Download LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Matrix calculus wikipedia, lookup

Cayley–Hamilton theorem wikipedia, lookup

Linear least squares (mathematics) wikipedia, lookup

Transcript
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION – PHYSICS
FIRST SEMESTER – NOVEMBER 2012
MT 1100 - MATHEMATICS FOR PHYSICS
Date : 03/11/2012
Time : 1:00 - 4:00
Dept. No.
Max. : 100 Marks
SECTION A
ANSWER ALL THE QUESTIONS:
(10x2 =20)
1) Find the nth derivative of y  sin(ax  b) .
2) Write down the formula for subtangent and subnormal.
1 1 1
   ...
e  1 2! 4! 6!
3) Prove that
.

e  1 1  1  1  ...
1! 3! 5!
3 −1 2
4) Find the rank of the matrix (−6 2 −4).
−3 1 −2
1
−
5) Show that [ ] = + .
6) State the formula for Laplace transformation of a periodic function.
7) Write down the expansion for sin .
8) If 2  +  2  = 1, Show that cos ℎ2  − ℎ2  = 1.
9) What is the chance that a leap year selected at random will contain 53 Sundays?
10) Define Binomial distribution.
SECTION B
ANSWER ANY FIVE QUESTONS:
11) Find the angle of intersection of cardioids r  a(1  cos  ) and r  b(1  cos  ) .
12) Find the minimum and maximum value of the function 2 x3  3x 2  36 x  10 .
24 34 44
   ...   .
2! 3! 4!
14) Show that the system of equations
xyz  6
x  2y  3z  14
x  4y  7z  30
13) Find the sum to infinity series 1 
are consistent and solve them.
et , 0 < t < 4
15) Find the L(f(t)) if f (t )  
0 , t > 4
(5x8 =40)
 s 
16) Find a) L1 
b) L(cos4 t ) .
2 
 ( s  2) 
17) Prove that cos8θ = 1- 32sin2 θ + 160sin4 θ-256sin6 θ+128 sin8 θ.
18) Find the moment generating function for the Poisson distribution and hence find its
mean and variance.
SECTION C
ANSWER ANY TWO QUESTIONS:

2
19) a) If y  x  1  x

m
(2x20 = 40)
then Prove that (1  x 2 ) yn  2  (2n  1) xyn 1  (n 2  m 2 ) yn  0 . b) Find
3
.
(10+10)
( x  1)(2 x  1)
3
1
1
20) If  = [−1 5 −1] then
1 −1 3
a) Find the characteristic value and characteristic vector of the matrix.
b) Verify Cayley Hamilton Theorem and find A-1.
(10+10)
5
3
21) a) Express cos θ sin θ in terms of sines of multiples of θ.
b) Separate into real and imaginary parts of tan-1(α+iβ).
(10+10)
dx
dy
22) a) Solve
 2 x  3 y  0,
 y  2 x  0 with x(0)  8, y(0)=3 using Laplace transform.
dt
dt
b) An urn contains 6 white, 4 red and 9 black balls. If 3 balls are drawn at random, find the
probability that: (i) two of the ball drawn is white; (ii) one is of each colour,
(iii) none is red.
(14+6)
the nth derivative of
***********