Download PHY_101_NOTE_-REVISED

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Coriolis force wikipedia , lookup

Atomic theory wikipedia , lookup

Vibration wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Derivations of the Lorentz transformations wikipedia , lookup

Monte Carlo methods for electron transport wikipedia , lookup

Specific impulse wikipedia , lookup

Hooke's law wikipedia , lookup

Photon polarization wikipedia , lookup

Lagrangian mechanics wikipedia , lookup

Faster-than-light wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Elementary particle wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Momentum wikipedia , lookup

Seismometer wikipedia , lookup

Four-vector wikipedia , lookup

Laplace–Runge–Lenz vector wikipedia , lookup

Velocity-addition formula wikipedia , lookup

Force wikipedia , lookup

Fictitious force wikipedia , lookup

Jerk (physics) wikipedia , lookup

Relativistic mechanics wikipedia , lookup

Hunting oscillation wikipedia , lookup

Brownian motion wikipedia , lookup

Relativistic angular momentum wikipedia , lookup

Inertia wikipedia , lookup

Theoretical and experimental justification for the SchrΓΆdinger equation wikipedia , lookup

Classical mechanics wikipedia , lookup

Newton's theorem of revolving orbits wikipedia , lookup

Matter wave wikipedia , lookup

Equations of motion wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Rigid body dynamics wikipedia , lookup

