Download Cloud feedback mechanisms and their representation in global

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Economics of global warming wikipedia , lookup

Climate change denial wikipedia , lookup

Climate change adaptation wikipedia , lookup

Numerical weather prediction wikipedia , lookup

Soon and Baliunas controversy wikipedia , lookup

Citizens' Climate Lobby wikipedia , lookup

Effects of global warming on human health wikipedia , lookup

Global warming controversy wikipedia , lookup

Climatic Research Unit documents wikipedia , lookup

Climate engineering wikipedia , lookup

Climate governance wikipedia , lookup

Fred Singer wikipedia , lookup

Politics of global warming wikipedia , lookup

Climate change in Tuvalu wikipedia , lookup

Climate change and agriculture wikipedia , lookup

Global warming hiatus wikipedia , lookup

Media coverage of global warming wikipedia , lookup

Instrumental temperature record wikipedia , lookup

Atmospheric model wikipedia , lookup

Effects of global warming on humans wikipedia , lookup

Scientific opinion on climate change wikipedia , lookup

Climate change and poverty wikipedia , lookup

Global warming wikipedia , lookup

Public opinion on global warming wikipedia , lookup

Surveys of scientists' views on climate change wikipedia , lookup

Climate change, industry and society wikipedia , lookup

IPCC Fourth Assessment Report wikipedia , lookup

Climate sensitivity wikipedia , lookup

Effects of global warming on Australia wikipedia , lookup

Years of Living Dangerously wikipedia , lookup

Attribution of recent climate change wikipedia , lookup

General circulation model wikipedia , lookup

Solar radiation management wikipedia , lookup

Climate change feedback wikipedia , lookup

Transcript
ArticleTitle:
Cloudfeedbackmechanismsandtheirrepresentationinglobalclimate
models
ArticleType:
AdvancedReview
Authors:
PauloCeppi
DepartmentofMeteorology,UniversityofReading,Reading,UnitedKingdom
[email protected]
FlorentBrient
CentreNationaldeRecherchesMétéorologiques,Météo-France/CNRS,Toulouse,France
MarkD.Zelinka
CloudProcessesResearchGroup,LawrenceLivermoreNationalLaboratory,Livermore,United
States
DennisL.Hartmann
DepartmentofAtmosphericSciences,UniversityofWashington,Seattle,UnitedStates
Abstract
Cloudfeedback–thechangeintop-of-atmosphereradiativefluxresultingfromthecloudresponse
to warming – constitutes by far the largest source of uncertainty in the climate response to CO2
forcing simulated by global climate models (GCMs). We review the main mechanisms for cloud
feedbacks, and discuss their representation in climate models and the sources of inter-model
spread. Global-mean cloud feedback in GCMs results from three main effects: (1) rising freetroposphericclouds(apositivelongwaveeffect);(2)decreasingtropicallowcloudamount(apositive
shortwaveeffect);(3)increasinghigh-latitudelowcloudopticaldepth(anegativeshortwaveeffect).
These cloud responses simulated by GCMs are qualitatively supported by theory, high-resolution
modeling, and observations. Rising high clouds are consistent with the Fixed Anvil Temperature
(FAT)hypothesis,wherebyenhancedupper-troposphericradiativecoolingcausesanvilcloudtopsto
remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount
decreasesaredrivenbyadelicatebalancebetweentheeffectsofverticalturbulentfluxes,radiative
cooling, large-scale subsidence, and lower-tropospheric stability on the boundary-layer moisture
budget.High-latitudelowcloudopticaldepthincreasesaredominatedbyphasechangesinmixedphase clouds. The causes of inter-model spread in cloud feedback are discussed, focusing
particularly on the role of unresolved parameterized processes such as cloud microphysics,
turbulence,andconvection.
Graphical/VisualAbstractandCaption
-2
Spatial distribution of cloud feedback (in W m per K surface warming) predicted by a set of global climate
modelssubjectedtoanabruptincreaseinCO2.RedrawnwithpermissionfromZelinkaetal.(2016).
1
2
INTRODUCTION
3
4
5
6
7
8
9
10
11
12
13
Astheatmospherewarmsundergreenhousegasforcing,globalclimatemodels(GCMs)predictthat
clouds will change, resulting in a radiative feedback by clouds1, 2. While this cloud feedback is
positiveinmostGCMsandhenceactstoamplifyglobalwarming,GCMsdivergesubstantiallyonits
magnitude3. Accurately simulating clouds and their radiative effects has been a long-standing
challengeforclimatemodeling,largelybecausecloudsdependonsmall-scalephysicalprocessesthat
cannotbeexplicitlyrepresentedbycoarseGCMgrids.IntherecentClimateModelIntercomparison
Project phase 5 (CMIP5)4, cloud feedback was by far the largest source of inter-model spread in
equilibrium climate sensitivity, the global-mean surface temperature response to CO2 doubling5-7.
The important role of clouds in determining climate sensitivity in GCMs has been known for
decades8-11, and despite improvements in the representation of cloud processes12, much work
remainstobedonetonarrowtherangeofGCMprojections.
14
15
16
17
18
19
20
21
Despite these persistent difficulties, recent advances in our understanding of the fundamental
mechanisms of cloud feedback have opened exciting new opportunities to improve the
representation of the relevant processes in GCMs. Thanks to increasing computing power,
turbulence-resolving model simulations have offered novel insight into the processes controlling
marinelowcloudcover13-16,ofkeyimportancetoEarth’sradiativebudget17.Clevercombineduseof
model hierarchies and observations has provided new understanding of why high-latitude clouds
brighten18-20,whytropicalanvilcloudsshrinkwithwarming21,andhowcloudsandradiationrespond
tostormtrackshifts22-24,tonameafewexamples.
22
23
24
25
26
27
28
29
30
Thegoalofthisreviewistosummarizethecurrentunderstandingofcloudfeedbackmechanisms,
andtoevaluatetheirrepresentationincontemporaryGCMs.Althoughtheobservationalsupportfor
GCMcloudresponsesisassessed,wedonotprovideathoroughreviewofobservationalestimates
ofcloudfeedback,nordowediscusspossible“emergentconstraints”25.Thediscussionisorganized
into two main sections. First, we diagnose cloud feedback in GCMs, identifying the cloud property
changes responsible for the radiative response. Second, we interpret these GCM cloud responses,
discussingthephysicalmechanismsatplayandtheabilityofGCMstorepresentthem,andbriefly
reviewing the available observational evidence. Based on this discussion, we conclude with
suggestionsforprogresstowardanimprovedrepresentationofcloudfeedbackinclimatemodels.
31
DIAGNOSINGCLOUDFEEDBACKINGLOBALCLIMATEMODELS
32
33
34
35
Webeginbydocumentingthemagnitudeandspatialstructureofcloudfeedbackincontemporary
GCMs,andidentifythecloudpropertychangesinvolvedintheradiativeresponse.Althoughclouds
mayrespondtoanyforcingagent,inthisreviewwewillfocusoncloudfeedbacktoCO2forcing,of
highestrelevancetofutureanthropogenicclimatechange.
36
Global-meancloudfeedback
37
38
39
40
Theglobal-meancloudfeedbackstrength(quantifiedbythefeedbackparameter;Box1)isplottedin
Fig. 1, along with the other feedback processes included in the traditional decomposition. The
feedback parameters are derived from CMIP5 experiments forced with abrupt quadrupling of CO2
concentrations relative to pre-industrial conditions. In the following discussion we quote the
41
42
numbersfromananalysisof28GCMs5(coloredcirclesinFig.1).Twootherstudies(greysymbolsin
