* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 5. Quantum Field Theory (QFT) — QED Quantum Electrodynamics
Hydrogen atom wikipedia , lookup
Coherent states wikipedia , lookup
Casimir effect wikipedia , lookup
Orchestrated objective reduction wikipedia , lookup
Atomic theory wikipedia , lookup
Particle in a box wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
EPR paradox wikipedia , lookup
Quantum state wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Wave–particle duality wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Technicolor (physics) wikipedia , lookup
Elementary particle wikipedia , lookup
Boson sampling wikipedia , lookup
Path integral formulation wikipedia , lookup
Hidden variable theory wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
BRST quantization wikipedia , lookup
Gauge fixing wikipedia , lookup
Quantum chromodynamics wikipedia , lookup
Topological quantum field theory wikipedia , lookup
Canonical quantization wikipedia , lookup
Feynman diagram wikipedia , lookup
Higgs mechanism wikipedia , lookup
Quantum field theory wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Yang–Mills theory wikipedia , lookup
Renormalization group wikipedia , lookup
Renormalization wikipedia , lookup
Scalar field theory wikipedia , lookup
5. Quantum Field Theory (QFT) — QED Quantum Electrodynamics (QED) • the bare Lagrangian including gauge-fixing – bare means: one writes the Lagrangian from the theorists viewpoint, no connection to observation yet µν 1 (∂.A )2 / 0 ψ0 − 1 − F F L0 = ψ̄0(i∂/ − m0)ψ0 − g0ψ̄0A 0 0µν 0 4 2ξ0 / = γ µAµ, and (∂.A0) = ∂µAµ – with the abbreviations ∂/ = γ µ∂µ, A 0 – and the fieldstrength Fµν = ∂µAν − ∂ν Aµ • QED includes one charged particle (ψ) and the photon (Aµ) – the charged particle ψ (i.e. the electron) has the bare mass m0 ∗ ψ is understood as a 4-component Dirac spinor ∗ fulfilling the Dirac equation (i∂/ − m0)ψ = 0 ∗ ψ̄ = ψ †γ 0 is the adjoint spinor – and couples to the photon with the bare interactionstrength g0 – ξ0 is the bare (unrenormalised) gauge-fixing parameter Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 1 5. Quantum Field Theory (QFT) — QED QED in renormalised perturbation theory −1/2 • introduces the renormalised fields ψ = Z2 −1/2 µ A0 ψ0 and Aµ = Z3 • the renormalised Lagrangian includes gauge-fixing µν 1 (∂.A)2 / −1 F F − L = ψ̄(i∂/ − m)ψ − g ψ̄ Aψ µν 4 2ξ 1 (Z − 1)F F µν / −4 +ψ̄[(Z2 − 1)i∂/ − δm]ψ − (Z1 − 1)g ψ̄ Aψ 3 µν – with field counterterms δZψ = Z2 − 1 and δZA = Z3 − 1 ∗ since ψ is a spinor, δZψ will in principle be matrix-valued, treating different helicities differently ∗ but in QED the matrix is just a number times the unit matrix in spin space – a mass counterterm δm = Z2m0 − m 1 δZ ) – a coupling counterterm (Z1 − 1) = δg + g(δZψ + 2 A ∗ the change of the coupling, δg, has to combined with the changes in the fields – and the redefined gauge-fixing parameter ξ = ξ0/Z3 ∗ in the full treatment ξ should also receive a counterterm δξ ∗ the value of δξ is then determined by a (new) renormalisation