Kinematics wikipedia , lookup

Classical central-force problem wikipedia , lookup

Centripetal force wikipedia , lookup

Transcript
P HY 1 01 - M ec h a n i c s P HY 1 01 – M e c h a n i c s P H Y 1 01 – M ec h a n i c s P HY 1 0 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 1 01 – M e c h a n i c s P HY 10 1 - M ec h a n i c s
P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P H Y 1 01 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
PHY 101 – GENERAL PHYSICS I
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h(MECHANICS)
a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 - M e c h a n i c s P HY 1 01 - M ec h a n i c s P HY 1 01 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n2015/16
i c s P SESSION
HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – Ajiboye,
M ec hY.,
a nBadmus
i c s P HYO.G.,10
1 O.A
– M ec h a n i c s P HY 10 1 –
& Alao
M ec h a n i c s P HY 1 0 1 - M ec h a n i c s P HY 101 - M ec h a n i c s P HY 1 0 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 1 01 - M ec h a n i c s P HY 1 01 –
M ec h a n i c s P HY 1 0 1 – Mec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 1 01 - M ec h a n i c s P HY 1 01 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – Mec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 1 01 - M ec h a n i c s P HY 1 01 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 1 01 - M ec h a n i c s P HY 1 01 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – Mec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 10 1 – M ec h a n i c s P HY 10 1 –
M ec h a n i c s P HY 1 0 1 – M ec h a n i c s P HY 1 01 - M ec h a n i c s P HY 1 01 –
Course Outline
β€’ Measurement in Physics
β€’ Space and Time
β€’ Units and Dimension
β€’ Kinematics
β€’ Fundamental Laws of Mechanics
β€’ Statics and Dynamics
β€’ Work and Energy
β€’ Conservation laws
WORK PLAN
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10
Week 11
Week 13
Week 14
Week 15
REVISION
Page 1 of 43
1.0
MEASUREMENT
Physics is a science based upon exact measurement of physical quantities. Therefore
it is essential that student first becomes familiar with the various methods of
measurement and the units in which these measurements are expressed.
A unit is a value quantity or magnitude in terms of which other values, quantities or
magnitudes are expressed.
1.1
FUNDAMENTAL QUANTITIES AND UNITS
A fundamental quantity also known as base quantity is a quantity which cannot
be expressed in terms of any other physical quantity. The units in which the
fundamental quantities are measured are called fundamental units. In mechanics
(study of the effects of external forces on bodies at rest or in motion), the quantities
length, mass and time are chosen as fundamental quantities.
Fundamental Quantity
Length
Mass
Time
1.2
Fundamental Unit
Meter
Kilogram
Second
Unit Symbol
m
kg
S
SYSTEM OF UNITS
The following systems of units have been in use –
(i)
The French or C.G.S (Centimeter, Gramme, Second) System;
(ii) The British or F.P.S (Foot, Pound, Second) System;
(iii) The M.K.S (Metre, Kilogram, Second) System; and
(iv) The S.I. (International System of Units).
1.3
THE INTERNATIONAL SYSTEM OF UNITS (S.I.)
The S.I. is the latest version of the system of units and only system likely to be used
all over the world. This system consists of seven base or fundamental units from
which we can derive other possible quantities of science. They are
S.No Physical Quantity
Unit
Unit Symbol
1.
Length
Meter
M
2.
Mass
Kilogram
Kg
3.
Time
Second
S
Page 2 of 43
4.
Electric Current
Ampere
A
5.
6.
Temperature
Amount of
Substance
Luminous Intensity
Kelvin
Mole
K
mol
Candela
Cd
7.
1.4
CONCEPT OF DIMENSION
Dimension of a physical quantity simply indicates the physical quantities which
appear in that quantity and gives absolutely no idea about the magnitude of the
quantity. In mechanics the length, mass and time are taken as the three base
dimensions and are expressed by as letter [L], [M] and [T] respectively. Hence, a
formula which indicates the relation between the derived unit and the fundamental
units is called dimensional formula.
Example 1: Deduce the dimensional formula for the following physical quantities:
(a) Velocity, (b) acceleration, (c) force, (d) pressure, (e) work, and (f) power.
Solution:
(π‘Ž) π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ =
[𝐿 ]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘™π‘’π‘›π‘”π‘‘β„Ž
=
= [𝐿𝑇 βˆ’1 ]
[𝑇 ]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘–π‘šπ‘’
𝐻𝑒𝑛𝑐𝑒 π‘‘β„Žπ‘’ π‘‘π‘–π‘šπ‘›π‘’π‘ π‘–π‘œπ‘›π‘Žπ‘™ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘™π‘Ž π‘“π‘œπ‘Ÿ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑀𝑖𝑙𝑙 𝑏𝑒 [𝑀0 𝐿𝑇 βˆ’1 ]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ [𝐿𝑇 βˆ’1 ]
(𝑏) π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› =
=
= [𝐿𝑇 βˆ’2 ]
[𝑇 ]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘–π‘šπ‘’
= [𝑀0 𝐿𝑇 βˆ’2 ]
(𝑐 ) π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘“π‘œπ‘Ÿπ‘π‘’ = π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘šπ‘Žπ‘ π‘  × π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›
= [𝑀] × [𝐿𝑇 βˆ’2 ] = [𝑀𝐿𝑇 βˆ’2 ]
(𝑑 ) π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘ƒπ‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ =
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ πΉπ‘œπ‘Ÿπ‘π‘’ [𝑀𝐿𝑇 βˆ’2 ]
=
= [π‘€πΏβˆ’1 𝑇 βˆ’2 ]
2
[
]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π΄π‘Ÿπ‘’π‘Ž
𝐿
Students to attempt (𝑒) and(𝑓).
Example 2: Deduce the dimensional formula for (a) modulus of elasticity (Ζ³), and
(b) coefficient of viscosity(πœ‚ ).
Page 3 of 43
Solution:
π‘†π‘‘π‘Ÿπ‘’π‘ π‘ 
πΉπ‘œπ‘Ÿπ‘π‘’β„π΄π‘Ÿπ‘’π‘Ž
(π‘Ž ) Ζ³ =
=
π‘†π‘‘π‘Ÿπ‘Žπ‘–π‘› πΆβ„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘™π‘’π‘›π‘”π‘‘β„Žβ„π‘‚π‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™ π‘™π‘’π‘›π‘”π‘‘β„Ž
[𝑀𝐿𝑇 βˆ’2 ] × [𝐿]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘“π‘œπ‘Ÿπ‘π‘’ × π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘™π‘’π‘›π‘”π‘‘β„Ž
=
=
[𝐿2 ] × [𝐿]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π΄π‘Ÿπ‘’π‘Ž × π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘™π‘’π‘›π‘”π‘‘β„Ž
= [π‘€πΏβˆ’1 𝑇 βˆ’2 ]
(𝑏) π‘‘β„Žπ‘’ π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘œπ‘“ π‘£π‘–π‘ π‘π‘œπ‘ π‘–π‘‘π‘¦ (πœ‚ ) π‘œπ‘“ π‘Ž π‘™π‘–π‘žπ‘’π‘–π‘‘ 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 π‘Žπ‘  π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘“π‘œπ‘Ÿπ‘π‘’ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘π‘’π‘Ÿ 𝑒𝑛
π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘Žπ‘π‘Žπ‘Ÿπ‘‘.
𝐹
1
πœ‚=
𝐴 (𝑑𝑉 ⁄𝑑π‘₯ )
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ πΉπ‘œπ‘Ÿπ‘π‘’ × π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ πœ‚ =
π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π΄π‘Ÿπ‘’π‘Ž × π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦
[𝑀𝐿𝑇 βˆ’2 ] × [𝐿] [𝑀𝐿2 𝑇 βˆ’2 ]
= 2
=
= [π‘€πΏβˆ’1 𝑇 βˆ’1 ]
[𝐿 ] × [𝐿𝑇 βˆ’1 ]
[𝐿3 𝑇 βˆ’1 ]
1.4
USES OF DIMENSIONAL EQUATIONS
(a)
To check the homogeneity of a derived physical equation (i.e. to check the
correctness of a physical equation).
Example 3:
Show that the following relation for the time period of a body executing
simple harmonic motion is correct.
𝑇 = 2πœ‹βˆš
𝑙
𝑔
where𝑙 and 𝑔 are the displacement and acceleration due to gravity
respectively.
Solution:
For the relation to be correct, the dimension of L.H.S must be equal to
dimension of R.H.S
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝐿. 𝐻. 𝑆 = 𝑀0 𝐿0 𝑇1 π‘œπ‘Ÿ 𝑇
[π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝑙]1⁄2
[𝐿]1⁄2
[𝐿]1⁄2
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝑅. 𝐻. 𝑆 =
=
=