Fig.1)showsimilarresults,buttheyincludesmallersubsetsoftheavailablemodels.
5
Feedback parameter (W m−2 K−1)
●●●●●
2
1
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
0
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−1
43
●
Caldwell et al. 2016 (28 models)
Vial et al. 2013 (11 models)
Zelinka et al. 2016 (7 models)
ensemble mean
WV+LR
Albedo
Cloud
LW Cloud SW Cloud
Total
Equilibrium climate sensitivity (K)
3
●
●
4
●
●
●
●
●
●
●
●
3
2
1
●
●
●
●
●
●
●
●
ECS
44
45
46
47
48
49
50
51
Fig. 1. Strengths of individual global-mean feedbacks and equilibrium climate sensitivity (ECS) for CMIP5
models,derivedfromcoupledexperimentswithabruptquadruplingofCO2concentration.Modelnamesand
feedback values are listed in the Supporting Information, Table S1. Feedback parameter results are from
5
6
26
Caldwelletal. ,withadditionalcloudfeedbackvaluesfromVialetal. andZelinkaetal. ECSvaluesaretaken
27
28
29
30
fromAndrewsetal. ,Forsteretal. ,andFlatoetal. FeedbackparametersarecalculatedasinSodenetal. butaccountingforrapidadjustments;thecloudfeedbackfromZelinkaetal.iscalculatedusingcloud-radiative
31
kernels (Box2).Circlesarecoloredaccordingtothetotalfeedbackparameter.ThePlanckfeedback(mean
-2 -1
valueof-3.15Wm K )isexcludedfromthetotalfeedbackparametershownhere.
52
53
Box1:Climatefeedbacks
54
55
IncreasinggreenhousegasconcentrationscauseapositiveradiativeforcingF(Wm-2),towhichthe
climatesystemrespondsbyincreasingitstemperaturetorestoreradiativebalanceaccordingto
56
57
58
59
60
61
62
N denotes the net energy flux imbalance at the top of atmosphere, and ∆T is the global-mean
surfacewarming.Howeffectivelywarmingreestablishesradiativebalanceisquantifiedbythetotal
feedback parameter λ (in W m-2 K-1). For a positive (downward) forcing, warming must induce a
negative(upward)radiativeresponsetorestorebalance,andhenceλ<0.Whenthesystemreaches
anewsteadystate,N=0andthusthefinalamountofwarmingisdeterminedbybothforcingand
feedback,∆T=–F/λ.Amorepositivefeedbackimpliesmorewarming.
63
64
65
66
67
68
69
The total feedback λ equals the sum of contributions from different feedback processes, each of
whichisassumedtoperturbthetop-of-atmosphereradiativebalancebyagivenamountperdegree
warming. The largest such process involves the increase in emitted longwave radiation following
Planck’slaw(anegativefeedback).Additionalfeedbacksresultfromincreasedlongwaveemissionto
spaceduetoenhancedwarmingaloft(negativelapseratefeedback);increasedgreenhousewarming
bywatervapor(positivewatervaporfeedback);anddecreasingreflectionofsolarradiationassnow
andiceretreat(positivesurfacealbedofeedback).Changesinthephysicalpropertiesofcloudsaffect
N=F+λ∆T.
70
71
boththeirgreenhousewarmingandtheirreflectionofsolarradiation,givingrisetoacloudfeedback
(Box2),positiveinmostcurrentGCMs.
72
73
74
75
76
77
78
Themulti-model-meannetcloudfeedbackispositive(0.43Wm-2K-1),suggestingthatonaverage,
clouds cause additional warming. However, models produce a wide range of values, from weakly
negativetostronglypositive(-0.13to1.24Wm-2K-1).Despitethisconsiderableinter-modelspread,
only two models, GISS-E2-H and GISS-E2-R, produce a (weakly) negative global-mean cloud
feedback. In the multi-model mean, this positive cloud feedback is entirely attributable to the
longwave(LW)effectofclouds(0.42Wm-2K-1),whilethemeanshortwave(SW)cloudfeedbackis
essentiallyzero(0.02Wm-2K-1).
79
80
81
82
83
Of all the climate feedback processes, cloud feedback exhibits the largest amount of inter-model
spread,originatingprimarilyfromtheSWeffect3,6,26,32.Theimportantcontributionofcloudstothe
spreadintotalfeedbackparameterandequilibriumclimatesensitivity(ECS)standsoutinFig.1.The
net cloud feedback is strongly correlated with the total feedback parameter (r=0.80) and ECS
(r=0.73).
84
Box2:Cloud-radiativeeffectandcloudfeedback
85
86
87
88
89
90
91
92
93
The radiative impact of clouds is measured as the cloud-radiative effect (CRE), the difference
betweenclear-skyandall-skyradiativefluxatthetopofatmosphere.Cloudsreflectsolarradiation
(negative SW CRE, global-mean effect of -45 W m-2) and reduce outgoing terrestrial radiation
(positive LW CRE, 27 W m-2), with an overall cooling effectestimated at -18 W m-2 (numbers from
Henderson et al.33). CRE is proportional to cloud fraction, but is also determined by cloud altitude
and optical depth. The magnitude of SW CRE increases with cloud optical depth, and to a much
lesserextentwithcloudaltitude.Bycontrast,theLWCREdependsprimarilyoncloudaltitude,which
determines the difference in emission temperature between clear and cloudy skies, but also
increaseswithopticaldepth.
94
95
96
97
98
99
100
Asthecloudpropertieschangewithwarming,sodoestheirradiativeeffect.Theresultingradiative
flux response at the top of atmosphere, normalized by the global-mean surface temperature
increase,isknownascloudfeedback.ThisisnotstrictlyequaltothechangeinCREwithwarming,
because the CRE also responds to changes in clear-sky radiation – for example due to changes in
surfacealbedoorwatervapor34.TheCREresponsethusunderestimatescloudfeedbackbyabout0.3
W m-2 on average34, 35. Cloud feedback is therefore the component of CRE change that is due to
changingcloudpropertiesonly.
101
102
103
104
105
106
107
VariousmethodsexisttodiagnosecloudfeedbackfromstandardGCMoutput.Thevaluespresented
inthispaperareeitherbasedonCREchangescorrectedfornon-cloudeffects30,orestimateddirectly
from changes in cloud properties, for those GCMs providing appropriate cloud output31. The most
accurateprocedureinvolvesrunningtheGCMradiationcodeoffline–replacinginstantaneouscloud
fieldsfromacontrolclimatologywiththosefromaperturbedclimatology,whilekeepingotherfields
unchanged – to obtain the radiative perturbation due to changes in clouds36, 37. This method is
computationallyexpensiveandtechnicallychallenging,however.
108
RapidAdjustments
109
110
111
112
113
114
115
116
117
118
119
Thecloud-radiativechangesthataccompanyCO2-inducedglobalwarmingpartlyresultfromarapid
adjustment of clouds to CO2 forcing and land-surface warming38, 39. Because it is unrelated to the
global-meansurfacetemperatureincrease,thisrapidadjustmentistreatedasaforcingratherthana
feedbackinthecurrentfeedbackanalysisframework40.Animportantimplicationisthatcloudscause
uncertainty in both forcing and feedback. For a quadrupling of CO2 concentration, the estimated
global-mean radiative adjustment due to clouds ranges between 0.3 and 1.1 W m-2, depending on
theanalysismethodandGCMset,andhasbeenascribedmainlytoSWeffects6,41,42.Accountingfor
thisadjustmentreducesthenetandSWcomponentofthecloudfeedback.Wereferthereaderto
Andrewsetal.43andKamaeetal.44forathoroughdiscussionofrapidcloudadjustmentsinGCMs.
Hereafterwefocussolelyonchangesincloudpropertiesthataremediatedbyincreasesinglobalmeantemperature.
120
Decompositionbycloudtype
121
122
123
124
125
126
127
128
129
130
For models providing output that simulates measurements taken by satellites, the total cloud
feedback can be decomposed into contributions from three relevant cloud properties: cloud
altitude, amount, and optical depth (plus a small residual)45. The multi-model-mean net cloud
feedback can then be understood as the sum of positive contributions from cloud altitude and
amountchanges,andanegativecontributionfromopticaldepthchanges(Fig.2a).Thevariouscloud
