Download bio 11 review ( end of term 2016

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Introduction to evolution wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

Transcript
BIOLOGY 11 – END OF TERM REVIEW
We have studied all or parts of the following chapters. Below is a brief summary of the content or key
ideas included in the relevant sections of each chapter. Students are expected to re-read these
sections before using the review packages.
CHAPTERS STUDIED:
15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27,
Section 15-1: The Puzzle of Life's Diversity
During his travels, Charles Darwin made numerous observations and collected evidence that led him to
propose a revolutionary hypothesis about the way life changes over time.
Darwin observed that the characteristics of many animals and plants varied noticeably among the
different islands of the Galápagos.
Section 15-2: Ideas That Shaped Darwin's Thinking
Hutton and Lyell helped scientists realize that Earth is many millions of years old, and the processes that
changed Earth in the past are the same processes that operate in the present.
Lamarck proposed that by selective use or disuse of organs, organisms acquired or lost certain traits
during their lifetime. These traits could then be passed on to their offspring. Over time, this process led
to change in a species.
Malthus reasoned that if the human population continued to grow unchecked, sooner or later there
would be insufficient living space and food for everyone.
Section 15-3: Darwin Presents His Case
In artificial selection, nature provides the variation among different organisms, and humans select those
variations that they find useful.
Over time, natural selection results in changes in the inherited characteristics of a population. These
changes increase a species' fitness in its environment.
Darwin argued that living things have been evolving on Earth for millions of years. Evidence for this
process could be found in the fossil record, the geographical distribution of living species, homologous
structures of living organisms, and similarities in early development.
Section 16-1: Genes and Variation
Biologists have discovered that there are two main sources of genetic variation: mutations and the
genetic shuffling that results from sexual reproduction.
The number of phenotypes produced for a given trait depends on how many genes control the trait.
Section 16-2: Evolution as Genetic Change
Natural selection on single-gene traits can lead to changes in allele frequencies and thus to evolution.
Natural selection can affect the distributions of phenotypes in any of three ways: directional selection,
stabilizing selection, or disruptive selection.
In small populations, individuals that carry a particular allele may leave more descendants than other
individuals, just by chance. Over time, a series of chance occurrences of this type can cause an allele to
become common in a population.
Five conditions are required to maintain genetic equilibrium from generation to generation: there must
be random mating; the population must be very large; and there can be no movement into or out of the
population, no mutations, and no natural selection.
Section 16-3: The Process of Speciation
As new species evolve, populations become reproductively isolated from each other.
Speciation in the Galápagos finches occurred by founding of a new population, geographic isolation,
changes in the new population's gene pool, reproductive isolation, and ecological competition.
Section 17-1: The Fossil Record
The fossil record provides evidence about the history of life on Earth. It also shows how different groups
of organisms have changed over time.
Relative dating allows paleontologists to estimate a fossil's age compared with that of other fossils.
In radioactive dating, scientists calculate the age of a sample based on the amount of remaining
radioactive isotopes it contains.
After Precambrian Time, the basic divisions of the geologic time scale are eras and periods.
Section 17-4: Patterns of Evolution
Six important patterns of macroevolution are:
mass extinctions,
adaptive radiation,
convergent evolution,
coevolution,
punctuated equilibrium, and
changes in developmental genes.
Chpt 18 - Classification
Three Domain Model
Three Domains of Life
6 kingdom system
Linnean classification
Using a dichotomous key ( examples)
Section 19-1: Prokaryotes
Archaebacteria lack peptidoglycan, a carbohydrate found in the cell walls of eubacteria, and their
membrane lipids are quite different. Also, the DNA sequences of key archaebacterial genes are more like
those of eukaryotes than eubacteria.
Prokaryotes are identified by their shapes, the chemical natures of their cell walls, the ways they move,
and the ways they obtain energy.
Section 19-2: Bacteria in Nature
Bacteria are vital to maintaining the living world. Some are producers that capture energy by
photosynthesis. Others help to break down the nutrients in dead matter and the atmosphere, allowing
other organisms to use the nutrients.
Bacteria cause disease in one of two general ways. Some damage the tissues of the infected organism
directly by breaking them down for food. Other bacteria release toxins (poisons) that harm the body.