[π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝑔]1⁄2 [𝐿𝑇 βˆ’2 ]1⁄2 [𝐿]1⁄2 𝑇 βˆ’1
1
= βˆ’1 = 𝑇
𝑇
Since π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝐿. 𝐻. 𝑆 = π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝑅. 𝐻. 𝑆, the relation is
dimensionally correct.
Page 4 of 43
(b)
To derive a relationship between different physical quantities.
Example 4:
If the frequency 𝑓 of a stretched string depends upon the length𝑙 of the string,
the tension 𝑇 in the string and the mass per unit length πœ† of the string.
Establish a relation for the frequency using the concept of dimension.
Solution:
𝑓 ∝ 𝑙 π‘₯ 𝑇 𝑦 πœ†π‘§
…
(1)
π‘₯ 𝑦 𝑧
𝑓 = π‘˜π‘™ 𝑇 πœ†
… (2)
[π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝑓] = [π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝑙]π‘₯ × [π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ 𝑇]𝑦 × [π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ πœ†]𝑧
[𝑀0 𝐿0 𝑇 βˆ’1 ] = [𝐿]π‘₯ × [𝑀𝐿𝑇 βˆ’2 ]𝑦 × [π‘€πΏβˆ’1 ]𝑧
[𝑀]0 [𝐿]0 [𝑇]βˆ’1 = [𝑀]𝑦+𝑧 [𝐿]π‘₯+π‘¦βˆ’π‘§ [𝑇]βˆ’2𝑦
πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘›π‘” π‘‘β„Žπ‘’ π‘π‘œπ‘€π‘’π‘Ÿπ‘ 
(3)
𝑦+𝑧 =0 …
π‘₯+π‘¦βˆ’π‘§ =0 …
(4)
βˆ’2𝑦 = βˆ’1 …
(5)
1
(6)
π‘“π‘Ÿπ‘œπ‘š π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (5),
𝑦=
…
2
𝑠𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑖𝑛𝑔 (6)π‘–π‘›π‘‘π‘œ (3), 𝑀𝑒 β„Žπ‘Žπ‘£π‘’
1
+𝑧 =0
2
1
𝑧=βˆ’
…
(7)
2
𝑠𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑖𝑛𝑔 (6) π‘Žπ‘›π‘‘ (7) π‘–π‘›π‘‘π‘œ (4)
1
1
π‘₯ + βˆ’ (βˆ’ ) = 0
2
2
π‘₯ = βˆ’1 …
(8)
𝑠𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑖𝑛𝑔 (6), (7) π‘Žπ‘›π‘‘ (8)π‘–π‘›π‘‘π‘œ (2), 𝑀𝑒 β„Žπ‘Žπ‘£π‘’
𝑓 = π‘˜π‘™ βˆ’1 𝑇 1⁄2 πœ†βˆ’1⁄2
1 𝑇
𝑓=π‘˜ √
𝑙 πœ†
… (βˆ—)
Equation (βˆ—) is the required relation.
(c)
To derive the unit of a Physical Quantity
Page 5 of 43
Example 5:
The viscous drag F between two layers of liquid with surface area of contact A
in a region of velocity gradient 𝑑𝑣 ⁄𝑑π‘₯ is given by
𝐹 = πœ‚π΄ 𝑑𝑣 ⁄𝑑π‘₯
whereπœ‚ is the coefficient of viscosity of the liquid. Obtain the unit for πœ‚.
Solution:
𝐹 = πœ‚π΄ 𝑑𝑣 ⁄𝑑π‘₯
π‘€π‘Žπ‘˜π‘–π‘›π‘” πœ‚ π‘‘β„Žπ‘’ 𝑠𝑒𝑏𝑗𝑒𝑐𝑑 π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘šπ‘’π‘™π‘Ž
𝐹 1
πœ‚=
𝐴 𝑑𝑣 ⁄𝑑π‘₯
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘“π‘œπ‘Ÿπ‘π‘’ = [𝑀𝐿𝑇 βˆ’2 ]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ π‘Žπ‘Ÿπ‘’π‘Ž = [𝐿2 ]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ = [𝐿𝑇 βˆ’1 ]
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ = [𝐿]
[𝑀𝐿𝑇 βˆ’2 ][𝐿] 𝑀𝐿2 𝑇 βˆ’2
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› π‘œπ‘“ πœ‚ = 2
= 3 βˆ’1 = π‘€πΏβˆ’1 𝑇 βˆ’1
[𝐿 ][𝐿𝑇 βˆ’1 ]
𝐿𝑇
βˆ’1 βˆ’1
∴ π‘ˆπ‘›π‘–π‘‘ π‘œπ‘“ πœ‚ = π‘˜π‘”π‘š 𝑠
1.5
LIMITATIONS OF DIMENSIONAL ANALYSIS
(i)
(ii)
(iii)
The method does not provide any information about the magnitude of
dimensionless variables and dimensionless constants.
The method cannot be used if the quantities depend upon more than
three-dimensional quantities: M,L and T.
The method is not applicable if the relationship involves trigonometric,
exponential and logarithmic functions.
EXERCISE
1) Show on the basis of dimensional analysis that the following relations are
correct:
a. 𝑣 2 βˆ’ 𝑒2 = 2π‘Žπ‘†, where 𝑒 is the initial velocity, 𝑣 is final velocity, π‘Ž is
acceleration of the body and 𝑆 is the distance moved.
b. 𝜌 = 3𝑔⁄4π‘ŸπΊ where𝜌 is the density of earth, 𝐺 is the gravitational
constant, π‘Ÿ is the radius of the earth and 𝑔 is acceleration due to
gravity.
2) The speed of sound 𝑣 in a medium depends on its wavelength πœ†, the young
modulus𝐸, and the density 𝜌, of the medium. Use the method of dimensional
analysis to derive a formula for the speed of sound in a medium. (Unit for
Young Modulus 𝐸: π‘˜π‘”π‘šβˆ’1 𝑠 βˆ’2 )
Page 6 of 43
2.0
VECTORS
Physical quantities can generally be classified as (i) Scalars and (ii) Vectors.
Scalars are physical quantities which possess only magnitude and no direction in
space. Examples are mass, time, temperature, volume, speed etc. On the other hand,
Vectors are physical quantities which have both magnitude and direction in space.
Examples are force, velocity, acceleration, etc.
2.1
RESOLUTION OF VECTORS
A two dimensional vector can be represented as the sum of two vectors. Consider
figure A above, the vector 𝐴⃗ can be expressed as
𝐴⃗ = 𝐴⃗π‘₯ + 𝐴⃗𝑦 π‘œπ‘Ÿ 𝐴⃗ = 𝐴π‘₯ 𝑖̂ + 𝐴𝑦 𝑗̂
…
2.1
Vectors 𝐴⃗π‘₯ and 𝐴⃗𝑦 are called vector components of 𝐴⃗.𝑖̂and𝑗̂ are unit vectors along the
π‘₯ axis and 𝑦 axis respectively. A unit vector is a vector that has a magnitude of
exactly 1 and specify a particular direction.
Let πœƒ be the angle which the vector 𝐴⃗ makes with the positive π‘₯-axis, then we have
𝐴π‘₯ = 𝐴 cos πœƒ π‘Žπ‘›π‘‘ 𝐴𝑦 = 𝐴 sin πœƒ
…
π‘€π‘Žπ‘”π‘›π‘–π‘‘π‘’π‘‘π‘’ π‘œπ‘“ π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 𝐴 = |𝐴⃗| = 𝐴 = √𝐴2π‘₯ + 𝐴𝑦2
tan πœƒ =
𝐴𝑦
𝐴π‘₯
…
2.2
…
2.3
2.4
In three dimensions, a vector 𝐴⃗can be expressed as
Page 7 of 43
𝐴⃗ = 𝐴⃗π‘₯ + 𝐴⃗𝑦 + 𝐴⃗𝑧 π‘œπ‘Ÿ 𝐴⃗ = 𝐴π‘₯ 𝑖̂ + 𝐴𝑦 𝑗̂ + 𝐴𝑧 π‘˜Μ‚
Here, the magnitude is expressed as
|𝐴⃗| = 𝐴 = √𝐴π‘₯2 + 𝐴2𝑦 + 𝐴𝑧2
2.2
…
…
2.5
2.6
ADDITION/SUBTRACTION OF VECTORS BY COMPONENTS
Example:
βƒ—βƒ— = 𝑖̂ + 4𝑗̂ + 5π‘˜Μ‚ . Find the magnitude of (𝐴⃗ + 𝐡
βƒ—βƒ—)and (𝐴⃗ βˆ’ 𝐡
βƒ—βƒ—).
If 𝐴⃗ = 2𝑖̂ + 3𝑗̂ + 4π‘˜Μ‚ and 𝐡
Solution:
βƒ—βƒ—) = (2𝑖̂ + 3𝑗̂ + 4π‘˜Μ‚ ) + (𝑖̂ + 4𝑗̂ + 5π‘˜Μ‚ ) = 3𝑖̂ + 7𝑗̂ + 9π‘˜Μ‚
(𝐴⃗ + 𝐡
βƒ—βƒ—) = (2𝑖̂ + 3𝑗̂ + 4π‘˜Μ‚ ) βˆ’ (𝑖̂ + 4𝑗̂ + 5π‘˜Μ‚ ) = 𝑖̂ βˆ’ 𝑗̂ βˆ’ π‘˜Μ‚
(𝐴⃗ βˆ’ 𝐡
Hence their magnitudes will be
βƒ—βƒ—| = √(3)2 + (7)2 + (9)2 = √139
|𝐴⃗ + 𝐡
βƒ—βƒ—| = √(1)2 + (βˆ’1)2 + (βˆ’1)2 = √3
|𝐴⃗ βˆ’ 𝐡
2.3
MULTIPLICATION OF VECTORS
(i)
Dot Product or Scalar Product
The scalar product of two vectors is defined as the product of the magnitude
of two vectors and the cosine of the smaller angle between them.
βƒ—βƒ— = |𝐴⃗||𝐡
βƒ—βƒ—| cos πœƒ = 𝐴𝐡 cos πœƒ = 𝑆
𝐴⃗. 𝐡
where𝑆 is a scalar quantity.
Example:
βƒ—βƒ— = 3𝑖̂ + 4𝑗̂ βˆ’
Find the angle between the two vectors 𝐴⃗ = 3𝑖̂ + 4𝑗̂ + 5π‘˜Μ‚ and 𝐡
5π‘˜Μ‚ .
Solution:
βƒ—βƒ— = |𝐴⃗||𝐡
βƒ—βƒ—| cos πœƒ
𝐴⃗. 𝐡
βƒ—βƒ— = 𝐴π‘₯ 𝐡π‘₯ + 𝐴𝑦 𝐡𝑦 + 𝐴𝑧 𝐡𝑧 = 3 × 3 + 4 × 4 + 5(βˆ’5) = 0
𝐴⃗. 𝐡
|𝐴⃗| = √32 + 42 + 52 = √50
βƒ—βƒ—| = √32 + 42 + (βˆ’5)2 = √50
|𝐡
βƒ—βƒ—
𝐴⃗. 𝐡
0
cos πœƒ =
=
=0
βƒ—βƒ—| √50 × βˆš50
|𝐴⃗||𝐡
πœƒ = 90π‘œ
Page 8 of 43
(ii)
Cross Product or Vector product
The vector product of two vectors is defined as a vector having a magnitude
equal to the product of the magnitudes of the two vectors and the sine of the
angle between them and is in the direction perpendicular to the plane
βƒ—βƒ— are two vectors, then their vector
containing the two vectors. Thus if 𝐴⃗ and 𝐡
βƒ—βƒ—, is a vector 𝐢⃗ defined as
product (or cross product), written as 𝐴⃗ × π΅
βƒ—βƒ— = |𝐴⃗||𝐡
βƒ—βƒ—|π‘ π‘–π‘›πœƒπ‘›
𝐢⃗ = 𝐴⃗ × π΅
whereπœƒ is the angle between the two vectors and 𝑛 is the unit vector
βƒ—βƒ—.
perpendicular to the plane of vectors 𝐴⃗ and 𝐡
Page 9 of 43
3.0
KINEMATICS
Kinematics is the study of the motion of objects without referring to what causes the
motion. Motion is a change in position in a time interval.
3.1
MOTION IN ONE DIMENSION/MOTION ALONG A STRAIGHT LINE
A straight line motion or one-dimensional motion could either be vertical (like that
of a falling body), horizontal, or slanted, but it must be straight.
3.1.1 POSITION AND DISPLACEMENT
The position of an object in space is its location relative to some reference point,
often the origin (or zero point). For example, a particle might be located at π‘₯ = 5π‘š,
which means the position of the particle is 5π‘š in positive direction from the origin.
Meanwhile, the displacement is the change from one position π‘₯1 to another
position π‘₯2 . It is given as
βˆ†π‘₯ = π‘₯2 βˆ’ π‘₯1
…
(3.1)
3.1.2 AVERAGE VELOCITY AND AVERAGE SPEED
The average velocity is the ratio of the displacement βˆ†π‘₯ that occurs during a