properties have distinctly different effects on LW and SW radiation. Increasing cloud altitude
explains most of the positive LW feedback, with minimal effect on SW. By contrast, cloud amount
and optical depth changes have opposing effects on SW and LW radiation, with the SW term
dominating. (Note that 11 of the 18 feedback values in Fig. 2 include the positive effect of rapid
adjustments,yieldingamorepositivemulti-modelmeanSWfeedbackcomparedwithFig.1.)
131
132
133
134
135
136
137
138
139
140
141
142
ThecloudpropertydecompositioninFig.2acanberefinedbyseparatelyconsideringlow(cloudtop
pressure > 680 hPa) and free-tropospheric clouds (cloud top pressure ≤ 680 hPa), as this more
effectivelyisolatesthefactorscontributingtothenetcloudfeedback26.Thisverticaldecomposition
reveals that the multi-model mean LW feedback is entirely due to rising free-tropospheric clouds
(Fig.2b).Forsuchclouds,amountandopticaldepthchangesdonotcontributetothenetfeedback
becausetheirSWandLWeffectscancelnearlyperfectly.Meanwhile,theSWcloudfeedbackcanbe
ascribed to low cloud amount and optical depth changes (Fig. 2c). Thus, the results in Fig. 2b,c
highlight the three main contributions to the net cloud feedback in current GCMs: rising freetroposphericclouds(apositiveLWeffect),decreasinglowcloudamount(apositiveSWeffect),and
increasinglowcloudopticaldepth(aweaknegativeSWeffect),yieldinganetpositivefeedbackin
the multi-model mean. It is noteworthy that all CMIP5 models agree on the sign of these
contributions.
143
Spatialdistributionofcloudfeedback
144
145
146
147
148
The contributions to LW and SW cloud feedback are far from being spatially homogeneous,
reflecting the distribution of cloud regimes (Fig. 3). Although the net cloud feedback is generally
positive, negative values occur over the Southern Ocean poleward of about 50° S, and to a lesser
extentovertheArcticandsmallpartsofthetropicaloceans.Themostpositivevaluesarefoundin
regions of large-scale subsidence, such as regions of low SST in the equatorial Pacific and the
149
150
151
152
153
154
subtropical oceans. Weak to moderate subsidence regimes cover most of the tropical oceans, and
areassociatedwithshallowmarinecloudssuchasstratocumulusandtradecumulus.InmostGCMs
such clouds decrease in amount17, 46, strongly contributing to the positive low cloud amount
feedback seen in Fig. 2c. This explains the importance of shallow marine clouds for the overall
positive cloud feedback, and their dominant contribution to inter-model spread in net cloud
feedback17.
1.0
0.5
0.0
(a) Standard decomposition
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−0.5
Feedback parameter (W m−2 K−1)
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
LW
SW
net
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−1.0
1.0
(b) Free−tropospheric clouds (CTP ≤ 680 hPa)
●
●
0.5
●
●
●
●
●
●
●
0.0
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−0.5
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−1.0
1.0
(c) Low clouds (CTP > 680 hPa)
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
0.5
0.0
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−0.5
−1.0
155
Total
Amount
Altitude
OD
Residual
156
157
158
159
160
161
Fig.2.GlobalmeanLW(red),SW(blue),andnet(black)cloudfeedbacksdecomposedintoamount,altitude,
optical depth (OD) and residual components for (a) all clouds, (b) free-tropospheric clouds only, and (c) low
cloudsonly,definedbycloudtoppressure(CTP).Multi-modelmeanfeedbacksareshownashorizontallines.
26
Resultsarebasedonananalysisof11CMIP3and7CMIP5models ;theCMIP3valuesdonotaccountforrapid
adjustments. Model names and total feedback values are listed in Table S2. Redrawn with permission from
26
Zelinkaetal. 162
163
164
165
166
167
168
169
170
Taking a zonal-mean perspective highlights the meridional dependence of cloud property changes
andtheircontributionstocloudfeedback(Fig.4).Free-troposphericcloudtopsrobustlyriseglobally,
producing a positive cloud altitude LW feedback at all latitudes that peaks in regions of high
climatological free-tropospheric cloud cover (blue curve). The positive cloud amount feedback
(orangecurve),dominatedbytheSWeffectoflowclouds(cf.Fig.2),alsooccursovermostofthe
globe with the exception of the high southern latitudes; by contrast, the effect of optical depth
changes is near zero everywhere except at high southern latitudes, where it is strongly negative
(greencurve).Thisyieldsacomplexmeridionalpatternofnetcloudfeedback(blackcurveinFig.4).
171
172
Thepatternsofcloudamountandopticaldepthchangessuggesttheexistenceofdistinctphysical
processesindifferentlatituderangesandclimateregimes,asdiscussedinthenextsection.
173
-2
174
175
176
Fig.3.Spatialdistributionofthemulti-modelmeannetcloudfeedback(inWm perKsurfacewarming)ina
set of 11 CMIP3 and 7 CMIP5 models subjected to an abrupt increase in CO2 (Table S2). Redrawn with
26
permissionfromZelinkaetal. 177
178
179
TheresultsinFig.4allowustofurtherrefinetheconclusionsdrawnfromFig.2.Inthemulti-model
mean,thecloudfeedbackincurrentGCMsmainlyresultsfrom
180
• globallyrisingfree-troposphericclouds,
181
• decreasinglowcloudamountatlowtomiddlelatitudes,and
182
• increasinglowcloudopticaldepthatmiddletohighlatitudes.
183
Summary
184
185
186
187
188
189
Cloud feedback is the main contributor to inter-model spread in climate sensitivity, ranging from
nearzerotostronglypositive(-0.13to1.24Wm-2K-1)incurrentclimatemodels.Itisacombination
of three effects present in nearly all GCMs: rising free-tropospheric clouds (a LW heating effect);
decreasing low cloud amount in tropics to midlatitudes (a SW heating effect); and increasing low
cloudopticaldepthathighlatitudes(aSWcoolingeffect).Lowcloudamountintropicalsubsidence
regionsdominatestheinter-modelspreadincloudfeedback.
190
191
INTERPRETINGCLOUDPROPERTYCHANGESINGLOBALCLIMATEMODELS
192
193
194
195
Havingdiagnosedtheradiatively-relevantcloudresponsesinGCM,weassessourunderstandingof
thephysicalmechanismsinvolvedinthesecloudchanges,anddiscusstheirrepresentationinGCMs.
We consider in turn each of the three main effects identified in the previous section, and address
thefollowingquestions:
196
197
•
What physical mechanisms are involved in the cloud response? To what extent are these
mechanismssupportedbytheory,high-resolutionmodeling,andobservations?
198
199
•
How well do GCMs represent these mechanisms, and what parameterizations does this
dependon?
200
•
Whatexplainstheinter-modelspreadincloudresponses?
1.5
Cloud feedback (W m−2 K−1)
1.0
0.5
0.0
Total
Amount
Altitude
Optical Depth
−0.5
−1.0
−1.5
−90
201
−50
−30
−15
0
latitude
15
30
50
90
202
203
204
205
Fig.4.Zonal-,annual-,andmulti-model-meannetcloudfeedbacksinasetof11CMIP3and7CMIP5models
(Table S2), plotted against the sine of latitude, and partitioned into components due to the change in cloud
amount,altitude,andopticaldepth.Curvesaresolidwhere75%ormoreofthemodelsagreeonthesignof
26
thefeedback,dashedotherwise.RedrawnwithpermissionfromZelinkaetal. 206
207
Cloudaltitude
208
Physicalmechanisms
209
210
211
212
213
214
215
216
217
Owingtothedecreaseoftemperaturewithaltitudeinthetroposphere,highercloudtopsarecolder
andthusemitlessthermalinfraredradiationtospace.Therefore,anincreaseinthealtitudeofcloud
topsimpartsaheatingtotheclimatesystembyreducingoutgoingLWradiation.Fundamentally,the