Section 19-3: Viruses
A typical virus is composed of a core of either DNA or RNA surrounded by a protein coat.
In a lytic infection, a virus enters a cell, makes copies of itself, and causes the cell to burst.
In a lysogenic infection, a virus embeds its genome into the DNA of the host cell and is replicated along
with the host cell's DNA.
Chpt 20 PROTISTS
Characteristics of Protists
Plant like protists
Animal like protists
Life cycle (Alternation of Generation)
Insert diagram here
Figure 20-7 Animallike protists can cause serious diseases, including malaria. The life cycle of
Plasmodium, which causes malaria, is shown below:
As the new labels (below) point out, the sexual phases of the life cycle take place inside the body of the
parasite's mosquito host. After a mosquito picks up gamete cells from the blood of an infected human,
fertilization takes place in the gut of the mosquito. A diploid zygote is formed very briefly, and quickly
undegoes meiosis, eventually producing haploid sporozoite cells that migrate to the salivary glands of
the mosquito. The other stages of the parasite life cycle are haploid, including all stages inside the
human host.
Section 22-1: Introduction to Plants
Plants are multicellular eukaryotes that have cell walls made of cellulose. They develop from
multicellular embryos and carry out photosynthesis using the green pigments chlorophyll a and b.
The lives of plants revolve around the need for sunlight, water and minerals, gas
exchange, and the movement of water and nutrients throughout the plant body.
The first plants evolved from an organism much like the multicellular green algae living today.
Section 22-2: Bryophytes
Bryophytes have life cycles that depend on water for reproduction. Lacking vascular tissue, these plants
can draw up water by osmosis only a few centimeters above the ground.
Bryophytes include mosses, liverworts, and hornworts.
In bryophytes, the gametophyte is the dominant, recognizable stage of the life cycle and is the stage
that carries out most of the plant's photosynthesis.
Section 22-3: Seedless Vascular Plants
Both forms of vascular tissue—xylem and phloem—can move fluids throughout the plant body, even
against the force of gravity.
Seedless vascular plants include club mosses, horsetails, and ferns.
Ferns and other vascular plants have a life cycle in which the diploid sporophyte is the dominant stage.
Section 22-4: Seed Plants
Adaptations that allow seed plants to reproduce in areas without water include flowers or cones, the
transfer of sperm by pollination, and the protection of embryos in seeds.
Gymnosperms include gnetophytes, cycads, ginkgoes, and conifers.
Life cycle typified by A of G
Section 22-5: Angiosperms—Flowering Plants
Angiosperms have unique reproductive organs known as flowers. Flowers contain ovaries, which
surround and protect the seeds.
Monocots and dicots are named for the number of seed leaves, or cotyledons, in the plant embryo.
Monocots have one seed leaf, and dicots have two.
There are three categories of plant life spans: annual, biennial, and perennial.
Section 23-1: Specialized Tissues in Plants
The three principal organs in seed plants are roots, stems, and leaves.
Plants consist of three tissue systems: dermal tissue, vascular tissue, and ground tissue.
Meristematic tissue is the only plant tissue that produces new cells by mitosis.
Vascular tissue contains several different cell types. Xylem consists of tracheids and vessel elements,
and phloem consists of sieve tube elements and companion cells.
Section 23-2: Roots
The two main types of roots are taproots, found mainly in dicots, and fibrous roots, found mainly in
monocots.
A mature root has an outside layer of epidermal cells and a central cylinder of vascular tissue
separated by a large area of ground tissue called the cortex.
Roots anchor a plant in the ground and absorb water and dissolved nutrients from the soil.
Section 23-3: Stems
Stems have three important functions: they produce leaves, branches, and flowers; they hold leaves
up in the sunlight; and they transport various substances between roots and leaves.
In monocots, vascular bundles are scattered throughout the stem. In dicots and most gymnosperms,
vascular bundles are arranged in a cylinder.
In all seed plants, primary growth of stems is produced by cell divisions in the apical meristem.
In conifers and dicots, secondary growth takes place in lateral meristematic tissues called the
vascular cambium and cork cambium.
Section 23-4: Leaves
The structure of a leaf is optimized for absorbing light and carrying out photosynthesis.