particular time interval βˆ†π‘‘ to that interval. It is a vector quantity and is expressed as:
βˆ†π‘₯ π‘₯2 βˆ’ π‘₯1
π‘£π‘Žπ‘£π‘” =
=
….
(3.2)
βˆ†π‘‘
𝑑2 βˆ’ 𝑑1
π‘œπ‘Ÿ
βˆ†π‘¦ 𝑦2 βˆ’ 𝑦1
π‘£π‘Žπ‘£π‘” =
=
….
(3.2)
βˆ†π‘‘
𝑑2 βˆ’ 𝑑1
The average speed is the ratio of the total distance covered by a particle to the time.
It is a scalar and is expressed as:
π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
π‘†π‘Žπ‘£π‘” =
… (3.3)
βˆ†π‘‘
3.1.3 INSTANTANEOUS VELOCITY AND SPEED
The instantaneous velocity describes how fast a particle is moving at a given instant.
It is expressed as:
βˆ†π‘₯ 𝑑π‘₯
𝑣 = lim
=
…
(3.4)
βˆ†π‘‘β†’0 βˆ†π‘‘
𝑑𝑑
Page 10 of 43
Speed is the magnitude of instantaneous velocity; that is, speed is velocity that has
no indication of direction either in words or via an algebraic sign. For example, a
velocity of +5π‘š/𝑠 or βˆ’5π‘š/𝑠 is associated with a speed of 5π‘š/𝑠.
Example 6:
The position of a particle moving on an π‘₯ axis is given by π‘₯ = 7.8 + 9.2𝑑 βˆ’ 2.1𝑑 3 ,
with π‘₯ in meters and 𝑑 in seconds. What is its velocity at 𝑑 = 3.5𝑠? Is the velocity
constant, or is it continuously changing?
Solution:
𝑑π‘₯ 𝑑 (7.8 + 9.2𝑑 βˆ’ 2.1𝑑 3 )
𝑣=
=
= 0 + 9.2 βˆ’ (3)(2.1)𝑑 2
𝑑𝑑
𝑑𝑑
𝑣 = 9.2 βˆ’ 6.3𝑑 2 (βˆ—)
At 𝑑 = 3.5𝑠,
68π‘š
𝑠
𝑠𝑖𝑛𝑐𝑒 π‘’π‘žπ‘› (βˆ—) π‘–π‘›π‘£π‘œπ‘™π‘£π‘’π‘  𝑑, π‘‘β„Žπ‘’ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑣 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘œπ‘› π‘‘π‘–π‘šπ‘’ (𝑑 )π‘Žπ‘›π‘‘ π‘ π‘œ 𝑖𝑠 π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘ π‘™π‘¦ π‘β„Žπ‘Žπ‘›π‘”π‘–π‘›π‘”.
𝑣 = 9.2 βˆ’ 6.3(3.5)2 = βˆ’
3.1.4 ACCELERATION
When a particle’s velocity changes, the particle is said to undergo acceleration. The
average accelerationπ‘Žπ‘Žπ‘£π‘” over a time interval βˆ†π‘‘ is
βˆ†π‘£ 𝑣2 βˆ’ 𝑣1
π‘Žπ‘Žπ‘£π‘” =
=
…
3.5
βˆ†π‘‘
𝑑2 βˆ’ 𝑑1
where the particle has velocity 𝑣1 at time 𝑑1 and then velocity 𝑣2 at time 𝑑2 . The
instantaneous acceleration (or simply acceleration) is the derivative of velocity
with respect to time:
𝑑𝑣
π‘Ž=
… 3.6
𝑑𝑑
Equation 3.6 can also be written as
𝑑
𝑑 𝑑π‘₯
𝑑2 π‘₯
(
)
(
)
π‘Ž=
𝑣 =
= 2 …
3.7
𝑑𝑑
𝑑𝑑 𝑑𝑑
𝑑𝑑
In words, the acceleration of a particle at any instant is the second derivative of its
position π‘₯(𝑑) with respect to time.
Example 7:
A particle’s position on the π‘₯-axis is given by π‘₯ = 4 βˆ’ 27𝑑 + 𝑑 3 , with π‘₯ in meters and
𝑑 in seconds. (a) find the particle’s velocity function 𝑣(𝑑) and acceleration π‘Ž(𝑑). (b) Is
there ever a time when 𝑣 = 0?
Page 11 of 43
Solution:
(π‘Ž )
(𝑏 )
3.2
𝑑π‘₯
𝑑
= (4 βˆ’ 27𝑑 + 𝑑 3 ) = βˆ’27 + 3𝑑 2
𝑑𝑑 𝑑𝑑
𝑑𝑣
𝑑
π‘Ž=
= (βˆ’27 + 3𝑑 2 ) = 6𝑑
𝑑𝑑 𝑑𝑑
0 = βˆ’27 + 3𝑑 2
𝑑 2 = 27⁄3 = 9
𝑑 = 3𝑠
𝑣=
MOTION IN TWO AND THREE DIMENSIONS
The concept of position, velocity and acceleration for motion along a straight line is
similar to that two and three dimension, but more complex.
3.2.1 Position and Displacement
The position vector π‘Ÿβƒ— is used to specify the position of a particle in space. It is
generally expressed in the unit vector notation as
π‘Ÿβƒ— = π‘₯𝑖̂ + 𝑦𝑗̂ + π‘§π‘˜Μ‚ …
(3.8)
where π‘₯𝑖̂, 𝑦𝑗̂ and π‘§π‘˜Μ‚ are the vector components of π‘Ÿβƒ—, and the coefficients π‘₯, 𝑦, and 𝑧
are its scalar components.
If a particle moves from point 1 to point 2 during a certain time interval, the position
vector changes from π‘Ÿβƒ—1 to π‘Ÿβƒ—2 , then the particle’s displacement is
βˆ†π‘Ÿβƒ— = π‘Ÿβƒ—2 βˆ’ π‘Ÿβƒ—1
…
(3.9)
Example 8:
Page 12 of 43
The position vector of a particle is initially π‘Ÿβƒ—1 = (βˆ’3π‘š)𝑖̂ + (2π‘š)𝑗̂ + (5π‘š)π‘˜Μ‚ and then
later is π‘Ÿβƒ—2 = (9π‘š)𝑖̂ + (2π‘š)𝑗̂ + (8π‘š)π‘˜Μ‚. What is the particle’s displacement βˆ†π‘Ÿβƒ— from
π‘Ÿβƒ—1 to π‘Ÿβƒ—2 ?
Solution:
βˆ†π‘Ÿβƒ— = π‘Ÿβƒ—2 βˆ’ π‘Ÿβƒ—1 = [9 βˆ’ (βˆ’3)]𝑖̂ + [2 βˆ’ 2]𝑗̂ + [8 βˆ’ 5]π‘˜Μ‚
βˆ†π‘Ÿβƒ— = (12π‘š)𝑖̂ + (3π‘š)π‘˜Μ‚
Example 9:
A rabbit runs across a parking lot. The coordinates of the rabbit as a function of time
𝑑 are: π‘₯ = βˆ’0.3𝑑 2 + 7.2𝑑 + 28 and 𝑦 = 0.22𝑑 2 βˆ’ 9.1𝑑 + 30 with 𝑑 in seconds and π‘₯
and 𝑦 in meters. At 𝑑 = 15𝑠, what is the rabbit’s position vector π‘Ÿβƒ— in unit vector
notation and as a magnitude and an angle?
Solution:
π‘Ÿβƒ— = π‘₯𝑖̂ + 𝑦𝑗̂
At 𝑑 = 15𝑠
π‘₯ = βˆ’0.3(15)2 + 7.2(15) + 28 = 68.5π‘š
𝑦 = 0.22(15)2 βˆ’ 9.1(15) + 30 = βˆ’57π‘š
∴ π‘Ÿβƒ— = (68.5π‘š)𝑖̂ + (βˆ’57π‘š)𝑗̂
The magnitude of the position vector π‘Ÿβƒ— is
π‘Ÿ = √π‘₯ 2 + 𝑦 2 = √(68.5)2 + (βˆ’57)2 = 89.11π‘š
The angle of π‘Ÿβƒ— is
𝑦
βˆ’57
) = βˆ’39.76π‘œ
πœƒ = tanβˆ’1 = tanβˆ’1 (
π‘₯
68.5
3.2.1 Average Velocity and Instantaneous Velocity
If a particle moves through a displacement βˆ†π‘Ÿβƒ— in a time interval βˆ†π‘‘, then its average
velocityπ‘£βƒ—π‘Žπ‘£π‘” is
βˆ†π‘Ÿβƒ— βˆ†π‘₯𝑖̂ + βˆ†π‘¦π‘—Μ‚ + βˆ†π‘§π‘˜Μ‚ βˆ†π‘₯
βˆ†π‘¦
βˆ†π‘§
π‘£βƒ—π‘Žπ‘£π‘” =
=
=
𝑖̂ +
𝑗̂ + π‘˜Μ‚
…
3.10
βˆ†π‘‘
βˆ†π‘‘
βˆ†π‘‘
βˆ†π‘‘
βˆ†π‘‘
When we speak of the velocity of a particle, we usually mean the particle’s
βƒ—βƒ—. It is expressed as
instantaneous velocity 𝒗
π‘‘π‘Ÿβƒ— 𝑑π‘₯
𝑑𝑦
𝑑𝑧
𝑣⃗ =
=
𝑖̂ +
𝑗̂ + π‘˜Μ‚ = 𝑣π‘₯ 𝑖̂ + 𝑣𝑦 𝑗̂ + 𝑣𝑧 π‘˜Μ‚
…
3.11
𝑑𝑑 𝑑𝑑
𝑑𝑑
𝑑𝑑
Example 10:
Page 13 of 43
Find the velocity 𝑣⃗ at time 𝑑 = 15𝑠 of the rabbit in example 9 in unit vector notation
and as a magnitude and angle.
Solution:
The components of the velocity are𝑣π‘₯ and 𝑣𝑦
𝑑π‘₯
𝑑
𝑑
𝑣π‘₯ =
= (π‘₯) = (βˆ’0.3𝑑 2 + 7.2𝑑 + 28) = βˆ’0.6𝑑 + 7.2
𝑑𝑑 𝑑𝑑
𝑑𝑑
𝐴𝑑 𝑑 = 15𝑠, 𝑣π‘₯ = βˆ’0.6(15) + 7.2 = βˆ’1.8π‘š/𝑠
𝑑𝑦
𝑑
𝑑
𝑣𝑦 =
= (𝑦) = (0.22𝑑 2 βˆ’ 9.1𝑑 + 30) = 0.44𝑑 βˆ’ 9.1
𝑑𝑑 𝑑𝑑
𝑑𝑑
𝐴𝑑 𝑑 = 15𝑠, 𝑣𝑦 = 0.44(15) βˆ’ 9.1 = βˆ’2.5π‘š/𝑠
𝑣⃗ = 𝑣π‘₯ 𝑖̂ + 𝑣𝑦 𝑗̂
𝑣⃗ = (βˆ’1.8π‘š/𝑠)𝑖̂ + (βˆ’2.5π‘š/𝑠)𝑗̂
π‘€π‘Žπ‘”π‘›π‘–π‘‘π‘’π‘‘π‘’ π‘œπ‘“ 𝑣⃗ = 𝑣 = βˆšπ‘£π‘₯2 + 𝑣𝑦2 = √(βˆ’1.8)2 + (βˆ’2.5)2 = 3.08π‘š/𝑠
𝑣𝑦
βˆ’2.5
) = 54.25π‘œ
πœƒ = tanβˆ’1 ( ) = tanβˆ’1 (
𝑣π‘₯
βˆ’1.8
3.2.2 Average Acceleration and Instantaneous Acceleration
The average acceleration is defined as the change in velocity from 𝑣⃗1 to 𝑣⃗2 in a time
interval βˆ†π‘‘. It is mathematically expressed as
𝑣⃗2 βˆ’ 𝑣⃗1 βˆ†π‘£βƒ—
π‘Žβƒ—π‘Žπ‘£π‘” =
=
…
3.12
βˆ†π‘‘
βˆ†π‘‘
The instantaneous acceleration π‘Žβƒ— (or acceleration) is the limit of average velocity as
βˆ†π‘‘ approaches zero. It is expressed mathematically as
βˆ†π‘£βƒ— 𝑑𝑣⃗
π‘Žβƒ— = lim
=
…
3.13
βˆ†π‘‘β†’0 βˆ†π‘‘
𝑑𝑑
We note that
𝑑𝑣⃗
𝑑
𝑑
π‘Žβƒ— =
= (𝑣⃗ ) = (𝑣π‘₯ 𝑖̂ + 𝑣𝑦 𝑗̂ + 𝑣𝑧 π‘˜Μ‚ )
𝑑𝑑 𝑑𝑑
𝑑𝑑
𝑑𝑣𝑦
𝑑𝑣π‘₯
𝑑𝑣𝑧
π‘Žβƒ— =
𝑖̂ +
𝑗̂ +
π‘˜Μ‚
𝑑𝑑
𝑑𝑑
𝑑𝑑
π‘Žβƒ— = π‘Žπ‘₯ 𝑖̂ + π‘Žπ‘¦ 𝑗̂ + π‘Žπ‘§ π‘˜Μ‚
3.2.3 Constant Acceleration
Page 14 of 43
In many types of motion, the acceleration is either constant or approximately so.
The following equations describe the motion of a particle with constant
acceleration:
s/n
Equation
1.
𝑣 = π‘£π‘œ + π‘Žπ‘‘
1
2.
𝑠 = π‘£π‘œ 𝑑 + π‘Žπ‘‘ 2
2
3.
𝑣 2 = π‘£π‘œ2 + 2π‘Žπ‘ 
1
4.
𝑠 = (π‘£π‘œ + 𝑣 )𝑑
2
1
5.
𝑠 = 𝑣𝑑 βˆ’ π‘Žπ‘‘ 2
2
Note that these equations are only applicable if
acceleration is constant.
EXERCISE:
A driver spotted a police car and he braked from a speed of 100π‘˜π‘š/β„Ž to a speed of
80π‘˜π‘š/β„Ž during a displacement of 88π‘š, at a constant acceleration. (a) What is that
acceleration? (b) How much time is required for the given decrease in speed.
Example 11:
Find the acceleration π‘Žβƒ— at time 𝑑 = 15𝑠 of the rabbit in example 10 in unit vector
notation and as a magnitude and angle.
Solution:
𝑑𝑣π‘₯
𝑑
𝑑
= (𝑣π‘₯ ) = (βˆ’0.6𝑑 + 7.2) = βˆ’0.6π‘šπ‘  βˆ’2
𝑑𝑑
𝑑𝑑
𝑑𝑑
𝑑𝑣𝑦
𝑑
𝑑
π‘Žπ‘¦ =
= (𝑣𝑦 ) = (0.44𝑑 βˆ’ 9.1) = 0.44π‘šπ‘  βˆ’2
𝑑𝑑
𝑑𝑑
𝑑𝑑
(
π‘Žβƒ— = βˆ’0.6π‘šπ‘  βˆ’2 )𝑖̂ + (0.44π‘šπ‘  βˆ’2 )𝑗̂
π‘šπ‘Žπ‘”π‘›π‘–π‘‘π‘’π‘‘π‘’ π‘œπ‘“ π‘Žβƒ— = π‘Ž = √(βˆ’0.6)2 + (0.44)2 = 0.74π‘šπ‘  βˆ’2
π‘Žπ‘¦
0.44
) = βˆ’36.25π‘œ
πœƒ = tanβˆ’1
= tanβˆ’1 (
π‘Žπ‘₯
βˆ’0.6
π‘Žπ‘₯ =
EXERCISE
A particle with velocity π‘£βƒ—π‘œ = βˆ’2𝑖̂ + 4𝑗̂ in meters per second at 𝑑 = 0 undergoes a
constant acceleration π‘Žβƒ— of magnitude π‘Ž = 3π‘šπ‘  βˆ’2 at an angle πœƒ = 130π‘œ from the