rise of upper-level cloud tops is firmly grounded in basic theory (the deepening of the well-mixed
troposphereastheplanetwarms),andissupportedbycloud-resolvingmodelingexperimentsandby
observationsofbothinterannualcloudvariabilityandmulti-decadalcloudtrends.Thecombination
of theoretical and observational evidence, along with the fact that all GCMs simulate rising freetroposphericcloudtopsastheplanetwarms,makethepositivecloudaltitudefeedbackoneofthe
mostfundamentalcloudfeedbacks.
218
219
220
221
222
223
224
225
The tropical free troposphere is approximately in radiative-convective equilibrium, where latent
heating in convective updrafts balances radiative cooling, which is itself primarily due to thermal
emission by water vapor47. Because radiative cooling by the water vapor rotation and vibration
bandsfallsoffrapidlywithdecreasingwatervapormixingratiointhetropicaluppertroposphere48,
sotoomustconvectivemassflux.Hence,massdetrainmentfromtropicaldeepconvectionandits
attendantanvilcloudcoveragebothpeaknearthealtitudewhereemissionfromwatervapordrops
offrapidlywithpressure,whichwerefertoasthealtitudeofpeakradiatively-drivenconvergence.
Becauseradiativecoolingbywatervaporiscloselytiedtowatervaporconcentrationandthelatter
226
227
228
229
230
231
232
233
isfundamentallycontrolledbytemperaturethroughtheClausius-Clapeyronequation,thedramatic
decrease in water vapor concentration in the upper troposphere occurs primarily due to the
decreaseoftemperaturewithdecreasingpressure.Thisimpliesthatthelevelthatmarksthepeak
coverage of anvil cloud tops is set by temperature. As isotherms rise with global warming, so too
must tropical anvil cloud tops, leading to a positive cloud altitude feedback. This “fixed anvil
temperature” (FAT) hypothesis49, illustrated schematically in Fig. 5, provides a physical basis for
earlier suggestions that fixed cloud top temperature is a more realistic response to warming than
fixedcloudaltitude50,51.
234
235
236
237
238
239
240
Fig. 5. Schematic of the relationship between clear-sky radiative cooling, subsidence warming, radiativelydrivenconvergence,andaltitudeofanvilcloudsinthetropicsinacontrolandwarmclimate,asarticulatedin
the FAT hypothesis. Upon warming, radiative cooling by water vapor increases in the upper troposphere,
which must be balanced by enhanced subsidence in clear-sky regions. This implies that the level of peak
radiatively-drivenconvergenceandtheattendantanvilcloudcoveragemustshiftupward.TCdenotestheanvil
cloudtoptemperatureisotherm.
241
242
243
244
245
246
247
248
249
250
251
252
Inpractice,tropicalhighcloudsriseslightlylessthantheisothermsinresponsetomodeledglobal
warming,leadingtoaslightwarmingoftheiremissiontemperature–albeitamuchweakerwarming
than occurs at a fixed pressure level (roughly six times smaller)52. This is related to an increase in
upper tropospheric static stability with warming that was not originally anticipated in the FAT
hypothesis.Theproportionatelyhigheranviltemperature(PHAT)hypothesis52allowsforincreasesin
staticstabilitythatcausethelevelofpeakradiatively-drivenconvergencetoshifttoslightlywarmer
temperatures. The upward shift of this level closely tracks the upward shift of anvil clouds under
global warming, and captures their slight warming. The aforementioned upper-tropospheric static
stability increase has been described as a fundamental consequence of the first law of
thermodynamics,whichresultsinstaticstabilityhavinganinverse-pressuredependence21,although
theradiativeeffectofozonehasalsobeenshowntoplayarole53.
253
254
255
256
257
258
259
260
261
Cloud-resolving(horizontalgridspacing≤15km)modelsimulationsoftropicalradiative-convective
equilibrium support the theoretical expectation that the distribution of free-tropospheric clouds
shifts upward with surface warming nearly in lockstep with the isotherms, making their emission
temperatureincreaseonlyslightly53-56.Thisresponseisalsoseeninglobalcloud-resolvingmodels5759
.ThisisimportantforconfirmingthattheresponseseeninGCMs21, 52andmesoscalemodels49is
not an artifact of parameterized convection. Furthermore, observed interannual relationships
between cloud top altitude and surface temperature are also in close agreement with theoretical
expectations60-65. Recent analyses of satellite cloud retrievals showed that both tropical and extratropicalhighcloudshaveshiftedupwardovertheperiod1983-200966,67.
262
263
264
265
266
267
AlthoughFATwasproposedasamechanismfortropicalcloudaltitudefeedback,itispossiblethat
radiative cooling by water vapor also controls the vertical extent of extratropical motions, and
thereby the strength of extratropical cloud altitude feedback (Thompson et al., submitted
manuscript). In any case, the extratropical free tropospheric cloud altitude feedback in GCMs is at
leastaslargeasitscounterpartinthetropics26,despitehavingreceivedmuchlessattentioninthe
literature.
268
Box3:FATandthecloudaltitudefeedback
269
270
271
Cloud tops rising as the surface warms produces a positive feedback: by rising so as to remain at
nearly constant temperature, their emission to space does not increase in concert with emission
fromtheclear-skyregions,inhibitingtheradiativecoolingoftheplanetunderglobalwarming.
272
273
274
275
276
277
278
279
280
Thefactthatcloudtoptemperatureremainsroughlyfixedmakestheinterpretationofthefeedback
potentiallyconfusing:howcanhighcloudswarmtheplanetiftheiremissiontemperatureremains
nearly unchanged? It is important to recall that feedbacks due to variable X are defined as the
changeinradiationduetothetemperature-mediatedchangeinXholdingallelsefixed68.Inthecase
where X is cloud top altitude, the feedback quantifies the change in radiation due solely to the
change in cloud top altitude, holding the temperature structure of the atmosphere fixed at its
unperturbed state. Thus, increased cloud top altitude causes a LW heating effect because – in the
radiationcalculation–theemissiontemperatureofthecloudtopactuallydecreasesbytheproduct
ofthemean-statelapserateandthechangeinthecloudtopaltitude.
281
282
283
Animportantpointtoavoidlosinginthedetailsisthataslongasthefreetroposphericcloudtops
rise under global warming, the altitude feedback is positive. The extent to which cloud top
temperatureschangeaffectsonlythemagnitudeofthefeedback,notitssign.
284
285
Representationinglobalclimatemodelsandcausesofinter-modelspread
286
287
288
289
290
291
Given its solid foundation in well-established physics (radiative-convective equilibrium, ClausiusClapeyronrelation),itisunsurprisingthatallGCMssimulateanearlyisothermalriseinthetopsof
free tropospheric clouds with warming, in excellent agreement with PHAT. The multi-model mean
net free-tropospheric cloud altitude feedback is 0.20 W m-2 K-1, with an inter-model standard
deviationof0.09Wm-2K-1(Fig.1b).Althoughthespreadinthisfeedbackisroughlyhalfaslargeas
that in the low cloud amount feedback, it is still substantial and remains poorly understood. Since
292
293
294
295
296
thealtitudefeedbackisdefinedastheradiativeimpactofrisingcloudtopswhileholdingeverything
elsefixed(Box3),themagnitudeofthisfeedbackatanygivenlocationshouldberelatedto(1)the
change in free-tropospheric cloud top altitude, (2) the decrease in emitted LW radiation per unit
increase of cloud top altitude, and (3) the free-tropospheric cloud fraction. These are discussed in
