neutron detection wikipedia , lookup
Electromagnet wikipedia , lookup
Superconductivity wikipedia , lookup
Condensed matter physics wikipedia , lookup
Spin crossover phenomena in transition metal oxides under high magnetic field Andrey Podlesnyak Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory [email protected] ORNL is managed by UT-Battelle for the US Department of Energy OUTLINE 1. Spin crossover - fascinating electronic structure phenomena 2. The origin of spin crossover 3. Magnetic field as a tool to analyze spin-state transitions 4. Magnetic field as a tool to manipulate with electronic states 5. Conclusions 2 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 OUTLINE 1. Spin crossover - fascinating electronic structure phenomena 2. The origin of spin crossover 3. Magnetic field as a tool to analyze spin-state transitions 4. Magnetic field as a tool to manipulate with electronic states 5. Conclusions 3 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 OUTLINE 1. Spin crossover - fascinating electronic structure phenomena 2. The origin of spin crossover 3. Magnetic field as a tool to analyze spin-state transitions 4. Magnetic field as a tool to manipulate with electronic states 5. Conclusions 4 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 OUTLINE 1. Spin crossover - fascinating electronic structure phenomena 2. The origin of spin crossover 3. Magnetic field as a tool to analyze spin-state transitions 4. Magnetic field as a tool to manipulate with electronic states 5. Conclusions 5 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Prussian blue was synthesized for the first time in Berlin in 1703. Its intense color arises from a charge transfer transition between the FeII HS and FeIII LS ion, which occurs when light in the red region of the visible spectrum is absorbed. KFeIII[FeII(CN)6]·xH2O Pablo Picasso, The Old Guitarist (1903), Art Institute of Chicago. The Blue Period 6 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Prussian blue was synthesized for the first time in Berlin in 1703. Its intense color arises from a charge transfer transition between the FeII HS and FeIII LS ion, which occurs when light in the red region of the visible spectrum is absorbed. KFeIII[FeII(CN)6]·xH2O Pablo Picasso, The Old Guitarist (1903), Art Institute of Chicago. The Blue Period 7 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Thermal, pressure-induced and magnetic-field spin crossovers A mononuclear ferric complex [Fe(H-5-Br-thsa)(5-Br-thsa)]⋅H2O shows unprecedented reversible six-step spin-crossover behavior. Zhao-Yang Li, et al., Chemistry - A European Journal 19, 12948 (2013) Pressure-Induced Cooperative Spin Transition in Iron(II) 2D Coordination Polymers [Fe(3-Fpy)2MII(CN)4], (MII = Ni, Pd, Pt) G. Levchenko, et al., J. Phys. Chem. B 115, 8176 (2011) Set of isotherms showing the triggering effect on the HS fraction in Co(H2(fsa)2en)(py)2. Bousseksou A., et al., Phys. Rev B 65, 172412 (2002) 8 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Electric and photo-induced spin crossover 9 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 The origin of spin crossover orbitals forming eg set orbitals forming t2g set The difference in energy between the eg and the t2g energy levels is the crystal field splitting parameter, Do. The Pairing Energy P is the energy required to pair two electrons 10 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 The origin of spin crossover Intermediate spin state High spin state eg Low spin state eg eg ∆ο ∆o t2g t2g t2g ∆ is small ∆ is large ∆o < P ∆o > P