positive direction of the π‘₯ axis. What is the particle’s velocity 𝑣⃗ at 𝑑 = 5𝑠, in unit
vector notation and as a magnitude and an angle?
𝐴𝑛𝑠: 𝑣⃗ = βˆ’12𝑖̂ + 16𝑗̂(π‘š/𝑠), 𝑣 = 19 π‘šβ„π‘  , πœƒ = 127π‘œ
3.3 PROJECTILE MOTION
Page 15 of 43
A projectile is a particle which moves in a vertical plane with some initial velocity
π‘£βƒ—π‘œ but its acceleration is always the free fall acceleration 𝑔⃗ which is downward.
Example of a projectile is a golf ball. The motion of a projectile is called projectile
motion.
Consider the figure below.
When an object is projected at an angle to the horizontal, as shown in figure above,
the following should be noted:
(i)
the horizontal component of the velocity π‘£π‘œπ‘₯ is constant;
(ii) the vertical component of the velocity π‘£π‘œπ‘¦ changes;
(iii) the vertical component of the velocity is zero at the highest point;
(iv) the vertical acceleration π‘Žπ‘¦ = βˆ’π‘” throughout the motion, while the horizontal
acceleration π‘Žπ‘₯ is zero.
In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.
Vertical motion:
Initial velocity π‘£π‘œπ‘¦ = π‘£π‘œ sin πœƒ, acceleration π‘Žπ‘¦ = βˆ’π‘”
Let 𝐻 be the maximum height reached. At maximum height 𝑣𝑦 = 0.
2
π‘ˆπ‘ π‘–π‘›π‘” 𝑣𝑦2 = π‘£π‘œπ‘¦
+ 2π‘Žπ‘¦ 𝐻
2
0 = (π‘£π‘œ sin πœƒ) + 2(βˆ’π‘”)𝐻
0 = π‘£π‘œ2 𝑠𝑖𝑛2 πœƒ βˆ’ 2𝑔𝐻
Page 16 of 43
π‘£π‘œ2 𝑠𝑖𝑛2 πœƒ
𝐻=
…
3.14
2𝑔
Let the time taken to reach the maximum height be 𝑑.
π‘ˆπ‘ π‘–π‘›π‘” 𝑣𝑦 = π‘£π‘œπ‘¦ + π‘Žπ‘¦ 𝑑
0 = π‘£π‘œ sin πœƒ + (βˆ’π‘”)𝑑
0 = π‘£π‘œ sin πœƒ βˆ’ 𝑔𝑑
π‘£π‘œ sin πœƒ
𝑑=
…
3.15
𝑔
When the object landed on the ground, the vertical displacement 𝐻 = 0. Let 𝑇 be the
total time of flight.
1
π‘ˆπ‘ π‘–π‘›π‘” 𝐻𝑦 = π‘£π‘œπ‘¦ 𝑑 + π‘Žπ‘¦ 𝑑 2
2
1
0 = π‘£π‘œ sin πœƒ 𝑇 + (βˆ’π‘”)𝑇 2
2
𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔 π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž 𝑏𝑦 𝑑, 𝑀𝑒 β„Žπ‘Žπ‘£π‘’
1
0 = π‘£π‘œ sin πœƒ βˆ’ 𝑔𝑇
2
𝑔𝑇
= π‘£π‘œ sin πœƒ
2
2π‘£π‘œ sin πœƒ
𝑇=
= 2𝑑 … 3.16
𝑔
Horizontal Motion:
Initial velocity π‘£π‘œπ‘₯ = π‘£π‘œ cos πœƒ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘,π‘Žπ‘₯ = 0
To obtain the range (horizontal displacement) of the projectile, we use
1
π‘₯ βˆ’ π‘₯π‘œ = π‘£π‘œπ‘₯ 𝑑 + π‘Žπ‘₯ 𝑑 2
2
The range 𝑅 of the projectile is
1
𝑅 = π‘£π‘œπ‘₯ 𝑇 + π‘Žπ‘₯ 𝑑 2
2
𝑆𝑖𝑛𝑐𝑒 π‘Žπ‘₯ = 0, π‘‘β„Žπ‘’π‘›
𝑅 = π‘£π‘œπ‘₯ 𝑇
2π‘£π‘œ sin πœƒ
)
𝑅 = (π‘£π‘œ cos πœƒ) (
𝑔
π‘£π‘œ2 (2 sin πœƒ cos πœƒ)
𝑅=
𝑔
π‘Ÿπ‘’π‘π‘Žπ‘™π‘™, 2 sin πœƒ cos πœƒ = sin 2πœƒ
π‘£π‘œ2 sin 2πœƒ
𝑅=
..
3.17
𝑔
Page 17 of 43
The maximum value of 𝑅 is
π‘£π‘œ2
𝑔
and it occurs when sin 2πœƒ = 1, or 2πœƒ = 90π‘œ , ∴ πœƒ =
45π‘œ . Therefore the maximum range is obtained if the object is projected at an angle
45π‘œ to the horizontal.
Example 12:
A pirate ship is 560π‘š from a military island base. A military cannon (large gun on
wheels) located at sea level fires balls at initial speed π‘£π‘œ = 82π‘š/𝑠. (π‘Ž) At what
angleπœƒ from the horizontal must a ball be fired to hit the ship? (𝑏) How far should
the pirate ship be from the cannon if it is to be beyond the maximum range of the
cannonballs?
Solution:
(π‘Ž )
π‘£π‘œ2 sin 2πœƒ
𝑔
𝑔𝑅
sin 2πœƒ = 2
π‘£π‘œ
𝑔𝑅
9.8
×
560
) = sinβˆ’1 0.816 = 54.68π‘œ
2πœƒ = sinβˆ’1 ( 2 ) = sinβˆ’1 (
2
π‘£π‘œ
82
54.68π‘œ
πœƒ=
2
πœƒ = 27.34π‘œ
𝑅=
π‘£π‘œ2 sin 2πœƒ
(𝑏 )
𝑅=
𝑔
π‘‡β„Žπ‘’ π‘Ÿπ‘Žπ‘›π‘”π‘’ 𝑅 𝑖𝑠 π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘Žπ‘‘ πœƒ = 45π‘œ
822 × sin(2 × 45π‘œ )
𝑅=
9.8
𝑅 = 686π‘š
∴ π‘‡β„Žπ‘’ π‘ β„Žπ‘–π‘ π‘ β„Žπ‘œπ‘’π‘™π‘‘ 𝑏𝑒 π‘π‘’π‘¦π‘œπ‘›π‘‘ 686π‘š (𝑖. 𝑒. 𝑅 > 686π‘š)π‘“π‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘ β„Žπ‘–π‘ π‘‘π‘œ 𝑏𝑒 π‘ π‘Žπ‘“π‘’.
Example 13:
A projectile shot at an angle of 60π‘œ above the horizontal strikes a building 25π‘š away
at a point 16π‘š above the point of projection. Find the magnitude and direction of
the velocity of the projectile as it strikes the building.
Page 18 of 43
Solution:
Horizontal motion
Vertical motion
1
π‘ˆπ‘ π‘–π‘›π‘” π‘₯ = π‘£π‘œπ‘₯ 𝑑 + π‘Žπ‘₯ 𝑑 2
2
π‘Ÿπ‘’π‘π‘Žπ‘™π‘™ π‘Žπ‘₯ = 0, π‘£π‘œπ‘₯ = π‘£π‘œ cos πœƒ
π‘₯ = π‘£π‘œ cos πœƒ 𝑑
π‘₯
25
50
𝑑=
=
=
π‘£π‘œ cos πœƒ π‘£π‘œ × cos 60 π‘£π‘œ
1
π‘ˆπ‘ π‘–π‘›π‘” 𝑦 = π‘£π‘œπ‘¦ 𝑑 + π‘Žπ‘¦ 𝑑 2
2
π‘Ÿπ‘’π‘π‘Žπ‘™π‘™ π‘Žπ‘¦ = βˆ’π‘”, π‘£π‘œπ‘¦ = π‘£π‘œ sin πœƒ
1
𝑦 = π‘£π‘œ sin πœƒ 𝑑 βˆ’ 𝑔𝑑 2
2
50
1
502
16 = π‘£π‘œ × sin 60π‘œ × ( ) βˆ’ × 9.8 × 2
π‘£π‘œ
2
π‘£π‘œ
12,250
16 = 43.3 βˆ’
π‘£π‘œ2
π‘£π‘œ = 21.18π‘š/𝑠
50
50
=
= 2.36𝑠
π‘£π‘œ 21.18
= π‘£π‘œ cos πœƒ = 21.18 × cos 60π‘œ = 10.59π‘š/𝑠
= π‘£π‘œ sin πœƒ = 21.18 × sin 60π‘œ = 18.34π‘š/𝑠
π‘ˆπ‘ π‘–π‘›π‘” 𝑣 = π‘£π‘œ + π‘Žπ‘‘
𝑣π‘₯ = π‘£π‘œπ‘₯ + π‘Žπ‘₯ 𝑑 = 10.59 + (0)𝑑 = 10.59π‘š/𝑠
𝑣𝑦 = π‘£π‘œπ‘¦ + π‘Žπ‘¦ 𝑑 = 18.34 + (βˆ’9.8) × 2.36 = βˆ’4.79π‘š/𝑠
π‘π‘œπ‘€, 𝑑 =
π‘£π‘œπ‘₯
π‘£π‘œπ‘¦
Page 19 of 43
𝑣 = βˆšπ‘£π‘₯2 + 𝑣𝑦2 = √(10.59)2 + (βˆ’4.79)2 = 11.62π‘š/𝑠
βˆ’4.79
) = βˆ’24.330
πœƒ = tanβˆ’1 (
10.59
EXERCISE
1.
A projectile leaves the ground at an angle of 60π‘œ to the horizontal. Its kinetic
energy is 𝐸. Neglecting air resistance, find in terms of 𝐸 its kinetic energy at
1
the highest point of the motion. (Answer: 𝐸)
4
2.
An object is released from an aeroplane which is diving at an angle of 30π‘œ
from the horizontal with a speed of 50π‘š/𝑠. If the plane is at a height of
4000π‘š from the ground when the object is released, find
(a)
the velocity of the object when it hits the ground.
(b) the time taken for the object to reach the ground.
Page 20 of 43
4.0
DYNAMICS
Dynamics is a branch of mechanics which deals with the forces that give rise to
motion. Just as kinematics describes how objects move without describing the force
that caused the motion, Newton’s laws of motion are the foundation of dynamics
which describes the motion and force responsible for the motion.
4.1
FORCE
Force is that which changes the velocity of an object. Force is a vector quantity. An
external force is one which lies outside of the system being considered.
4.1.1 TYPES OF FORCES
Contact Force is that in which one object has to be in contact with another to exert
a force on it. A push or pull on an object are examples of contact force.
Tension ⃗𝑻⃗ is the force on a string or chain tending to stretch it.
⃗⃗𝑡 is the force which acts perpendicular to a surface which supports
Normal force 𝑭
an object.
βƒ—βƒ—βƒ—βƒ—βƒ—of an object is the force with which gravity pulls downward upon it. It is
Weight 𝑾
βƒ—βƒ—βƒ—βƒ— = π‘šπ‘”βƒ—. It is equal to the gravitational force on the body.
given as π‘Š
Frictional force βƒ—βƒ—
𝒇is the force on a body when the body slides or attempts to slide
along a surface and is always parallel to the surface and directed so as to oppose the
motion of the body.
Other important forces include gravitational
electromagnetic force, nuclear force.
force
or
simply
gravity,
4.1.2 NET FORCE
The net force is the vector sum of all force vectors that act on an object. It is
expressed as:
𝑛
𝐹⃗𝑛𝑒𝑑 = βˆ‘ 𝐹⃗𝑖 = 𝐹⃗1 + 𝐹⃗2 + β‹― + 𝐹⃗𝑛
…
4.1
𝑖=1
In Cartesian components, the net force are given by
Page 21 of 43
𝑛
𝐹⃗𝑛𝑒𝑑,π‘₯ = βˆ‘ 𝐹𝑖,π‘₯ = 𝐹⃗1,π‘₯ + 𝐹⃗2,π‘₯ + β‹― + 𝐹⃗𝑛,π‘₯
𝑛
𝑖=1
𝐹⃗𝑛𝑒𝑑,𝑦 = βˆ‘ 𝐹𝑖,𝑦 = 𝐹⃗1,𝑦 + 𝐹⃗2,𝑦 + β‹― + 𝐹⃗𝑛,𝑦
𝑖=1
…
4.2
𝑛
𝐹⃗𝑛𝑒𝑑,𝑧 = βˆ‘ 𝐹𝑖,𝑧 = 𝐹⃗1,𝑧 + 𝐹⃗2,𝑧 + β‹― + 𝐹⃗𝑛,𝑧
𝑖=1
4.2
NEWTON’S LAWS OF MOTION
4.2.1 Newton’s First Law
If no net force acts on a body (i.e. ⃗𝑭⃗𝒏𝒆𝒕 = 𝟎), then the body’s velocity cannot
change; that is, the body cannot accelerate. If it was moving, it will remain in
motion in a straight line with the same constant velocity.
4.2.2 Newton’s Second Law
⃗⃗𝒏𝒆𝒕 acts on an object with mass π’Ž, the force will cause an
If a net external force, 𝑭
βƒ—βƒ—, in the same direction as the force. Mathematically, the law is
acceleration, 𝒂
expressed as:
⃗⃗𝒏𝒆𝒕 = π’Žπ’‚
βƒ—βƒ—
𝑭
…
4.3
Which may be written in Cartesian components as
𝐹⃗𝑛𝑒𝑑,π‘₯ = π‘šπ‘Žπ‘₯ , 𝐹⃗𝑛𝑒𝑑,𝑦 = π‘šπ‘Žπ‘¦ ,
𝐹⃗𝑛𝑒𝑑,𝑧 = π‘šπ‘Žπ‘§
…
4.4