condition Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 2 5. Quantum Field Theory (QFT) — QED QED in renormalised perturbation theory • Feynman rules describing the incoming and outgoing states – fermion spinors distinguish in- or outgoing particle or antiparticle ∗ fermion lines carry an arrow, indicating the fermion flow ∗ uα(p, s) ∗ ūα(p, s) ∗ vα(p, s) ∗ v̄ α(p, s) initial state particle, coming from the past ✲ . ✲ . ✲ . p final state particle, going into the future . final state antiparticle, going into the future, but fermion-arrow enters the diagram . initial state antiparticle, coming from the past, but fermion-arrow leaves the diagram ✲ . p p . p . ∗ the momentum p points into the future, s describes the helicity state – gauge boson polarisation vectors distinguish in- or outgoing bosons ∗ in QED the gauge boson lines carry no arrow since there is no conserved charge connected to the photon ∗ in QED the gauge boson is its own antiparticle ∗ εµ(k, λ) ∗ ε∗µ(k, λ) ✲ initial state boson, coming from the past final state boson, going into the future ∗ the momentum k points into the future Thomas Gajdosik – Concepts of Modern Theoretical Physics k . ✲ . . k . 13.09.2012 3 5. Quantum Field Theory (QFT) — QED QED in renormalised perturbation theory • diagrammatic Feynman rules can be obtained from the pathintegral µ Z[η, η̄, J ; g] = N × Z i x L[ψ̄,ψ,Aµ;g]+ψ̄η+η̄ψ+J µAµ D ψ̄ Dψ DAµ e R • spinors ψ and ψ̄ are related by ψ̄ = ψ †γ 0 – but used as independent variables ∗ in the same way as using the complex numbers z and z̄ = z ∗ instead of real and imaginary parts • η and η̄ are anticommuting and spinorvalued source functions ⇒ (ψ̄η) and (η̄ψ) are commuting Lorentz scalars – the funtional derivative δ δη is also anticommuting: δ δ (ψ̄(y)η(y)) = −ψ̄(y) η(y) = −ψ̄(y)δ(x − y) = −ψ̄(x) δη(x) δη(x) • for QED the Faddeev-Popov determinant ∆g [Aµ] = Det[∂ 2] – which is constant and absorbed in the normalisation constant N – Det[∂ 2] means summing over the spectrum of the differential operator ∂ 2 ∗ this can be written as a pathintegral over the introduced ghosts ∗ but it is completely independent from the physical fields in a U (1)-gauge theory Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 4 5. Quantum Field Theory (QFT) — QED QED in renormalised perturbation theory • Feynman rules obtained from the pathintegral can be pictured as – fermion propagator β β β p [0] β / +mδ α i = i p2α−m2+iǫ SF α (p) = p−m / α ∗ carries the spinor index ∗ has a direction: α ✲ β . p . the momentum direction is counted by the propagator arrow [0] ∗ has no direction k k i ∆µν (k) = k2+iǫ −gµν + (1 − ξ) kµ2ν – gauge boson propagator ∗ carries the vector index µ ✲ ν . k . the momentum direction does not change the propagator µ [0] – fermion-gauge boson vertex −igΓµ (p, p′; k) = −ig(γµ) ∗ connects one vector index with two spinor indices ∗ the momenta of the fermion follow the fermion lines, k ❄ . ✶ ✏✏ α . p PP q ′ β p ∗ the momentum of the gauge boson follows from momentum conservation ∗ together with spinors and polarisation vector: ′ (∗)µ (k, λ) = −ig(2π)4 δ 4 (p + k − p′ )ūα (p′ , s′ )(γ ) β u (p, s)ε(∗)µ (k, λ) −igū(p′ , s′ )Γ[0] µ α β µ (p, p ; k)u(p, s)ε Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 5 5. Quantum Field Theory (QFT) — QED QED in renormalised perturbation theory • Feynman rules for countertems can be pictured as – fermion field counterterm i[(Z2 − 1)p / − δm] α .