turnbelow.
297
298
299
300
Based on the discussion above, one would expect the magnitude of the upward shift of freetroposphericcloudtops(term1)toberelatedtotheupwardshiftofthelevelofradiatively-driven
convergence. Both of these are dependent on the magnitude of upper tropospheric warming69, 70,
whichvariesappreciablyacrossmodels71,72forreasonsthatremainunclear.
301
302
303
304
305
306
307
308
309
ThedecreaseinemittedLWradiationperunitincreaseincloudtopaltitudedependsonthemeanstatetemperatureandhumidityprofileoftheatmosphere,andoncloudLWopacity.Totheextent
that inter-model differences in atmospheric thermodynamic structure are small, inter-model
variance in term 2 would arise primarily from differences in the mean state cloud opacity, which
determineswhetheranupwardshiftisaccompaniedbyalargedecreaseinLWflux(forthickclouds)
or a small decrease in LW flux (for thin clouds). Overall, the dependence of LW fluxes on cloud
optical thickness is small, however, because clouds of intermediate to high optical depth are
completelyopaquetoinfraredradiation.Therefore,wedonotexpectcloudopticaldepthbiasesto
dominatethespreadincloudaltitudefeedback.
310
311
312
313
314
315
Finally,themean-statefree-troposphericcloudfraction(term3)islikelytoexhibitsubstantialintermodel spread. A four-fold difference in the simulated high (cloud top pressure ≤ 440 hPa) cloud
fraction was found among an earlier generation of models73, though this spread has decreased in
CMIP5models12. Furthermore, climate models systematically underestimate the relative frequency
ofoccurrenceoftropicalanvilandextratropicalcirrusregimes74, 75.Takenalone,suchbiaseswould
leadtomodelssystematicallyunderestimatingthecloudaltitudefeedback.
316
Lowcloudamount
317
Physicalmechanisms
318
319
320
321
322
323
324
325
326
The low cloud amount feedback in GCMs is dominated by the response of tropical, warm, liquid
cloudslocatedbelowabout3kmtosurfacewarming.Severaltypesofcloudsfulfillthedefinitionof
“low”,differingintheirradiativeeffectsandinthephysicalmechanismsunderlyingtheirformation,
maintenance and response to climate change. So far, most insights into low cloud feedback
mechanisms have been gained from high-resolution models – particularly large-eddy simulations
(LES)thatcanexplicitlyrepresenttheturbulentandconvectiveprocessescriticalforboundary-layer
clouds on scales smaller than one kilometer76. The low cloud amount feedback in GCMs is
determined by the response of the most prevalent boundary-layer cloud types at low latitudes:
stratus,stratocumulus,andcumulusclouds.
327
328
329
330
331
Although they cover a relatively small fraction of Earth, stratus and stratocumulus (StCu) have a
largeSWCRE,sothatevensmallchangesintheircoveragemayhavesignificantregionalandglobal
impacts. StCu cloud coverage is strongly controlled by atmospheric stability and surface fluxes77:
observations suggest a strong relationship between inversion strength at the top of the planetary
boundarylayer(PBL)andcloudamount78, 79.Astrongerinversionresultsinweakermixingwiththe
332
333
334
dry free troposphere, shallowing the PBL and increasing cloudiness. Since inversion strength will
increase with global warming owing to the stabilization of the free-tropospheric temperature
profile80,onemightexpectlowcloudamounttoincrease,implyinganegativefeedback81.
335
336
337
338
339
340
341
342
343
344
345
However, LES experiments suggest that StCu clouds are sensitive to other factors than inversion
strength, as summarized by Bretherton15. Over subsiding regions, (1) increasing atmospheric
emissivity owing to water vapor feedback will cause more downward LW radiation, decreasing
cloud-top entrainment and thinning the cloud layer (less cloud and hence a positive radiative
feedback); (2) the slowdown of the general circulation will weaken subsidence, raising cloud tops
and thickening the cloud layer (a negative dynamical feedback); (3) a larger vertical gradient of
specific humidity will dry the PBL more efficiently, reducing cloudiness (a positive thermodynamic
feedback). Evidence for these physical mechanisms is usually also found in GCMs82-84 or when
analyzingobservednaturalvariability85-87.Thereal-worldStCufeedbackwillmostlikelyresultfrom
therelativeimportanceoftheseantagonisticprocesses.LESmodelsforcedwithanidealizedclimate
changesuggestareductionofStCucloudswithwarming76.
346
347
348
349
350
351
352
353
354
355
356
357
358
359
Shallow cumuli (ShCu) usually denote clouds with tops around 2-3 km localized over weak
subsidenceregionsandhighersurfacetemperature.DespitetheirmoremodestSWCRE,ShCuareof
major importance to global-mean cloud feedback in GCMs because of their widespread presence
acrossthetropics17.YetmechanismsofShCufeedbackinLESarelessrobustthanforStCu.Usually,
LES reduce clouds with warming, with large sensitivity to precipitation (mostly related to
microphysical assumptions). This reduction has been explained by a stronger penetrative
entrainment that deepens and dries the PBL more efficiently13, 88 (closely related to the
thermodynamic feedback seen for StCu), although the strength of this positive feedback may
depend on the choice of prescribed or interactive sea surface temperatures (SSTs)89, 90 and
microphysicsparameterization14.OtherfeedbacksseenforStCumayactonShCubutwithdifferent
relativeimportance14.AlthoughLESresultssuggestapositiveShCufeedback14,aglobalmodelthat
explicitly resolves the crudest form of convection shows the opposite response91. Hence further
workwithahierarchyofmodelconfigurations(LES,globalcloud-resolvingmodel,GCMs)combined
withobservationalanalyseswillbeneededtovalidatetheShCufeedback.
360
361
362
363
364
365
366
367
368
369
Recent observational studies of the low cloud response to changes in meteorological conditions
broadlysupporttheStCuandShCufeedbackmechanismsidentifiedinLESexperiments84,87,92.These
studiesshowthatlowcloudsinbothmodelsandobservationsaremostlysensitivetochangesinSST
and inversion strength. Although these two effects would tend to cancel each other, observations
and GCM simulations constrained by observations suggest that SST-mediated low cloud reduction
withwarmingdominates,increasingthelikelihoodofapositivelowcloudfeedbackandhighclimate
sensitivity87, 93-95. Nevertheless, recent ground-based observations of co-variations of ShCu with
meteorological conditions suggest that a majority of GCMs are unlikely to represent the temporal
dynamics of the cloudy boundary-layer96, 97. This may reduce our confidence in GCM-based
constraintsofShCufeedbackwithwarming.
370
Representationinglobalclimatemodelsandsourcesofinter-modelspread
371
372
373
Cloud dynamics depend heavily on small-scale processes such as local turbulent eddies, non-local
convective plumes, microphysics, and radiation. Since the typical horizontal grid size of GCMs is
around 50 km, such processes are not explicitly simulated and need to be parameterized as a
374
375
376
377
378
379
380
function of the large-scale environment. GCMs usually represent cloud-related processes through
distinct parameterizations, with separate assumptions for subgrid variability, despite a goal for
unification98,99.PhysicalassumptionsusedinPBLparameterizationsoftenrelatecloudformationto
buoyancy production, stability, and wind shear. Low cloud amount feedbacks are constrained by