4.2.3 Newton’s Third Law
The forces that two interacting objects exert on each other are always exactly
equal in magnitude and opposite in direction:
𝐹⃗1β†’2 = βˆ’πΉβƒ—2β†’1 …
4.5
Example 14:
Three forces that act on a particle are given by 𝐹⃗1 = (20𝑖̂ βˆ’ 36𝑗̂ + 73π‘˜Μ‚ )𝑁, 𝐹⃗2 =
(βˆ’17𝑖̂ + 21𝑗̂ βˆ’ 46π‘˜Μ‚ )𝑁 π‘Žπ‘›π‘‘ 𝐹⃗3 = (βˆ’12π‘˜Μ‚ )𝑁. Find their resultant (net) vector. Also
find the magnitude of the resultant to two significant figures.
Solution:
𝐹⃗𝑛𝑒𝑑,π‘₯
𝐹⃗𝑛𝑒𝑑 = 𝐹⃗1 + 𝐹⃗2 + 𝐹⃗3
= [20𝑖̂ + (βˆ’17𝑖̂)]𝑁 = 3𝑖̂𝑁
Page 22 of 43
𝐹⃗𝑛𝑒𝑑,𝑦 = [βˆ’36𝑗̂ + 21𝑗̂]𝑁 = βˆ’15𝑗̂𝑁
𝐹⃗𝑛𝑒𝑑,𝑧 = [73π‘˜Μ‚ βˆ’ 46π‘˜Μ‚ βˆ’ 12π‘˜Μ‚ ]𝑁 = 15π‘˜Μ‚ 𝑁
𝐹⃗𝑛𝑒𝑑 = [3𝑖̂ βˆ’ 15𝑗̂ + 15π‘˜Μ‚ ]𝑁
𝐹 = |𝐹⃗𝑛𝑒𝑑 | = √32 + (βˆ’15)2 + 152 = √459 = 21𝑁
Example 15:
Five coplanar forces act on an object as shown in the figure below. Find the resultant
of the forces. The magnitude of the forces are: 𝐹1 = 15𝑁, 𝐹2 = 19𝑁, 𝐹3 = 22𝑁, 𝐹4 =
11𝑁, 𝐹5 = 16𝑁.
Solution:
𝐹⃗1 = βƒ—βƒ—βƒ—
𝐹1,π‘₯
𝐹⃗𝑛𝑒𝑑 = 𝐹⃗1 + 𝐹⃗2 + 𝐹⃗3 + 𝐹⃗4 + 𝐹⃗5
+ βƒ—βƒ—βƒ—
𝐹 = 𝐹 cos 60π‘œ 𝑖̂ + 𝐹 sin 60π‘œ 𝑗̂
1,𝑦
1
1
𝐹⃗2 = βƒ—βƒ—βƒ—
𝐹2,π‘₯ 𝑖̂ = 𝐹2 𝑖̂
βƒ—βƒ—βƒ— 𝑗̂ = βˆ’πΉ 𝑗̂
𝐹⃗3 = βˆ’πΉ
3,𝑦
3
π‘œ
π‘œ
βƒ—βƒ—βƒ—
βƒ—βƒ—βƒ—
Μ‚
Μ‚
βƒ—
𝐹4 = βˆ’πΉ4,π‘₯ 𝑖 βˆ’ 𝐹4,𝑦 𝑗 = βˆ’πΉ4 cos 30 𝑖̂ βˆ’ 𝐹4 sin 30 𝑗̂
βƒ—βƒ—βƒ— + βƒ—βƒ—βƒ—
𝐹⃗5 = βˆ’πΉ
𝐹5,𝑦 = βˆ’πΉ5 cos 45π‘œ + 𝐹5 sin 45π‘œ
5,π‘₯
π‘œ
π‘œ
𝐹⃗1 = 15 cos 60 𝑖̂ + 15 sin 60 𝑗̂ = 7.5𝑖̂ + 12.99𝑗̂
𝐹⃗2 = 19𝑖̂
𝐹⃗3 = βˆ’22𝑗̂
π‘œ
π‘œ
𝐹⃗4 = βˆ’11 cos 30 𝑖̂ βˆ’ 11 sin 30 𝑗̂ = βˆ’9.53𝑖̂ βˆ’ 5.5𝑗̂
π‘œ
π‘œ
𝐹⃗5 = βˆ’16 cos 45 + 16 sin 45 = βˆ’11.31𝑖̂ + 11.31𝑗̂
𝐹⃗𝑛𝑒𝑑,π‘₯ = (7.5 + 19 βˆ’ 9.53 βˆ’ 11.31)𝑖̂ 𝑁 = 5.66𝑖̂ 𝑁
𝐹⃗𝑛𝑒𝑑,𝑦 = (12.99 βˆ’ 22 βˆ’ 5.5 + 11.31)𝑗̂ 𝑁 = βˆ’3.2𝑗̂ 𝑁
Page 23 of 43
𝐹⃗𝑛𝑒𝑑 = √(5.66)2 + (βˆ’3.2)2 = 6.5𝑁
Example 16:
A mass of 55π‘˜π‘” was suspended with two ropes as shown in the figure below. What
is the tension in each rope if πœƒ = 45π‘œ ?
Solution:
𝐹⃗𝑛𝑒𝑑 = βˆ‘ 𝐹⃗𝑖 = 𝑀(π‘Žβƒ—) = 𝑀(0) = 0
βƒ—βƒ—1π‘₯ + 𝑇
βƒ—βƒ—2π‘₯ = (𝑇1 cos πœƒ βˆ’ 𝑇2 cos πœƒ)𝑖̂ = 0
βˆ‘ 𝐹⃗π‘₯ = 𝑇
βƒ—βƒ—1𝑦 + 𝑇
βƒ—βƒ—2𝑦 βˆ’ π‘Š
βƒ—βƒ—βƒ—βƒ— = [𝑇1 sin πœƒ + 𝑇2 sin πœƒ βˆ’ 55(9.8)]𝑗̂ = 0
βˆ‘ 𝐹⃗𝑦 = 𝑇
π‘π‘œπ‘‘π‘’, π‘π‘œπ‘‘β„Ž π‘Ÿπ‘œπ‘π‘’π‘  π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘ π‘‘β„Žπ‘’ π‘™π‘œπ‘Žπ‘‘ π‘’π‘žπ‘’π‘Žπ‘™π‘™π‘¦
βƒ—βƒ—1 = 𝑇
βƒ—βƒ—2 = 𝑇
βƒ—βƒ—
𝑇
𝑇 cos πœƒ βˆ’ 𝑇 cos πœƒ = 0
𝑇 sin πœƒ + 𝑇 sin πœƒ βˆ’ 539 = 0
2𝑇 sin πœƒ = 539 = 0
539
𝑇=
2 × sin 45
𝑇 = 381𝑁
Page 24 of 43
Example 17:
A cord holds stationary a block of mass π‘š = 15π‘˜π‘” on a frictionless plane that is
βƒ—βƒ— on the block
inclined at angle πœƒ = 27π‘œ . (π‘Ž)What is the magnitude of the tension 𝑇
βƒ—βƒ— on the block from the plane? (𝑏)If the cord is
from the cord and the normal force 𝑁
cut, so that the body slides down the plane, calculate the acceleration of the body.
Solution:
(π‘Ž)
The free body diagram is sketched as
We note from Newton’s 2nd law, 𝐹⃗𝑛𝑒𝑑 = π‘šπ‘Žβƒ—
βƒ—βƒ— + 𝑁
βƒ—βƒ— + 𝐹⃗𝑔 = π‘šπ‘Žβƒ—
𝑇
…
(1)
π‘Žβƒ— = 0 (𝑠𝑖𝑛𝑐𝑒 π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘π‘’π‘  π‘Žπ‘Ÿπ‘’ 𝑖𝑛 π‘’π‘žπ‘’π‘–π‘™π‘–π‘π‘Ÿπ‘–π‘’π‘š)
βƒ—βƒ— + 𝑁
βƒ—βƒ— + 𝐹⃗𝑔 = 0
𝑇
…
(2)
π‘ π‘œπ‘™π‘£π‘–π‘›π‘” 𝑖𝑛 π‘‘β„Žπ‘’ π‘π‘Žπ‘Ÿπ‘‘π‘’π‘ π‘–π‘Žπ‘› π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘ , 𝑀𝑒 β„Žπ‘Žπ‘£π‘’
π‘₯:
𝑇 + 0 βˆ’ 𝐹𝑔 sin πœƒ = 0
𝑇 = 𝐹𝑔 sin πœƒ = π‘šπ‘” sin πœƒ
𝑇 = 15 × 9.8 × sin 27π‘œ = 66.74𝑁
Page 25 of 43
𝑦:
0 + 𝑁 βˆ’ 𝐹𝑔 cos πœƒ = 0
𝑁 = 𝐹𝑔 π‘π‘œπ‘ πœƒ = π‘šπ‘” cos πœƒ
𝑁 = 15 × 9.8 × cos 27π‘œ
𝑁 = 130.98𝑁
βƒ—βƒ— π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘’ π‘π‘™π‘œπ‘π‘˜, π‘ π‘œ π‘‘β„Žπ‘Žπ‘‘ π‘‘β„Žπ‘’ π‘π‘™π‘œπ‘π‘˜ 𝑠𝑙𝑖𝑑𝑒𝑠 π‘Žπ‘™π‘œπ‘›π‘” π‘₯ π‘Žπ‘₯𝑖𝑠
(𝑏)𝐢𝑒𝑑𝑑𝑖𝑛𝑔 π‘‘β„Žπ‘’ π‘π‘œπ‘Ÿπ‘‘ π‘Ÿπ‘’π‘šπ‘œπ‘£π‘’π‘  π‘“π‘œπ‘Ÿπ‘π‘’ 𝑇
∴ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› (2)π‘π‘’π‘π‘œπ‘šπ‘’π‘ 
0 + 0 βˆ’ 𝐹𝑔 sin πœƒ = π‘šπ‘Ž
βˆ’π‘šπ‘” sin πœƒ = π‘šπ‘Ž
π‘Ž = βˆ’π‘” sin πœƒ
π‘Ž = βˆ’9.8 × sin 27π‘œ
π‘Ž = βˆ’4.45 π‘š/𝑠 2
5.0
KINETIC ENERGY, WORK, AND POWER
5.1 KINETIC ENERGY
The kinetic energy 𝐾 is energy associated with the state of motion of a particle and
is defined as:
1
𝐾 = π‘šπ‘£ 2
…
5.1
2
where π‘š, is the mass of the particle and 𝑣 is the speed of the particle which is well
below the speed of light. Its S.I. unit is the joule (J).
Example 18:
A car of mass 1310π‘˜π‘” being driven at a speed limit of 24.6 π‘š/𝑠 has a kinetic energy
of:
1
1
πΎπ‘π‘Žπ‘Ÿ = π‘šπ‘£ 2 = (1310)(24.6)2 = 4.0 × 105 𝐽
2
2
5.2 WORK
Work π‘Š is the energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work. It is a scalar quantity.
The work done by a force can be defined as the product of the magnitude of the
displacement and the component of the force in the direction of the displacement.
The unit of work in S.I. is the Joule (J).
Consider the figure below.
Page 26 of 43
Work can be expressed mathematically as
π‘Š = 𝐹π‘₯ cos πœ‘
… (5.2)
π‘œπ‘Ÿ
(5.3)
π‘Š = 𝐹⃗ . π‘₯βƒ—
…
Equation (5.3) is especially useful for calculating the work when 𝐹⃗ and π‘₯βƒ— are given
in unit vector notations.
Consider the figure below.
If a force displaces the particle through a distance π‘‘π‘Ÿ, then the work done π‘‘π‘Š by the
forced is
π‘‘π‘Š = 𝐹⃗ . π‘‘π‘Ÿβƒ—
…
(5.4)
The total work done by the force in moving the particle from initial point 𝑖 to final
point 𝑓 will be
𝑓
𝑓
π‘Š = ∫ 𝐹⃗ . π‘‘π‘Ÿβƒ— = ∫ πΉπ‘‘π‘Ÿ cos πœƒ
𝑖
…
(5.5)
𝑖
Page 27 of 43
5.3
WORK-KINETIC ENERGY THEOREM
The work-kinetic energy theorem states that β€œwhen a body is acted upon by a force
or resultant force, the work done by the force is equal to the change in kinetic
energy of the body.”
Proof:
𝑓
𝑓
π‘Š = ∫ 𝐹⃗ . π‘‘π‘Ÿβƒ— = ∫ πΉπ‘‘π‘Ÿ cos πœƒ
𝑖
𝑖
πΉπ‘œπ‘Ÿπ‘π‘’ 𝐹⃗ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘‘π‘Ÿβƒ—, ∴ πœƒ = 0
𝑓
𝑓
π‘Š = ∫ πΉπ‘‘π‘Ÿ = ∫ π‘šπ‘Žπ‘‘π‘Ÿ
𝑓
𝑖
𝑖
𝑓
𝑑𝑣
𝑑𝑣 π‘‘π‘Ÿ
) π‘‘π‘Ÿ
π‘Š = ∫ π‘š ( ) π‘‘π‘Ÿ = ∫ π‘š (
𝑑𝑑
π‘‘π‘Ÿ 𝑑𝑑
𝑖
𝑖
𝑓
𝑓
𝑓
𝑑𝑣
π‘Š=∫ π‘š
π‘£π‘‘π‘Ÿ = ∫ π‘šπ‘£π‘‘π‘£ = π‘š ∫ 𝑣𝑑𝑣
π‘‘π‘Ÿ
𝑖
𝑖
𝑖
2
2
2 𝑓
𝑣
𝑣
𝑣𝑖
𝑓
π‘Š = π‘š[ ] = π‘š[ βˆ’ ]
2 𝑖
2
2
1
1
π‘Š = π‘šπ‘£π‘“2 βˆ’ π‘šπ‘£π‘–2 …
(5.6)
2
2
π‘Š = 𝐾𝑓 βˆ’ 𝐾𝑖
π‘Š = βˆ†πΎ
…
(5.7)
5.4
POWER
Power is the rate of doing work. If an amount of work βˆ†π‘Š is done in a small interval
of time βˆ†π‘‘, the power 𝑃 is
βˆ†π‘Š π‘‘π‘Š
𝑃 = lim
=
…
(5.8)
βˆ†π‘‘β†’0 βˆ†π‘‘
𝑑𝑑
Power is a scalar quantity and its unit is 𝐽/𝑠 which is also called the watt (π‘Š).
For a constant force
𝑃=
π‘‘π‘Š
π‘‘π‘Ÿβƒ—
= 𝐹⃗ .
= 𝐹⃗ . 𝑣⃗
𝑑𝑑
𝑑𝑑
(5.9)
𝑠𝑖𝑛𝑐𝑒 π‘‘β„Žπ‘’ π‘–π‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘›π‘’π‘œπ‘’π‘  π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑣⃗ =
If 𝐹⃗ acts at an angle πœƒto 𝑣⃗, then
𝑃 = 𝐹⃗ . 𝑣⃗ = 𝐹𝑣 cos πœƒ
…
π‘‘π‘Ÿβƒ—
𝑑𝑑
(5.10)
Page 28 of 43
Example 19:
A body moves with velocity 𝑣⃗ = (5𝑖̂ + 2𝑗̂ βˆ’ 3π‘˜Μ‚ )π‘š/𝑠 under the influence of a
constant force 𝐹⃗ = (4𝑖̂ + 3𝑗̂ βˆ’ 2π‘˜Μ‚ )𝑁. Determine (π‘Ž) the instantaneous power; (𝑏)
the angle between 𝐹⃗ and 𝑣⃗.
Solution:
(𝑏 )
βƒ—βƒ—
(π‘Ž )
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝐹⃗ . 𝑉
= (4𝑖̂ + 3𝑗̂ βˆ’ 2π‘˜Μ‚ ). (5𝑖̂ + 2𝑗̂ βˆ’ 3π‘˜Μ‚ ) = 20 + 6 + 6 = 32π‘Š
𝑃 = 𝐹𝑉 cos πœƒ
𝑃
πœƒ = cos βˆ’1 [ ]
𝐹𝑣
𝐹 = |𝐹⃗ | = √42 + 32 + (βˆ’2)2 = √29
𝑉 = |𝑣⃗ | = √52 + 22 + (βˆ’3)2 = √38
𝑃
32
] = 15.43π‘œ
πœƒ = cos βˆ’1 [ ] = cos βˆ’1 [
𝐹𝑣
√29 × βˆš38
Example 20:
A crate slides across an oily parking lot through a displacement 𝑑⃗ = (βˆ’3π‘š)𝑖̂ while a
steady wind pushes against the crate with a force 𝐹⃗ = (2𝑁)𝑖̂ + (βˆ’6𝑁)𝑗̂. (π‘Ž)
Calculate the work done by the wind, (𝑏) if the crate has a kinetic energy of 10𝐽 at
the beginning of the displacement 𝑑⃗, what is the kinetic energy at the end of 𝑑⃗?
Solution:
(π‘Ž )
π‘Š = 𝐹⃗ . 𝑑⃗ = (2𝑖̂ βˆ’ 6𝑗̂). (βˆ’3𝑖̂) = (2𝑖̂ βˆ’ 6𝑗̂). (βˆ’3𝑖̂ + 0𝑗̂) = βˆ’6𝐽
(𝑏 )
π‘Š = βˆ†πΎ = 𝐾𝑓 βˆ’ π‘˜π‘–
𝐾𝑓 = π‘Š + 𝐾𝑖 = βˆ’6 + 10 = 4𝐽
EXERCISE
A constant force 𝐹⃗ = (5𝑖̂ + 3𝑗̂ βˆ’ 2π‘˜Μ‚ )𝑁 moves a particle from position π‘Ÿβƒ—1 =