β ✲ ✲ p ∗ includes two renormalisation constants, Z2 and δm p . ∗ has two spinor indices to couple to two fermion propagators ∗ has a direction: the momentum direction is counted by the propagator arrow – gauge boson field counterterm µ i[−g µν k2 + kµ kν ](Z3 − 1) ∗ includes one renormalisation constant and a projection operator .ν ✲ ✲ k k . that guarantees that the photon only couples with transverse polarisations ∗ has two vector indices to couple to two gauge boson propagators ∗ has no direction: changing of the momentum direction does not affect the counterterm – vertex counterterm −igγ µ(Z1 − 1) µ k ❄ . ∗ includes the renormalisation constants, δZψ , δZA, and δg ∗ has two spinor indices to couple to two fermion propagators ✶ ✏✏ α . ∗ and a vector indices to couple to one gauge boson propagators p PP q ′ β p ∗ is related to the fermion field counterterm Z2 by a Ward identity Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 6 5. Quantum Field Theory (QFT) — QED Renormalisation conditions in QED • somewhat similar like in the ABC-theory i • the full fermion propagator at p2 = m2 should be SF = p−m / – this fixes the mass counterterm δm – and the fermion field counterterm Z2 ∗ by considering the fermion self energy diagram • the gauge independent part of the full gauge boson propagator −igµν at q 2 = 0 should be ∆µν (q) = q2+iǫ – this fixes the gauge boson field counterterm Z3 ∗ by considering the gauge boson self energy diagram • the fermion-gauge boson vertex should give the classical scattering of photons on electrons at low energies: Thomson scattering – this gives a condition for nearly real particles ∗ the decay e → e + γ is kinematically not allowed – it also enforces the Ward identity, which gives Z1 = Z2 Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 7 5. Quantum Field Theory (QFT) — QED Elementary one-loop diagrams in QED • are the lowest order diagrams that include loops • can be calculated from the given Feynman rules • fermion self energy Z [2] −iΣ (p) = = (−ig) 2 (−ig)2 Z ✛k α d4 k µ γ SF (p + k)γ ν ∆µν (k) 4 (2π) ✲ ✲ p p+k . ✲ β p . /+p k d4 k µ i /+m ν γ i γ (2π)4 (k + p)2 − m2 + iǫ k2 + iǫ −gµν kµ kν + (1 − ξ) 2 k – the first denominator D1 = (k + p)2 − m2 = k2 + 2k.p + p2 − m2 – the numerator can be simplified using the γ-matrix identities: 2 2 2 2 −2 / (k /+p / = k−2 (k2 k / + 2(k.p)k /−p /−p k−2 k / + m)k /k + mk ) = [D1 − (p − m )]k k /+m and −iΣ[2] (p) = /+/ /+/ −γ µ (k p + m)γµ = 2(k p) − 4m g2 Z p / / (p2 − m2 )k k /−m − − + (1 − ξ) (2π)4 [D1 + iǫ][k2 + iǫ] [k2 + iǫ]2 [D1 + iǫ][k2 + iǫ]2 [D1 + iǫ][k2 + iǫ] d4 k /+p 2(k /) − 4m – the gauge dependent part vanishes for external lines: ∗ the