how these cloud processes are represented in GCMs and how they respond to climate change
perturbations. Since parameterizations are usually crude, it is not evident that the mechanisms of
lowcloudamountfeedbackinGCMsarerealistic.
381
382
383
384
385
386
387
388
389
AllCMIP5modelssimulateapositivelowcloudamountfeedback,butwithconsiderablespread(Fig
2c);thisfeedbackisbyfarthelargestcontributortointer-modelvarianceinnetcloudfeedback5,17,
26
.Spreadinlowcloudamountfeedbackcanbetracedbacktodifferencesinparameterizationsused
in atmospheric GCMs92, 100-102, and changes in these parameterizations within individual GCMs also
have clear impacts on the intensity (and sign) of the response102-104. Identifying the low cloud
amountfeedbackmechanismsinGCMsisadifficulttask,however,becausethelowcloudresponse
is sensitive to the competing effects of a variety of unresolved processes. Considering that these
processes are parameterized in diverse and complex ways, it appears unlikely that a single
mechanismcanaccountforthespreadoflowcloudamountfeedbackseeninGCMs.
390
391
392
393
394
395
396
397
398
399
400
401
Ithasbeenproposedthatconvectiveprocessesplayakeyroleindrivinginter-modelspreadinlow
cloud amount feedback105-110. As the climate warms, convective moisture fluxes strengthen due to
therobustincreaseoftheverticalgradientofspecifichumiditycontrolledbytheClausius-Clapeyron
relationship82.IncreasingconvectivemoisturefluxesbetweenthePBLandthefreetropospherelead
to a relatively drier PBL with decreased cloud amount, suggesting a positive feedback, but the
degreetowhichconvectivemoisturemixingincreasesseemstostronglydependonmodel-specific
parameterizations109. GCMs with stronger present-day convective mixing (and therefore more
positive low cloud amount feedback) have been argued to compare better with observations109,
implying that convective overturning strength could provide an observational constraint on GCM
behavior. However, running GCMs with convection schemes switched off does not narrow the
spread of cloud feedback111, suggesting that non-convective processes may play an important role
too92,104.
402
403
404
405
406
407
408
409
410
411
412
413
We believe that inter-model spread in low cloud amount feedback does not depend on the
representationofconvection(deepandshallow)alone,butratherontheinterplaybetweenvarious
parameterized processes – particularly convection and turbulence. It has been argued that the
relative importance of parameterized convective drying and turbulent moistening of the PBL
accounts for a large fraction of the inter-model differences in both the mean state, and global
warmingresponseoflowclouds46.InGCMsthatattributealargeweighttoconvectivedryinginthe
present-day climate, the strengthening of moisture transport with warming causes enhanced PBL
ventilation, efficiently reducing low cloud amount109. Conversely if convective drying is less active,
turbulencemoisteninginduceslowcloudshallowingratherthanachangeincloudamount46, 110.In
somemodels,additionalparameterization-dependentmechanismsmaycontributetothelowcloud
feedback,suchascloudamountincreasesbyenhancementofsurfaceturbulence83,112orbychanges
incloudlifetime113.
414
Lowcloudopticaldepth
415
Physicalmechanisms
416
417
418
419
420
421
422
423
424
Theprimarycontroloncloudopticaldepthisthevertically-integratedliquidwatercontent,termed
liquid water path (LWP). If other microphysical parameters are held constant, cloud optical depth
scales with LWP within the cloud114. Cloud optical depth is also affected bycloud particle size and
cloudicecontent,buttheiceeffectissmallersinceicecrystalsaretypicallyseveraltimeslargerthan
liquid droplets, and therefore less efficient at scattering sunlight per unit mass115. Consistent with
this, the cloud optical depth change maps well onto the LWP response in global warming
experiments,bothquantitiesincreasingatmiddletohighlatitudesinnearlyallGCMs18, 19, 45, 116, 117.
Understanding the negative cloud optical depth feedback therefore requires explaining why LWP
increaseswithwarming,andwhyitdoessomostlyathighlatitudes.
425
426
427
428
429
430
431
432
433
Two plausible mechanisms may contribute to LWP increases with warming, and both predict a
preferentialincreaseathigherlatitudesandlowertemperatures.Thefirstmechanismisbasedupon
the assumption that the liquid water content within a cloud is determined by the amount of
condensationinsaturatedrisingparcelsthatfollowamoistadiabatGm,fromthecloudbasetothe
cloud top118-120. This is often referred to as the "adiabatic" cloud water content. Under this
assumption, it may be shown that the change in LWP with temperature is a function of the
temperature derivative of the moist adiabat slope, ¶Gm/¶T. This predicts that the adiabatic cloud
water content always increases with temperature, and increases more strongly at lower
temperaturesinarelativesense118.
434
435
436
437
438
439
440
441
442
443
444
A second mechanism involves phase changes in mixed-phase clouds. Liquid water is commonly
found in clouds at temperatures substantially below freezing, down to about -38°C where
homogeneousfreezingoccurs115,121.Cloudsbetween-38°Cand0°Ccontainingbothliquidwaterand
ice are termed mixed-phase. As the atmosphere warms, the occurrence of liquid water should
increase relative to ice; for a fixed total cloud water path, this would lead to an optically thicker
cloudowingtothesmallereffectiveradiusofdroplets19,115,121.Inaddition,ahigherfractionofliquid
waterisexpectedtodecreasetheoverallprecipitationefficiency,yieldinganincreaseintotalcloud
waterandafurtheropticalthickeningofthecloud19,115,119,121.Reducedprecipitationefficiencymay
alsoincreasecloudlifetime,andhencecloudamount121, 122.Becausethephasechangemechanism
can only operate below freezing, its occurrence in low clouds is restricted to middle and high
latitudes.
445
446
447
448
449
450
451
452
453
Satelliteandin-situobservationsofhigh-latitudecloudssupportincreasesincloudLWPandoptical
depthwithtemperature18,19,120,andsuggestanegativecloudopticaldepthfeedback20,althoughthis
resultissensitivetotheanalysismethod123.ThepositiveLWPsensitivitytotemperatureisgenerally
restricted to mixed-phase regions and is typically larger than that expected from moist adiabatic
increasesinwatercontentalone18, 19.Thislendsobservationalsupportfortheimportanceofphase
change processes. While the moist adiabatic mechanism should still contribute to LWP increases
withwarming,LESmodelingofwarmboundary-layerclouds(inwhichphasechangeprocessesplay
norole)suggeststhatopticaldepthchangesaresmallrelativetotheeffectsofdryinganddeepening
oftheboundarylayerwithwarming13.
454
Representationinglobalclimatemodels
455
456
457
458
459
460
461
462
463
464
465
466
ThelowcloudopticaldepthfeedbackpredictedbyGCMscanonlybetrustedtotheextentthatthe
driving mechanisms are understood and correctly represented. We therefore ask, how reliably are
thesephysicalmechanismsrepresentedinGCMs?Thefirstmechanisminvolvesthesourceofcloud
water from condensation in saturated updrafts. It results from basic, well-understood
thermodynamics that do not directly rely on physical parameterizations, and should be correctly
implemented in all models. As such, it constitutes a simple and powerful constraint on the cloud