electrons occupy eg and t2g orbitals singly before pairing 11 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 electrons pair in t2g oribtals before occupying eg orbitals Spin-state puzzle in the cobaltites Ground state electron configuration: [Ar].3d7.4s2 Low spin state Intermediate spin state High spin state Co2+ (3d7) S=1/2 Co3+ (3d6) S=0 S=1 S=2 Co4+ (3d5) S=1/2 S=3/2 S=5/2 12 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 S=3/2 OUTLINE 1. Spin crossover - fascinating electronic structure phenomena 2. The origin of spin crossover 3. Magnetic field as a tool to analyze spin-state transitions 4. Magnetic field as a tool to manipulate with electronic states 5. Conclusions 13 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Intermediate vs high spin state [Ar].3d7.4s2 z Co xy La O Rhombohedral unit cell of LaCoO3 Possible electronic configurations of Co3+ ions 14 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 K. Azai, et al., J.Phys.Soc.Jpn. 67 (1998) 290. Intermediate vs high spin state Intermediate spin state! High-Field Magnetostriction, K. Sato, et al., J.Phys.Soc.Jpn. 77 (2008) 024601 Photoemission spectroscopy, K. Azai, et al., J.Phys.Soc.Jpn. 67 (1998) 290 Magnetic susceptibility, C. Zobel, et al., Phys. Rev. B 66 (2002) R020402 Infrared spectroscopy, S. Yamaguchi, et al., Phys. Rev. B 55 (1998) R8666 Raman spectroscopy, A. Ishikawa, et al., Phys. Rev. Lett. 93 (2004) 136401 LDA+U calculations, M. Korotin, et al., Phys. Rev. B 54 (1996) 5309 High spin state! Electron spin resonance, S. Noguchi, et al., Phys. Rev. B 66 (2002) 094404 Magnetic susceptibility, T. Kyomen, et al., Phys. Rev. B 67 (2003) 144424 Heat capacity, T. Kyomen, et al., Phys. Rev. B 71 (2005) 024418 Hartree-Fock calculations, M. Zhuang, et al., Phys. Rev. B 57 (1998) 10705 CoO6 claster calculations, M. Haverkort, et al., Phys. Rev. Lett. 97 (2006) 176405 ... 15 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Intermediate vs high spin state Temperature evolution of the INS profiles measured in LaCoO3. The filled circles correspond to the LaAlO3 nonmagnetic reference compound at T = 50 K. Observed and fitted temperature dependence of the integral intensity of the INS peak at 0.6 meV. A. Podlesnyak, et al., PRL 101 (2008) 247603. IS: S=1, L=1, J=2 e1g S=1 HS: S=2, L=1, J=1 eg2 4 t2g 5 t2g M. Haverkort, PhD thesis, cond-mat/0505214 (2005) 16 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 J=1 Intermediate vs high spin state HS |+1> 14 One striking difference between these scenarios: this is the predicted g-factor. IS |0> -> |+1> dE (meV) 10 The HS state is a triplet with a g-factor of about 3.5, whereas the IS has g-factor of about 2.0. IS |+1> HS |0> -> |+1> 12 |0> 8 IS | -1> 6 HS |-1> ΔE = µB g S B0 4 2 LS 0 0 2 4 6 8 10 12 14 B0 (T) IS: S=1, L=1, J=2 e1g S=1 HS: S=2, L=1, J=1 eg2 4 t2g 5 t2g M. Haverkort, PhD thesis, cond-mat/0505214 (2005) 17 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 J=1 16 18 20 Intermediate vs high spin state HS! HS |+1> 14 IS |0> -> |+1> 10 dE (meV) IS |+1> HS |0> -> |+1> 12 |0> 8 IS | -1> 6 HS |-1> ΔE = µB g S B0 4 2 The magnetic inelastic scattering at T = 50K in 0T (circles) and 6T (boxes) applied field. LS 0 0 2 4 6 8 10 12 14 B0 (T) IS: S=1, L=1, J=2 e1g S=1 HS: S=2, L=1, J=1 eg2 4 t2g 5 t2g M. Haverkort, PhD thesis, cond-mat/0505214 (2005) 18 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 J=1 16 18 20 Evolution of the INS in the magnetic field La0.998Sr0.002CoO3 Temperature dependence of the magnetic susceptibility for lightly doped crystals of La1-xSrxCoO3 A. Podlesnyak, et al., PRL 