first term vanishes with the integration over d4k ∗ the second term is zero, as for external particles p2 = m2 ∗ the third term vanishes when acting on a spinor: ū(p)(/ p − m) = (/ p − m)u(p) = 0 Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 8 5. Quantum Field Theory (QFT) — QED Elementary one-loop diagrams in QED µ k ❄ • fermion-gauge boson vertex correction ′ −igΓ[2] µ (p, p ) = = = (−ig)3 Z d4 q ρ γ SF (p′ + q)γ µ SF (p + q)γ ν ∆ρν (q) 4 (2π) p + q✏ ✶ α p′ + / q+m p+/ q+m d4 q ρ / / µ γ i γ i γν (−ig) 4 ′ 2 2 2 2 (2π) (p + q) − m + iǫ (p + q) − m + iǫ qρ qν i −gρν + (1 − ξ) 2 × 2 q + iǫ q 3 −g 3 Z p+k+q P q P ✏ Z ✶ ✏✏ p . PP q ′ . ✛ β p q γν (/ p′ + / q + m)γ µ(/ p+/ q + m)γ ν d4 q (2π)4 [q 2 + iǫ][(p′ + q)2 − m2 + iǫ][(p + q)2 − m2 + iǫ] +(1 − ξ)g 3 Z q (p q + m)γ µ (p q + m)/ q / d4 q /′ + / /+/ = ... (2π)4 [q 2 + iǫ]2 [(p′ + q)2 − m2 + iǫ][(p + q)2 − m2 + iǫ] – has three denominators – without additions it cannot describe an allowed process ∗ as four momentum conservation forces the momentum of the photon to vanish ∗ Thomson limit: very low energy scattering of photons on electrons Eγ ≪ m ∗ this limit is used to define the renormalisation condition : lim ′ k=p −p→0 ′ gū(p′ )Γ[2] µ (p, p )u(p) = gū(p)γµ u(p) – gives the Ward identity Z1 = Z2 from − ∂p∂ µ (/p − m)−1 = (/p − m)−1γµ(/p − m)−1 Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 9 5. Quantum Field Theory (QFT) — QED Elementary one-loop diagrams in QED ✛p [2] • gauge boson self energy iΠµν (q) – has an additional (−1) due Z to the closed fermion loop iΠ[2] µν (q) = d4 p (−1)(−ig)2 Z (2π) µ γ β α SF γ δ (p) (p + q)(γ ) S (γ ) ν µ δ F α β 4 . g2 = ig 2 − (4π)2 − ✲ ✲ ν k p+k Tr[γµ i(/ p+/ q + m)γν i(/ p + m)] d4 p (2π)4 [(p + q)2 − m2 + iǫ][p2 − m2 + iǫ] = = ✲ k Z d4 p 4[(p + q)µ pν + pµ (p + q)ν − gµν (p.(p + q) − m2 )] iπ 2 [(p + q)2 − m2 + iǫ][p2 − m2 + iǫ] – combining the denominators with a Feynman parameterintegral [AB]−1 = iΠ[2] µν (q) . ig 2 (4π)2 Z 0 1 dx Z R1 0 dx[xA + (1 − x)B]−2 d4 p 4[(p + q)µ pν + pµ (p + q)ν − gµν (p.(p + q) − m2 )] iπ 2 [p2 + 2xp.q + xq 2 − m2 + iǫ]2 – replacing the integration variable p → p′ = p + xq and omitting terms odd in p′ ∗ gives for the denominator p2 + 2xp.q + xq 2 − m2 = p′2 + x(1 − x)q 2 − m2 := p′2 − ∆γ := D ∗ and the numerator N = (p + q)µ pν + pµ (p + q)ν − gµν (p.(p + q) − m2 ) N ⇒ iΠ[2] µν (q) = 2p′µ p′ν + (1 − 2x)[qµ p′ν + p′µ qν ] − 2x(1 − x)qµ qν − gµν (p′2 + (1 − 2x)(p′.q) − x(1 − x)q 2 − m2) = 2p′µ p′ν − gµν (p′2 − ∆γ ) + 2x(1 − x)(gµν q 2 − qµ qν ) + terms linear in p′ = 4ig 2 − (4π)2 Z 1 dx 0 Z gµν d4 p′ 2p′µ p′ν 8ig 2 − [gµν q 2 − qµ qν ] − 2 2 2 iπ [D + iǫ] [D + iǫ] (4π) Z 0 1 dx Z d4 p′ x(1 − x) iπ 2 [D + iǫ]2 – the first part vanishes when regulating the integral, the second part is transverse: qµΠ[2] µν (q) = 0 Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 10 5. Quantum Field Theory (QFT) — QED Elementary one-loop diagrams in QED [2] • regulating the gauge boson self energy iΠµν (q) – the momentum integration d4p averages over all possible directions ⇒ the