watercontentresponsetowarming,tothepointthatsomeearlystudiesproposedtheglobalcloud
feedback might be negative as a result124-126. Considering this mechanism in isolation ignores
importantcompetingfactorsthataffectthecloudwaterbudget,however,suchastheentrainment
of dry air into the convective updrafts, phase change processes, or precipitation efficiency. The
competition between these various factors may explain why no simple, robust LWP increase with
temperatureisseeninallregionsacrosstheworldinGCMs.
467
468
469
470
471
472
473
474
475
476
477
The second mechanism is primarily related to the liquid water sink through conversion to ice and
precipitation by ice-phase microphysical processes. The representation of cloud microphysics in
state-of-the-art GCMs is mainly prognostic, meaning that rates of change between the different
phases–vapor,liquid,ice,andprecipitation–arecomputed.Ratherthanbeingadirectfunctionof
temperature(asinadiagnosticscheme),therelativeamountsofliquidandicethusdependonthe
efficiencies of the source and sink terms. In GCMs, cloud water production in mixed-phase clouds
occurs mainly in liquid form; subsequent glaciation may occur through a variety of microphysical
processes,particularlytheWegener-Bergeron-Findeisen127mechanism(seeStorelvmoetal.128fora
descriptionandareview).Ice-phasemicrophysicsarethereforemainlyasinkofcloudliquidwater.
Upon warming, this sink should become suppressed, resulting in a larger reservoir of cloud liquid
water19.
478
479
480
481
482
483
484
485
486
InGCMs,theopticaldepthfeedbackislikelydominatedbymicrophysicalphasechangeprocesses.
Severallinesofevidencesupportthisidea.Asinobservations,lowcloudopticaldepthincreaseswith
warming almost exclusively at high latitudes, and the increase in cloud water content is typically
restrictedtotemperaturesbelowfreezing117,129,130–afindingthatcannotbesatisfactorilyexplained
bytheadiabaticwatercontentmechanism.Imposingatemperatureincreaseonlyintheice-phase
microphysics explains roughly 80% of the total LWP response to warming in two contemporary
GCMsruninaquaplanetconfiguration19.Furthermore,changesintheefficiencyofphaseconversion
processes have dramatic impacts on the cloud water climatology and sensitivity to warming in
GCMs131-133.
487
Causesofinter-modelspread
488
489
490
491
Although GCMs agree on the sign of the cloud optical depth response in mixed-phase clouds, the
magnitude of the change remains highly uncertain. This is in large part because the efficiency of
phasechangeprocessesvarieswidelybetweenmodels,impactingthemeanstateandthesensitivity
towarming116.
492
493
494
GCMs separately simulate microphysical processes for cloud water resulting from large-scale
(resolved) vertical motions, and convective (unresolved, parameterized) motions. In convection
schemes, microphysical phase conversions are crudely represented, usually as simple, model
495
496
497
498
499
500
501
502
503
dependentanalyticfunctionsoftemperature.Whiletherepresentationofmicrophysicalprocessesis
much more refined in large-scale microphysics schemes, ice-phase processes remain diversely
represented due to limitations in our understanding, particularly with regard to ice formation
processes134, 135. In models explicitly representing aerosol-cloud interactions, an additional
uncertainty results from poorly constrained ice nuclei concentrations122. For mixed-phase clouds,
perturbingtheparameterizationsofphasetransitionscansignificantlyaffecttheratioofliquidwater
to ice, the overall cloud water budget, and cloud-radiative properties19, 133. Owing to these
uncertainties, the simple constraint that the liquid water fraction must increase with warming is
strongbutmerelyqualitativeinGCMs.
504
505
506
507
508
509
510
511
512
513
514
It is believed that mixed-phase clouds may become glaciated too readily in most GCMs121, 128.
Satelliteretrievalssuggestmodelsunderestimatethesupercooledliquidfractionincoldclouds132,136138
; this may be because models assume too much spatial overlap between ice and supercooled
clouds, overestimating the liquid-to-ice conversion efficiency128. An expected consequence is that
liquidwaterandcloudopticaldepthincreasetoodramaticallywithwarminginGCMs,sincethereis
too much climatological cloud ice in a fractional sense. Comparisons with observations appear to
support that idea18, 20. Such microphysical biases could have powerful implications for the optical
depthfeedback,asmodelswithexcessivecloudicemayoverestimatethephasechangeeffect130,133,
139, 140
. In summary, the current understanding is that the negative cloud optical depth feedback is
likelytoostronginmostGCMs.FurtherworkwithobservationaldataisneededtoconstrainGCMs
andconfirmtheexistenceofanegativeopticaldepthfeedbackintherealworld.
515
Otherpossiblecloudfeedbackmechanisms:tropicalandextratropicaldynamics
516
517
518
519
520
521
522
523
While the mechanisms discussed above are mainly linked to the climate system’s thermodynamic
response to CO2 forcing, dynamical changes could have equally important implications for clouds
and radiation. This poses a particular challenge: not only are the cloud responses to a given
dynamical forcing uncertain141, but the future dynamical response is also much more poorly
constrained than the thermodynamic one142. Below we discuss two possible effects of changes in
atmosphericcirculation,oneinvolvingthedegreeofaggregationoftropicalconvection,andanother
basedonextratropicalcirculationshiftswithwarming.Weassesstherelevanceoftheseproposed
feedbackprocessesinGCMsandintherealworld.
524
Convectiveaggregationandthe“iriseffect”
525
526
527
528
529
530
531
532
533
534
535
536
Tropical convective clouds both reduce outgoing LW radiation and reflect solar radiation. These
effectstendtooffseteachother,andoverthebroadexpanseofwarmwatersinthewesternPacific
and Indian Ocean areas these two effects very nearly cancel, so that net cloud radiative effect is
about zero143-145. The net neutrality of tropical cloud radiative effects results from a cancellation
between positive effects of thin anvil clouds and negative effects of the thicker rainy areas of the
cloud146.Thatconvectivecloudstendtoriseinawarmedclimatehasbeendiscussedabove,butitis
alsopossiblethattheopticaldepthorareacoverageofconvectivecloudscouldchangeinawarmed
climate. For high clouds with no net effect on the radiation balance, a change in area coverage
without change in the average radiative properties of the clouds would have little effect on the
energy balance (unless the high clouds are masking bright low clouds). Because the individual LW
andSWeffectsoftropicalconvectivecloudsarelarge,asmallchangeinthebalanceoftheseeffects
couldalsoprovidealargefeedback.
537
538
539
540
541
542
543
544
Sofarmoreattentionhasbeendirectedatoceanicboundarylayerclouds,whosenetCREislarge,
sincetheirsubstantialSWeffectisnotbalancedbytheirrelativelysmallLWeffect.ButsincetheSW
effect of tropical convective clouds is as large as that of boundary-layer clouds in stratocumulus
regimes,asubstantialfeedbackcouldoccuriftherelativeareacoverageofthinanvilsversusrainy
cores with higher albedos changes in a way to disrupt the net radiative neutrality of convective
clouds.Relativelylittlehasbeendoneonthisproblem,sinceglobalclimatemodelsdonotresolveor
explicitly parameterize the physics of convective complexes and their associated meso- and