Plants keep their stomata open just enough to allow photosynthesis to take place, but not so much
that they lose an excessive amount of water.
Section 23-5: Transport in Plants
Root pressure, capillary action, and transpiration work together to move water through the xylem
tissue of even the largest plant.
When nutrients are pumped into or removed from the phloem system, the change in concentration
causes a movement of water in that same direction. As a result, phloem is able to move nutrients in
either direction to meet the nutritional needs of the plant.
Section 24-1: Reproduction With Cones and Flowers
Reproduction in gymnosperms takes place in cones, which are produced by a mature sporophyte plant.
Flowers are reproductive organs that are composed of four kinds of specialized leaves: sepals, petals,
stamens, and carpels.
Reproduction in angiosperms takes place within the flower. Following pollination and fertilization, the
seeds develop inside protective structures called fruits.
Most gymnosperms are wind pollinated, whereas most flowering plants are pollinated by animals.
Section 24-2: Seed Development and Germination
As angiosperm seeds mature, the ovary walls thicken to form a fruit that encloses the developing seeds.
Seeds dispersed by animals are typically contained in fleshy, nutritious fruits.
Seeds dispersed by wind or water are typically lightweight, allowing them to be carried in the air or to
float on the surface of the water.
Environmental factors such as temperature and moisture can cause a seed to end dormancy and
germinate.
Section 25-3: Plant Adaptations
To take in sufficient oxygen, many aquatic plants have tissues with large air-filled spaces through which
oxygen can diffuse.
Plant adaptations to a desert climate include extensive roots, reduced leaves, and thick stems that can
store water.
Plants that have specialized features for obtaining nutrients include carnivorous plants and parasites.
Many plants defend themselves against insect attack by manufacturing compounds that have powerful
effects on animals.
Section 26-1: Introduction to the Animal Kingdom
An animal is a multicellular, eukaryotic heterotroph whose cells lack cell walls.
Animals are specialized to carry out the following essential functions: feeding, respiration, circulation,
excretion, response, movement, and reproduction.
In general, complex animals tend to have high levels of cell specialization and internal organization,
bilateral body symmetry, cephalization, and a body.
Section 26-2: Sponges
Sponges are classified as animals because they are multicellular, heterotrophic, have no cell walls, and
contain a few specialized cells.
The movement of water through a sponge provides a simple mechanism for feeding, respiration,
circulation, and excretion.
Section 26-3: Cnidarians
Cnidarians are soft-bodied, carnivorous animals that have stinging tentacles arranged in circles around
their mouth. They are the simplest animals to have body symmetry and specialized tissues.
Cnidarians typically have a life cycle that includes two different-looking stages, a polyp and a medusa.
Cnidarians include jellyfishes, hydras and their relatives, sea anemones, and corals.
Section 27-1: Flatworms
Flatworms are soft, flattened worms that have tissues and internal organ systems. They are the simplest
animals to have three embryonic germ layers, bilateral symmetry, and cephalization.
Turbellarians are free-living marine or freshwater flatworms.
Flukes are parasitic flatworms that usually infect the internal organs of their hosts.
Tapeworms are long, flat, parasitic worms that are adapted to life inside the intestines of their hosts.
Section 27-2: Roundworms
Roundworms are unsegmented worms that have pseudocoeloms and digestive systems with two
openings—a mouth and an anus.
Parasitic roundworms include trichinosis-causing worms, filarial worms, ascarid worms, and
hookworms.Section 27-3: Annelids
Annelids are worms with segmented bodies. They have a true coelom that is completely lined with
mesoderm.
Oligochaetes are annelids that typically have only a few setae and live in soil or fresh water.
Leeches are typically external parasites that suck the blood and body fluids of their host.
Polychaetes are marine annelids that have paired, paddlelike appendages tipped with setae.
Section 27-3: Annelids
Annelids are worms with segmented bodies. They have a true coelom that is completely lined with
mesoderm.
Oligochaetes are annelids that typically have only a few setae and live in soil or fresh water.
Leeches are typically external parasites that suck the blood and body fluids of their host.
Polychaetes are marine annelids that have paired, paddlelike appendages tipped with setae.