(2𝑖̂ βˆ’ 𝑗̂ + 4π‘˜Μ‚ )π‘š to a position π‘Ÿβƒ—2 = (3𝑖̂ + 5𝑗̂ + π‘˜Μ‚ )π‘š. Calculate the work done by the
force. [𝑨𝒏𝒔 = πŸπŸ—π‘±]
Page 29 of 43
6.0
POTENTIAL ENERGY
Potential energy π‘ˆ is the energy that can be associated with the configuration (or
arrangement) of a system of objects that exerts forces on one another.
Consider a tennis ball thrown upward as shown in figure 6.1 below.
As the ball is thrown upward, the gravitational force does negative work on it by
decreasing its kinetic energy. As the ball descends, the gravitational force does
positive work on it by increasing its kinetic energy. Thus the change in potential
energy is defined to equal the negative of work done. That is
(6.1)
βˆ†π‘ˆ = βˆ’π‘Š
…
Recall that
π‘₯𝑓
π‘Š = ∫ 𝐹 (π‘₯)𝑑π‘₯
π‘₯𝑓
π‘₯𝑖
∴ βˆ†π‘ˆ = βˆ’ ∫ 𝐹 (π‘₯)𝑑π‘₯
…
(6.2)
π‘₯𝑖
6.1 GRAVITATIONAL POTENTIAL ENERGY
Gravitational potential energy is the potential energy associated with a system
consisting of Earth and a nearby particle.
𝑦𝑓
𝑦𝑓
𝑦𝑓
𝑦
𝑓
βˆ†π‘ˆ = βˆ’ ∫ 𝐹 (𝑦)𝑑𝑦 = βˆ’ ∫ (βˆ’π‘šπ‘”)𝑑𝑦 = π‘šπ‘” ∫ 𝑑𝑦 = π‘šπ‘”[𝑦]𝑦𝑖 = π‘šπ‘”(𝑦𝑓 βˆ’ 𝑦𝑖 )
𝑦𝑖
𝑦𝑖
βˆ†π‘ˆ = π‘šπ‘”βˆ†π‘¦
…
Usually, reference point 𝑦𝑖 is taken as zero.
βˆ†π‘ˆ = π‘šπ‘”π‘¦
…
𝑦𝑖
(6.3)
(6.4)
Page 30 of 43
Example 21:
A mass of 2π‘˜π‘” hangs 5π‘š above the ground. What is the gravitational potential
energy of the mass-earth system at (𝑖) the ground, (𝑖𝑖) a height of 3π‘š above the
ground, and (𝑖𝑖𝑖) a height of 6m.
Solution:
(𝑖) π‘ˆ = π‘šπ‘”(𝑦𝑓 βˆ’ 𝑦𝑖 ) = 2 × 9.8 × (5 βˆ’ 0) = 98𝐽
(𝑖𝑖) π‘ˆ = π‘šπ‘”(𝑦𝑓 βˆ’ 𝑦𝑖 ) = 2 × 9.8 × (5 βˆ’ 3) = 39.2𝐽
(𝑖𝑖𝑖) π‘ˆ = π‘šπ‘”(𝑦𝑓 βˆ’ 𝑦𝑖 ) = 2 × 9.8 × (5 βˆ’ 6) = βˆ’19.6𝐽
6.2 ELASTIC POTENTIAL ENERGY
Elastic potential energy is the energy associated with the state of compression or
extension of an elastic object. For a spring that exerts a force 𝑓 = βˆ’π‘˜π‘₯ when its free
end has displacement π‘₯, the elastic potential is
π‘₯𝑓
π‘₯𝑓
π‘₯𝑓
βˆ†π‘ˆ = βˆ’ ∫ 𝐹𝑑π‘₯ = βˆ’ ∫ (βˆ’π‘˜π‘₯)𝑑π‘₯ = π‘˜ ∫ π‘₯𝑑π‘₯
π‘₯𝑖
2 π‘₯𝑓
π‘₯𝑖
π‘₯
1
1
= π‘˜ [ ] = π‘˜π‘₯𝑓2 βˆ’ π‘˜π‘₯𝑖2
2 π‘₯
2
2
π‘₯𝑖
…
(6.5)
𝑖
6.3 CONSERVATION OF MECHANICAL ENERGY
We recall from equation (5.7)
(6.6)
π‘Š = βˆ†πΎ
…
Also, we recall from equation (6.1)
(6.7)
π‘Š = βˆ’βˆ†π‘ˆ
…
Combining equations (6.5) and (6.6)
βˆ†πΎ = βˆ’βˆ†π‘ˆ
𝐾2 βˆ’ 𝐾1 = βˆ’(π‘ˆ2 βˆ’ π‘ˆ1 )
Rearranging
(6.8)
𝐾2 + π‘ˆ2 = 𝐾1 + π‘ˆ1
…
In words,
π‘ π‘’π‘š π‘œπ‘“ 𝐾. 𝐸 π‘Žπ‘›π‘‘ 𝑃. 𝐸 π‘“π‘œπ‘Ÿ
π‘‘β„Žπ‘’ π‘ π‘’π‘š π‘œπ‘“ 𝐾. 𝐸 π‘Žπ‘›π‘‘ 𝑃. 𝐸 π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦
(
)=(
)
π‘Žπ‘›π‘¦ π‘ π‘‘π‘Žπ‘‘π‘’ π‘œπ‘“ π‘Ž π‘ π‘¦π‘ π‘‘π‘’π‘š
π‘œπ‘‘β„Žπ‘’π‘Ÿ π‘ π‘‘π‘Žπ‘‘π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘¦π‘ π‘‘π‘’π‘š
Equation (6.8) is the conservation of mechanical energy equation.
The principle of conservation of mechanical energy states that: In an isolated
system, the kinetic energy and potential energy can change, but their sum, the
mechanical energy πΈπ‘šπ‘’π‘ of the system cannot change. That is
(6.9)
βˆ†πΈπ‘šπ‘’π‘ = βˆ†πΎ + βˆ†π‘ˆ = 0 …
Page 31 of 43
7.0
CENTER OF MASS
The center of mass of a body or a system of bodies is the point that moves as though
all of the masses were concentrated there and all external forces were applied there.
We define the position of the center of mass (com) of the two-particle separated by
a distance 𝑑 in figure 7.1 as:
π‘š2
(7.1)
π‘₯π‘π‘œπ‘š =
𝑑
…
π‘š1 + π‘š2
We arbitrarily chose the origin of the π‘₯ axis to coincide with the particle of mass π‘š1 .
If the origin is located farther from the particles, the position of the center of mass is
calculated as:
π‘š1 π‘₯1 + π‘š2 π‘₯2
(7.2)
π‘₯π‘π‘œπ‘š =
…
π‘š1 + π‘š2
Generally, for 𝑛 particles along π‘₯ axis
𝑛
π‘š1 π‘₯1 + π‘š2 π‘₯2 + π‘š3 π‘₯3 + β‹― + π‘šπ‘› π‘₯𝑛
1
(7.3)
π‘₯π‘π‘œπ‘š =
= βˆ‘ π‘šπ‘– π‘₯𝑖
…
𝑀
𝑀
𝑖=1
Page 32 of 43
where 𝑀 = π‘š1 + π‘š2 + π‘š3 + β‹― + π‘šπ‘› .
If the particles are distributed in three dimensions, the center of mass must be
identified by three coordinates.
𝑛
𝑛
𝑛
1
1
1
(7.4)
π‘₯π‘π‘œπ‘š = βˆ‘ π‘šπ‘– π‘₯𝑖 , π‘¦π‘π‘œπ‘š = βˆ‘ π‘šπ‘– 𝑦𝑖 , π‘§π‘π‘œπ‘š = βˆ‘ π‘šπ‘– 𝑧𝑖
…
𝑀
𝑀
𝑀
𝑖=1
𝑖=1
𝑖=1
Example 22:
Three particles of mass π‘š1 = 1.2π‘˜π‘”, π‘š2 = 2.5π‘˜π‘”, and π‘š3 = 3.4π‘˜π‘” form an
equilateral triangle of edge length π‘Ž = 140π‘π‘š. Where is the center of mass of this
three-particle system?
Solution:
The distance 𝑦 can be obtained using Pythagoras theorem
1402 = 702 + 𝑦32
𝑦32 = 1402 βˆ’ 702 = 19600 βˆ’ 4900 = 14700
𝑦3 = √14700 = 121π‘π‘š
π‘š1 π‘₯1 + π‘š2 π‘₯2 + π‘š3 π‘₯3 (1.2)(0) + (2.5)(140) + (3.4)(70)
π‘₯π‘π‘œπ‘š =
=
= 83π‘π‘š
𝑀
7.1
π‘¦π‘π‘œπ‘š =
π‘š1 𝑦1 + π‘š2 𝑦2 + π‘š3 𝑦3 (1.2)(0) + (2.5)(0) + (3.4)(121)
=
= 58π‘π‘š
𝑀
7.1
Page 33 of 43
8.0
COLLISION
A Collision is an isolated event in which two or more bodies exert relatively strong
forces on each other for a relatively short time.
8.1 ELASTIC AND INELASTIC COLLISION
A collision is said to be elastic if the total kinetic energy of the system of two
colliding bodies is unchanged by the collision (i.e. conserved). Whereas, if the kinetic
energy of the system is not conserved, such a collision is called an inelastic
collision.
In every day collision such as collision of two cars, kinetic energy is not conserved,
since some kinetic energy will be lost in form of heat and sound.
8.2 LINEAR MOMENTUM
In physics, momentum 𝑝⃗ is defined as the product of an object’s mass and its
velocity:
(8.1)
𝑝⃗ = π‘šπ‘£βƒ—
…
By Newton’s second law of motion, momentum is related to force by
𝑑𝑝⃗
(8.2)
𝐹⃗ =
…
𝑑𝑑
8.3 LAW OF CONSERVATION OF LINEAR MOMENTUM
The law states that: In a closed, isolated system, the linear momentum of each
βƒ—βƒ— of the system
colliding body may change but the total linear momentum 𝒑
cannot change, whether the collision is elastic or inelastic.
(8.3)
𝑃⃗⃗ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘œπ‘Ÿ 𝑃⃗⃗𝑖 = 𝑃⃗⃗𝑓 …
where𝑖 and 𝑓 denote initial and final respectively.
8.4
ELASTIC COLLISIONS IN ONE DIMENSION
Consider the collision of two masses π‘š1 and π‘š2 along π‘₯ axis.
Page 34 of 43
By conservation of linear momentum, we have
(8.4)
π‘š1 𝑣1𝑖 + π‘š2 𝑣2𝑖 = π‘š1 𝑣1𝑓 + π‘š2 𝑣2𝑓
…
Also, kinetic energy is conserved for elastic collision. So, we have
1
1
1
1
2
2
2
2
(8.5)
π‘š1 𝑣1𝑖
+ π‘š2 𝑣2𝑖
= π‘š1 𝑣1𝑓
+ π‘š2 𝑣2𝑓
…
2
2
2
2
Equations 8.4 and 8.5 can be used simultaneously if there are two unknowns.
Example 23:
A block of mass π‘š1 = 1.6π‘˜π‘”, moving to the right with a speed of 4 π‘šβ„π‘  on a
frictionless, horizontal track, collides with a spring attached to a second block, of
mass π‘š2 = 2.1π‘˜π‘”, that is moving to the left with a speed of 2.5 π‘šβ„π‘ . The spring
constant is 600 π‘β„π‘š. For the instant when π‘š1 is moving to the right with a speed of
3 π‘šβ„π‘ , determine
(a)
the velocity of π‘š2 and
(b) the distance, π‘₯, that the spring is compressed.
Solution:
(a)
(b)
π‘š1 𝑣1𝑖 + π‘š2 𝑣21 = π‘š1 𝑣1𝑓 + π‘š2 𝑣2𝑓
(1.6)(4) + (2.1)(βˆ’2.5) = (1.6)(3) + (2.1)(𝑣2𝑓 )
𝑣2𝑓 = βˆ’1.74 π‘šβ„π‘ 
π‘‡π‘œ π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘’ π‘‘β„Žπ‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘₯, 𝑀𝑒 π‘Žπ‘π‘π‘™π‘¦ π‘‘β„Žπ‘’ π‘π‘œπ‘›π‘ π‘’π‘Ÿπ‘£π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“
π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ π‘π‘Ÿπ‘–π‘›π‘π‘–π‘π‘™π‘’
1
1
1
1
1
2
2
2
2
π‘š1 𝑣1𝑖
+ π‘š2 𝑣2𝑖
= π‘š1 𝑣1𝑓
+ π‘š2 𝑣2𝑓
+ π‘˜π‘₯ 2
2
2
2
2
2
𝑠𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑖𝑛𝑔 π‘‘β„Žπ‘’ 𝑔𝑖𝑣𝑒𝑛 π‘£π‘Žπ‘™π‘’π‘’π‘ , 𝑀𝑒 β„Žπ‘Žπ‘£π‘’
π‘₯ = 0.173π‘š
Page 35 of 43
9.0
UNIFORM CIRCULAR MOTION
A particle is said to be in uniform circular motion if it travels around a circle or a
circular arc at a constant (uniform) speed.
Figure 9.1 shows the relation between the velocity and acceleration vectors at
different stages during uniform circular motion.
The following points must be noted:
(i)