result has to be independent from the directions of p ∗ the only term possible is gµν – contraction with g µν gives a scalar integral: Z Z 4p d4p 2p p 2p2 g 4 d µ ν µν µν = − − g (2π)4 [D + iǫ]2 [D + iǫ] (2π)4 [D + iǫ]2 [D + iǫ] – doing a Wick rotation p0 → ik4 and p ~ → ~k we get ∗ d4p → id4k, p2 = (p0)2 − p ~2 → (ik4)2 − ~k2 = −k2 =: −ℓ2, the Euclidean length ∗ and we can split off the angles into a Euclidean solid angle dΩ3E : d4 k = ℓ3dℓdΩ3E ∗ then we can go from our Euclidean four dimensions to D dimensions: Z Z 3 3 4 2 2 d p 2p 4 − (2π)4 [D + iǫ]2 [D + iǫ] =i Z dΩ3E (2π)4 Z ∞ 0 4 −2ℓ2 + ℓ3dℓ 2 [ℓ + ∆γ ]2 [ℓ2 + ∆γ ] iℓ dℓdΩE → → (2π)4 i – with the integration over the solid angle – and a change of variables to y = ∆γ ℓ2 +∆γ D−1 dΩE Z (2π)D R Thomas Gajdosik – Concepts of Modern Theoretical Physics D−1 E D dΩ (2π) −2ℓ 4 − [−ℓ2 − ∆γ + iǫ]2 [−ℓ2 − ∆γ + iǫ] Z 0 = ∞ ℓD−1 dℓ D −2ℓ2 + [ℓ2 + ∆γ ]2 [ℓ2 + ∆γ ] 2π D/2 (2π)D Γ( D2 ) 13.09.2012 = 2 (4π)D/2 Γ( D2 ) 11 5. Quantum Field Theory (QFT) — QED Elementary one-loop diagrams in QED [2] • regulating the gauge boson self energy iΠµν (q) – we get the boundaries y(0) = 1 and y(∞) = −2ℓdℓ∆γ [ℓ2 +∆γ ]2 – the measure dy = i (4π)D/2 Γ( D ) 2 = −i 0 −2ℓdℓ ℓD 2 [ℓ + ∆γ ]2 D/2 2∆γ (4π)D/2Γ( D ) 2 Z =0 and the inverse function ℓ2 = ∆γ 1−y y ⇒ the contracted scalar integral is Z ∞ 2 2 ∆γ ∞+∆γ D[ℓ + ∆γ ] 1− 2ℓ2 =i 2 (4π)D/2 Γ( D ) 2 Z 1 0 D 1 1 − y D/2 ) dy 1 − (∆γ y 2 1−y 1 dy(1 − y)D/2 y −D/2 − D (1 2 − y)D/2−1 y −D/2 0 – recognising the definition of the Beta-function Z 1 B(α, β) = Γ(α)Γ(β) = Γ(α + β) dy y α−1 (1 − y)β−1 0 ⇒ the contracted scalar integral becomes ( using Γ(2) = 1! = Γ(1) = 0! = 1 ) D/2 D/2 D D D D D −i 2∆γ (4π)D/2 Γ( D ) 2 Γ(1 − 2 )Γ(1 + Γ(2) 2 ) D Γ(1 − 2 )Γ( 2 ) − 2 Γ(1) = −i 2∆γ Γ(1 − 2 (4π)D/2 Γ( D ) 2 ) D D D Γ(1 + ) − Γ( ) 2 2 2 – since Γ(z + 1) = zΓ(z), the contracted scalar integral vanishes identically • this was dimensional regularisation Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 12 5. Quantum Field Theory (QFT) — QED Elementary one-loop diagrams in QED • the regulated gauge boson self energy 8ig 2 [2] iΠµν (q) = − [gµν q 2 − qµ qν ] 2 (4π) Z 1 dx 0 Z d4 p x(1 − x) =: i[gµν q 2 − qµ qν ]Π[2] γ (q) 2 2 iπ [D + iǫ] has the same structure as the gauge boson field counterterm – together they form the renormalised one-loop selfenergy 2 2 [2] [2] iΠ̄[2] µν (q) = iΠµν (q) − i[gµν q − qµ qν ](Z3 − 1) = i[gµν q − qµ qν ]Π̄γ (q) – this can be used to resum the gauge boson propagator: i∆µν = [2]κλ [2]ρσ [0] [2]ρσ [0] i∆[0] i∆[0] i∆[0] i∆[0] σκ iΠ̄ σν + i∆µρ iΠ̄ µν + i∆µρ iΠ̄ λν + . . . [0] – since qµ Π̄[2] µν (q) = 0, the gauge dependent part of ∆µν does not contribute [2] ρ [2] −igσν ρσ 2 ρ σ ∗ the product iΠ̄[2]ρσ i∆[0] σν = i[g q − q q ]Π̄γ (q) q 2 =: Pν Π̄γ (q) ∗ where Pνρ := [δνρ − ⇒ i∆µν = = ρ i∆[0] µρ (δν + Pνρ Π̄[2] γ (q) −iPµν q 2 [1 − q ρ qν ] q2 Π̄[2] γ (q)] − is a projection operator: PκρPνκ = Pνρ and qρPνρ = Pνρq ν = 0 ρ + 2 Pνρ [Π̄[2] γ (q)] i qµ qρ + . . . ) = 2 (−gµρ + (1 − ξ) 2 ) q q −igµν iξqµ qν iqµ qν = + q4 q4 