101 (2008) 247603. S. Yamaguchi, et al., Phys. Rev. B 53 (1996) R2926 19 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Evolution of the INS in the magnetic field La0.998Sr0.002CoO3, T=2K 1.2 400 H=0.4T ?!, M=15µB 1.0 300 Co4+ HS H=0.3T ∆E, meV Neutron counts 0.8 200 H=0.2T Co4+IS 0.6 0.4 100 H=0T 0.2 0 0.0 -1.5 -1.0 -0.5 Energy transfer, meV 0.0 0.0 0.1 0.2 0.3 H, T 0.4 0.5 0.6 Spin-state polaron in La1-xSrxCoO3 A. Podlesnyak, et al., PRB 83 (2011) 134430. A. Podlesnyak, et al., PRL 101 (2008) 247603. Spin-state polaron in La1-xSrxCoO3 Co3+, IS Co4+, LS eg t2g Co4+, LS Co3+, IS eg t2g A. Podlesnyak, et al., PRB 83 (2011) 134430. 23 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 OUTLINE 1. Spin crossover - fascinating electronic structure phenomena 2. The origin of spin crossover 3. Magnetic field as a tool to analyze spin-state transitions 4. Magnetic field as a tool to manipulate with electronic states 5. Conclusions 24 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 HS |+1> 14 IS |0> -> |+1> 10 dE (meV) IS |+1> HS |0> -> |+1> 12 |0> 8 IS | -1> 6 HS |-1> 4 2 LS 0 0 2 4 6 8 10 B0 (T) 25 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 12 14 16 18 20 14 12 10 dE (meV) 8 6 4 2 IS |-1> 0 0 -2 10 20 30 40 50 60 70 80 90 100 B0 (T) -4 HS |-1> 26 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 14 12 10 dE (meV) 8 6 4 2 IS |-1> 0 0 -2 10 20 30 40 50 60 70 80 90 100 B0 (T) -4 HS |-1> 27 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 28 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 SUMMARY Spin crossover - fascinating electronic structure phenomena. We are waiting for strong magnetic fields to become available to INS: a “must” tool to analyze spin-state transitions; to manipulate with electronic states. 29 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Georg Ehlers, Quantum Condensed Matter Division, ORNL, Oak Ridge TN, USA Margarita Russina, The Helmholtz Centre Berlin for Materials and Energy, Germany Albert Furrer, Thierry Strässle, Laboratory for Neutron Scattering, Paul Scherrer Institute, Switzerland. Kazimierz Conder, Ekaterina Pomjakushina, Peter Allenspach, Laboratory for Developments and Methods, Paul Scherrer Institute, Switzerland. Maurits Haverkort, Daniel Khomskii, II Physikalisches Institut, Universität zu Köln, Köln, Germany. 30 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Vincent van Gogh's Starry Night uses Prussian blue pigments. 31 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 32 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 33 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Intermediate spin state e1g S=1 5 t2g (x2-y2)1(xy)1 (z2)1(xy)1 Georg Ehlers, Quantum Condensed Matter Division, ORNL, Oak Ridge TN, USA Margarita Russina, The Helmholtz Centre Berlin for Materials and Energy, Germany Albert Furrer, Thierry Strässle, Laboratory for Neutron Scattering, Paul Scherrer Institute, Switzerland. Kazimierz Conder, Ekaterina Pomjakushina, Peter Allenspach, Laboratory for Developments and Methods, Paul Scherrer Institute, Switzerland. Maurits Haverkort, Daniel Khomskii, II Physikalisches Institut, Universität zu Köln, Köln, Germany. 35 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30 Vincent van Gogh's Starry Night uses Prussian blue pigments. Intermediate spin state = S 1= L 1= J 0,1,2 (x2-y2)1(xy)1 M. Haverkort, PhD thesis, cond-mat/0505214 (2005) High spin state S=1 = S 2= L 1= J 1,2,3 e g2 4 t2g M. Haverkort, PhD thesis, cond-mat/0505214 (2005) 38 Andrey Podlesnyak, Neutron Scattering in Magnetic Fields Above 15 Tesla, October 29-30