Although the speed is uniform, the velocity (a vector) changes in direction,
therefore, a particle in uniform circular motion accelerates.
(ii) The velocity vector 𝑣⃗ is always directed tangent to the circle in the direction
of the motion.
(iii) The acceleration is always directed radially inward, therefore the acceleration
is called centripetal acceleration.
(iv) The magnitude of the centripetal acceleration is:
𝑣2
(9.1)
π‘Ž=
…
π‘Ÿ
whereπ‘Ÿ is the radius of the circle and 𝑣 is the speed of the particle.
(v)
The particle travels the circumference of the circle in time
2πœ‹π‘Ÿ
(9.2)
𝑇=
…
𝑣
where𝑇 is called the period of revolution.
EXERCISE
Prove that the centripetal acceleration is π‘Ž =
𝑣2
π‘Ÿ
.
Page 36 of 43
Solution:
𝑣⃗ = 𝑣π‘₯ 𝑖̂ + 𝑣𝑦 𝑗̂
𝑣⃗ = (βˆ’π‘£ sin πœƒ)𝑖̂ + (𝑣 cos πœƒ)𝑗̂
𝑦
π‘₯
πΉπ‘Ÿπ‘œπ‘š π‘‘π‘–π‘Žπ‘”π‘Ÿπ‘Žπ‘š, sin πœƒ = , cos πœƒ =
π‘Ÿ
π‘Ÿ
𝑦
π‘₯
𝑣⃗ = (βˆ’π‘£ ) 𝑖̂ + (𝑣 ) 𝑗̂
π‘Ÿ
π‘Ÿ
𝑑𝑣⃗
𝑑
𝑣 𝑑𝑦
𝑣 𝑑π‘₯
) 𝑖̂ + (
) 𝑗̂
π‘Žβƒ— =
= (𝑣⃗ ) = (βˆ’
𝑑𝑑 𝑑𝑑
π‘Ÿ 𝑑𝑑
π‘Ÿ 𝑑𝑑
𝑑𝑦
𝑑π‘₯
π‘π‘œπ‘‘π‘’
= 𝑣𝑦 = 𝑣 cos πœƒ
π‘Žπ‘›π‘‘
= 𝑣π‘₯ = 𝑣 sin πœƒ
𝑑𝑑
𝑑𝑑
𝑣
𝑣
π‘Žβƒ— = (βˆ’ 𝑣 cos πœƒ) 𝑖̂ + ( 𝑣 sin πœƒ) 𝑗̂
π‘Ÿ
π‘Ÿ
2
2
𝑣
𝑣
√
|
|
π‘Ž = π‘Žβƒ— = (βˆ’ 𝑣 cos πœƒ) + ( 𝑣 sin πœƒ)
π‘Ÿ
π‘Ÿ
2
2
𝑣2
𝑣2
= √( ) (π‘π‘œπ‘  2 πœƒ) + ( ) (𝑠𝑖𝑛2 πœƒ)
π‘Ÿ
π‘Ÿ
2
2
𝑣2
𝑣2
𝑣2
2
2
√
√
(
)
= ( ) π‘π‘œπ‘  πœƒ + 𝑠𝑖𝑛 πœƒ = ( ) =
π‘Ÿ
π‘Ÿ
π‘Ÿ
2
𝑣
βˆ΄π‘Ž=
π‘Ÿ
Page 37 of 43
10.0 ROTATION
10.1 RIGID BODY
A rigid body is a body is a body that can rotate with all its part locked together and
without a change in its shape.
10.2 ROTATION
Rotation occurs when every point of a rigid body moves in a circle whose center lies
on the axis of rotation, and every point moves through the same angle during a
particular time interval.
10.3 ANGULAR POSITION (πœƒ)
Angular position πœƒ is the angle of a reference line relative to a fixed direction, say π‘₯.
𝑠
πœƒ = (π‘Ÿπ‘Žπ‘‘)
… (10.1)
π‘Ÿ
where𝑠 is the length of arc and π‘Ÿ is the radius of the circle. πœƒis measured in radians
(π‘Ÿπ‘Žπ‘‘).
10.4 ANGULAR DISPLACEMENT
A body undergoes angular displacement if it changes angular position from πœƒ1 to πœƒ2 .
It is expressed as:
(10.2)
βˆ†πœƒ = πœƒ2 βˆ’ πœƒ1
…
10.5 ANGULAR VELOCITY AND SPEED
The average angular speedπœ”π‘Žπ‘£π‘” is the ratio of the angular displacement βˆ†πœƒ to time
βˆ†π‘‘ of a body undergoing rotation. It is expressed as:
βˆ†πœƒ
πœ”π‘Žπ‘£π‘” =
…
10.3
βˆ†t
βƒ—βƒ—βƒ—βƒ— of the body is:
The instantaneous angular velocity 𝝎
Page 38 of 43
βˆ†πœƒ π‘‘πœƒ
(10.4)
=
…
βˆ†π‘‘β†’0 βˆ†π‘‘
𝑑𝑑
The magnitude of the body’s angular velocity is the angular speed πœ”.
πœ”
βƒ—βƒ— = lim
10.6 ANGULAR ACCELERATION
The average angular acceleration is expressed as
βˆ†πœ” πœ”2 βˆ’ πœ”1
π›Όπ‘Žπ‘£π‘” =
=
… (10.5)
βˆ†π‘‘
𝑑2 βˆ’ 𝑑1
The instantaneous angular acceleration 𝛼 of a body is expressed as:
βˆ†πœ” π‘‘πœ”
(10.6)
𝛼 = lim
=
…
βˆ†π‘‘β†’0 βˆ†π‘‘
𝑑𝑑
10.7 RELATING THE ANGULAR AND LINEAR VARIABLES
Since for a rigid body, all particles make one revolution in the same amount of time,
they all have the same angular speed πœ”. When a rigid body rotates, each particle in
the body moves in its own circle about that axis.
Recall from equation 10.1.
(10.7)
π‘‡β„Žπ‘’ π‘·π’π’”π’Šπ’•π’Šπ’π’ 𝑆 = πœƒπ‘Ÿ
…
𝑑𝑆
𝑑
π‘‘πœƒ
𝑺𝒑𝒆𝒆𝒅 𝑣 =
= (πœƒπ‘Ÿ) = π‘Ÿ
= π‘Ÿπœ”
𝑑𝑑 𝑑𝑑
𝑑𝑑
(10.8)
𝑣 = π‘Ÿπœ”
…
where𝑣 is the linear speed and πœ” is the angular speed.
A rigid body in rotational motion will have two forms of acceleration.
𝑑𝑣
𝑑
π‘‘πœ”
(1)π‘»π’‚π’π’ˆπ’†π’π’•π’Šπ’‚π’ π’‚π’„π’„π’†π’π’†π’“π’‚π’•π’Šπ’π’ π‘Žπ‘‘ =
= (πœ”π‘Ÿ) = π‘Ÿ
= π‘Ÿπ›Ό
…
𝑑𝑑 𝑑𝑑
𝑑𝑑
𝑣 2 (π‘Ÿπœ”)2
(2)π‘Ήπ’‚π’…π’Šπ’‚π’ π’‚π’„π’„π’†π’π’†π’“π’‚π’•π’Šπ’π’π‘Žπ‘Ÿ =
(10.10)
=
= π‘Ÿπœ”2 …
π‘Ÿ
π‘Ÿ
(10.9)
10.8 KINETIC ENERGY OF ROTATION
1
We cannot apply the formula π‘˜ = π‘šπ‘£ 2 to rigid body such as compact disc because,
2
the kinetic energy of its center of mass is zero (π‘š = 0 π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘’π‘Ÿ).
Instead, we treat the compact disc as a collection of particles with different speeds.
Page 39 of 43
1
1
1
π‘š1 𝑣12 + π‘š2 𝑣22 + π‘š3 𝑣32 + β‹―
2
2
2
1
π‘˜ = βˆ‘ π‘šπ‘– 𝑣𝑖2
2
𝑠𝑖𝑛𝑐𝑒 𝑣 = πœ”π‘Ÿ
1
π‘˜ = βˆ‘ π‘šπ‘– (π‘Ÿπ‘– πœ”)2
2
1
π‘˜ = (βˆ‘ π‘šπ‘– π‘Ÿπ‘–2 ) πœ”2
2
The quantity in parenthesis is called the rotational inertia or moment of inertia I
of the body with respect to the axis of rotation.
1
(10.11)
∴ π‘˜ = πΌπœ”2 …
2
where
π‘˜=
𝐼 = βˆ‘ π‘šπ‘– π‘Ÿπ‘–2
…
(10.12)
10.9 PERPENDICULAR AXES THEOREM
Statement of the theorem: The moments of inertia of any plane lamina about an
axis normal to the plane of the lamina is equal to the sum of the moments of inertia
about any two mutually perpendicular axis passing through the given axis and lying
in the plane of the lamina. That is,
(10.13)
𝐼𝑧 = 𝐼π‘₯ + 𝐼𝑦
…
Proof:
The position vector of particle with mass π‘šπ‘– in the π‘₯𝑦 plane is:
𝑅⃗⃗𝑖 = π‘₯𝑖 𝑖⃗ + 𝑦𝑖 𝑗⃗
So that, the moment of inertia of particle π‘šπ‘– is π‘šπ‘– 𝑅𝑖2 .
∴ π‘‡β„Žπ‘’ π‘‘π‘œπ‘‘π‘Žπ‘™ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘’π‘Ÿπ‘‘π‘–π‘Ž π‘œπ‘“ π‘Žπ‘™π‘™ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  π‘Žπ‘π‘œπ‘’π‘‘ 𝑧 π‘Žπ‘₯𝑖𝑠 𝑖𝑠
Page 40 of 43
𝑛
𝑛
𝐼𝑧 = βˆ‘ π‘šπ‘– 𝑅𝑖2 = βˆ‘ π‘šπ‘– (π‘₯𝑖2 + 𝑦𝑖2 )
𝑖=1
=
𝑖=1
𝑛
βˆ‘ π‘šπ‘– π‘₯𝑖2
𝑖=1
𝑛
+ βˆ‘ π‘šπ‘– 𝑦𝑖2
𝑖=1
𝐼𝑧 = 𝐼π‘₯ + 𝐼𝑦
11.0 GRAVITATION
Gravitation is the tendency of bodies to move toward each other. Isaac Newton
proposed a force law that we call Newton’s Law of gravitation.
11.1 NEWTON’S LAW OF GRAVITATION
The Law states that: Every particle attracts any other particle with a
gravitational force whose magnitude is given by
πΊπ‘š1 π‘š2 π‘π‘’π‘€π‘‘π‘œπ‘›β€² 𝑠 πΏπ‘Žπ‘€ π‘œπ‘“
(11.1)
(
) …
𝐹=
π‘Ÿ2
πΊπ‘Ÿπ‘Žπ‘£π‘–π‘‘π‘Žπ‘‘π‘–π‘œπ‘›
whereπ‘š1 and π‘š2 are the masses of the particle, π‘Ÿ is the distance between them, and
𝐺 is the gravitational constant with a value 𝐺 = 6.67 × 10βˆ’11 𝑁. π‘š2 /π‘˜π‘”2 .
11.2 SUPERPOSITION PRINCIPLE
This is a principle that says the net force on a particle is the vectorial summation
of forces of attraction between the particle and individual interacting particles.
Mathematically, the principle is expressed as
𝑛
𝐹⃗1,𝑛𝑒𝑑 = βˆ‘ 𝐹⃗1𝑖 = 𝐹⃗12 + 𝐹⃗13 + 𝐹⃗14 + β‹― + 𝐹⃗1𝑛
…
(11.2)
𝑖=2
if there are 𝑛 interacting particles. Here, 𝐹⃗1,𝑛𝑒𝑑 is the net force on particle 1.
For extended object, we write the principle as
𝐹⃗1 = ∫ 𝑑𝐹⃗
…
(11.3)
Example 24:
Page 41 of 43
The figure shows an arrangement of three particles. π‘š1 = 6π‘˜π‘”, π‘š2 = π‘š3 = 4π‘˜π‘”, and
distance π‘Ž = 2π‘π‘š. What is the magnitude of the net gravitational force 𝐹⃗1𝑛𝑒𝑑 that
acts on particle 1 due to other particles.
Solution:
By superposition principle
𝐹⃗1𝑛𝑒𝑑 = 𝐹⃗12 + 𝐹⃗13
𝐹⃗12 = 𝐹12 𝑖̂ + 𝐹12 𝑗̂ = 𝐹12 𝑖̂
𝐹⃗13 = 𝐹13 𝑖̂ + 𝐹13 𝑗̂ = βˆ’πΉ13 𝑗̂
πΊπ‘š1 π‘š2 (6.67 × 1011 )(6)(4)
𝐹12 =
=
= 4 × 10βˆ’6 𝑁
2
2
(0.02)
π‘Ž
πΊπ‘š1 π‘š2 (6.67 × 1011 )(6)(4)
𝐹13 =
=
= 1 × 10βˆ’6 𝑁
(2π‘Ž)2
(0.04)2
𝐹⃗12 = 𝐹12 𝑖̂ = 4 × 10βˆ’6 𝑁𝑖̂
𝐹⃗13 = βˆ’πΉ13 𝑗̂ = βˆ’1 × 10βˆ’6 𝑁𝑗̂
𝐹⃗1𝑛𝑒𝑑 = 𝐹⃗12 + 𝐹⃗13 = 4 × 10βˆ’6 𝑁𝑖̂ + (βˆ’1 × 10βˆ’6 𝑁𝑗̂)
𝐹1𝑛𝑒𝑑 = √(𝐹12 )2 + (βˆ’πΉ13 )2
𝐹1𝑛𝑒𝑑 = √(4 × 10βˆ’6 )2 + (βˆ’1 × 10βˆ’6 )2
𝐹1𝑛𝑒𝑑 = 4.1 × 10βˆ’6 𝑁
Page 42 of 43
EXERCISE
(1)
Five particles are arranged as shown in the figure above. π‘š1 = 8π‘˜π‘”, π‘š2 =
π‘š3 = π‘š4 = π‘š5 = 2π‘˜π‘”, π‘Ž = 3π‘π‘š,and πœƒ = 30π‘œ . What is the gravitational force
𝐹⃗1𝑛𝑒𝑑 on particle 1 due to the other particles.
(2)
What must be the separation between a 5.2π‘˜π‘” particle and a 2.4π‘˜π‘” particle
for their gravitational attraction to have a magnitude of 2.3 × 10βˆ’12 𝑁?
(3)
In the figure below, two spheres of mass π‘š and a third sphere of mass 𝑀 form
an equilateral triangle. The net gravitational force on that central sphere from
the three other spheres is zero. (π‘Ž) What is 𝑀 in terms of π‘š? (𝑏) If we double
the value of π‘š4 , what is the magnitude of the net gravitational force on the
central sphere?
Page 43 of 43