q 2 [1 − Π̄[2] γ (q)] 1 1− Π̄[2] γ (q) −ξ q ρ qν + 2 q 1 − Π̄[2] (q) γ Pν – when this propagator attaches to a physical fermion line, the last term vanishes Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 13 5. Quantum Field Theory (QFT) — QED Physics of the renormalised gauge boson propagator • since the photon propagator describes the interaction of charges – one should be able to obtain the potential of a bound state e− – for that we have to consider elastic scattering . p ✗✄q qe ❖❈❈ ∗ the particles that are bound should stay the same . . . ✄ p ✲ ✲ – and compare the QFT amplitude ❖❈ pp pe ✗✄ k k ❈ ✄ ∗ that we calculate − . p e – with the QM amplitude ∗ that we assume: i.e. the potential in the Schrödinger equation • the amplitude for elastic e− p scattering: i(2π)4δ 4(pe + pp − qe − qp)MQFT Z 4 = = d k (−igQe)(2π)4δ 4 (pe + k − qe )ū(qe )γ µ u(pe )i∆µν (k)(−igQp )(2π)4δ 4 (pp − k − qp )ū(qp )γ ν u(pp ) 4 (2π) −igµν i(2π)4δ 4 (pe + pp − qe − qp )g 2 Qe Qp ū(qe )γ µu(pe ) ū(qp )γ ν u(pp ) [2] k2 [1 − Π̄γ (k)] – since e− and p are on-shell , their energies do not change ⇒ kµ = qeµ − pµe = (0, ~ qe − p ~e) is space-like • the QM amplitude is i2πδ(Ee + Ep − Ee′ − Ep′ )MQM = h~qe, q~p|V (~k; p~e, p~p)|~pe, p~pi – with properly normalized wave functions for e− and p – the potential should not depend on the initial momenta ~ ⇒ V (~k; p~e , p~p ) = V (~k) = ~k2 [1−igΠ̄µν[2] (~k)] ≈ ig~kµν2 [1 + Π̄[2] γ (k)] γ Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 14 5. Quantum Field Theory (QFT) — QED Physics of the renormalised gauge boson propagator • evaluating the regularised gauge boson self energy 8ig 2 [2] iΠγ (q) = − (4π)2 Z 1 dx 0 Z d4 p x(1 − x) iπ 2 [p2 + x(1 − x)q 2 − m2 + iǫ]2 – for small momentum transfer ~ q 2 ≪ m2 – with a Wick rotation and dimensional regularisation we get Z 1 2 8ig iΠ[2] dx x(1 − x)(m2 + x(1 − x)~ q 2 )D/2−2Γ(2 − γ (q) = (4π)D/2 0 D ) 2 – for taking the limit D → 4 we have to expand ∗ Γ(ǫ) ≈ 1ǫ + γE.M. + . . . 2 2 ∗ (m2 + x(1 − x)~ q 2)ǫ = eǫ ln[m +x(1−x)~q ] ≈ 1 + ǫ ln[m2 + x(1 − x)~ q 2] + . . . Z 1 2 8ig 2 4−D 2 2 iΠ[2] dx x(1 − x)( + γ + . . . )(1 + ln[m + x(1 − x)~ q ] + ...) E.M. γ (q) = 4−D 2 (4π)D/2 0 Z 1 8ig 2 q2 ~ 2 2 = dx x(1 − x)( + γ + ln[m ] + ln[1 + x(1 − x) ] + ...) E.M. 4−D m2 (4π)D/2 0 Z 1 8ig 2 iα q~ 2 ~2 2 2q ≈ const + dx x (1 − x) 2 = const + (4π)2 0 m 15π m2 Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 15 5. Quantum Field Theory (QFT) — QED Physics of the renormalised gauge boson propagator • Fourier transforming the potential V (~k) – the renormalised gauge boson self energy has to vanish for q 2 → 0 [2] [2] [2] q~ 2 iα ⇒ Π̄γ (q) = Πγ (q) − Πγ (0) ≈ 15π m2 q2 ~ 1 α α – so V (~ q ) ≈ ~q 2 [1 + 15π m2 ] = q~12 + 15πm 2 – which gives a Fourier transformed potential V (r) = Z 4α2 3 α d3q i~q.~r e V (~ q) ≈ − − δ (r) 3 2 (2π) r 15πm ⇒ gives part of the Lamb shift • discussing the limit |q 2| ≫ m2 ⇒ change of the coupling strength with energy ⇒ running coupling constant Thomas Gajdosik – Concepts of Modern Theoretical Physics 13.09.2012 16