microscaleprocesses.
545
546
547
548
549
It has been proposed that tropical anvil cloud area should decrease in a warmed climate,possibly
causing a negative LW feedback, but the theoretical and observational basis for this hypothesis
remainscontroversial147-151.TheresponseoftropicalhighcloudamounttowarminginGCMsisvery
sensitive to the particular parameterizations of convection and cloud microphysics that are
employed107,152,asmightbeexpected.
550
551
552
553
554
555
556
557
558
559
One basic physical argument for changing the area of tropical high clouds with warming involves
simple energy balance and the dependence of saturation vapor pressure on temperature35. The
basicenergybalanceoftheatmosphereisradiativecoolingbalancedbylatentheating.Convection
mustbringenoughlatentheatupwardtobalanceradiativelosses.Radiativelossesincreaserather
slowly with surface temperature (~1.5% per K), whereas the latent energy in the atmosphere
increasesby~7%perKwarming35,153.Ifoneassumesthatlatentheatingisproportionaltosaturation
vaporpressuretimesconvectivemassflux,itfollowsthatconvectivemassfluxmustdecreaseasthe
planet warms35. If the cloud area decreases with the mass flux, then the high cloud area should
decreasewithwarming.Somesupportforthismechanismisfoundinglobalcloud-resolvingmodel
experiments57.
560
561
562
563
564
565
566
567
568
569
570
571
572
573
Anothermechanismisthetendencyoftropicaldeepconvectiontoaggregateinpartofthedomain,
leavinganotherpartofthedomainwithlittlehighcloudandlowrelativehumidity.Thisisobserved
to happen in radiative-convective equilibrium models in which the mesoscale dynamics of
convectivecloudsisresolved154-156,althoughtherelevanceofthismechanismtorealisticmodelsand
therealworldremainsunclear.Thepresenceofconvectionmoistensthefreetroposphere,andthe
radiative and microphysical effects of this encourage convection to form where it has already
influencedtheenvironment.Awayfromtheconvection,theairisdryandradiativecoolingsupports
subsidencethatsuppressesconvection.Ithasbeenarguedthatsinceself-aggregationoccursathigh
temperatures, global warming may lead to a greater concentration of convection that may reduce
theconvectiveareaandleadtoacloudfeedback21.Sincetropicalconvectionisalsoorganizedbythe
large-scale circulations of the tropics, and the physics of tropical anvil clouds are not wellrepresentedinglobalmodels,theseideasremainatopicofactiveresearch.Basicthermodynamics
make the static stability a function of pressure, which may affect the fractional coverage of high
cloudsinthetropics21,52.
574
Shiftsinmidlatitudecirculationwithglobalwarming
575
576
577
578
Atmospheric circulation is a key control on cloud structure and radiative properties157. Because
current GCMs predict systematic shifts of subtropical and extratropical circulation toward higher
latitudes as the planet warms158, it has been suggested that midlatitude clouds will shift toward
regionsofreducedinsolation,causinganoverallpositiveSWfeedback3,159.
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
Althoughthispolewardshiftofstorm-trackcloudscountsamongtherobustpositivecloudfeedback
mechanismsidentifiedinthefifthIPCCassessmentreport(Fig.7.11inBoucheretal.3),thepictureis
muchlessclearinanalysesofcloud-radiativeresponsestostormtrackshiftsinGCMexperiments.
While some GCMs produce a clear cloud-radiative SW dipole in response to storm track shifts160,
others simulate no clear zonal- or global-mean SW response24, 161-163. In the context of observed
variability, the GCMs with no significant cloud-radiative response to a storm-track shift are clearly
moreconsistentwithobservations22, 24.ThelackofanobservedSWcloudfeedbacktostormtrack
shiftsresultsfromfree-troposphericandboundary-layercloudsrespondingtostormtrackvariability
in opposite ways. As the storms shift poleward, enhanced subsidence in the midlatitudes causes
free-tropospheric drying and cloud amount decreases, resulting in the expected shift of freetropospheric cloudiness. Meanwhile, however, lower-tropospheric stability increases, favoring
enhancedboundary-layercloudinessandmaintainingtheSWCREnearlyunchanged24.Theabilityof
GCMs to reproduce this behavior has been linked to their shallow convection schemes163 and to
their representation of the effect of stability on boundary-layer cloud24. If unforced variability
provides a good analog for the cloud response to forced dynamical changes – thought to be
approximately true in GCMs163 – then the above results suggest little SW radiative impact from
futurejetandstormtrackshifts.
596
597
598
599
600
601
602
603
604
605
606
SinceLWradiationismuchmoresensitivetotheresponseoffree-troposphericcloudsthantolow
cloud changes, storm-track shifts do cause coherent LW cloud-radiative anomalies23. These
anomalies are small in the context of global warming-driven cloud feedback, however23, so that
futureshiftsinmidlatitudecirculationappearunlikelytobeamajorcontributiontoglobal-meanLW
cloud feedback. Given the strong seasonality of LW and SW cloud-radiative anomalies, it remains
possiblethatextratropicalcirculationshiftshavenon-negligibleradiativeimpactsonseasonaltime
scales164, 165.Itisalsopossiblethatcloudsandradiationrespondmorestronglytootheraspectsof
atmospheric circulation than the midlatitude jets and storm tracks; it has been recently proposed
thatmidlatitudecloudchangesaremorestronglytiedtoHadleycellshiftsthantothejet165.Further
observationalandmodelingworkisneededtoconfirmtheserelationshipsandassesstheirrelevance
tocloudfeedback.
607
608
CONCLUDINGREMARKS
609
PossiblepathwaystoanimprovedrepresentationofcloudfeedbackinGCMs
610
611
612
613
614
RecentprogressontheproblemofcloudfeedbackhasenabledunprecedentedadvancesinprocesslevelunderstandingofcloudresponsestoCO2forcing.Themaincloudpropertychangesresponsible
forradiativefeedbackinGCMs–risinghighclouds,decreasingtropicallowcloudamount,increasing
lowcloudopticaldepth–aresupportedtovaryingdegreebytheoreticalreasoning,high-resolution
modeling,andobservations.
615
616
617
618
619
Muchoftherecentgainsinunderstandingofradiatively-importanttropicallowcloudchangeshave
been accomplished through the use of limited-area, high-resolution LES models, able to explicitly
represent the critical boundary layer processes unresolved by GCMs. Because limited-area models
must be forced with prescribed climate change conditions, however, such models are unable to
representtheimportantfeedbacksofcloudsontothelarge-scaleclimate.Tofullyunderstandhow
620
621
cloudfeedbackaffectsclimatesensitivity,atmosphericandoceaniccirculation,andregionalclimate,
wemustrelyonglobalmodels.
622
623
624
625
626
627
628
629
Accurately representing clouds and their radiative effects in global models remains a formidable
challenge, however, and GCM spread in cloud feedback has not decreased substantially in recent
decades. Uncertainties in the global warming response of clouds are linked to the difficulty in
representing the complex interactions among the various physical processes at play – radiation,
microphysics, convective and turbulent fluxes, dynamics – through traditional GCM
parameterizations. Owing to sometimes unphysical interactions between individual
parameterizations, cloud feedback mechanisms may differ between GCMs46, 110, and these
mechanismsmayalsobedistinctfromthoseactingintherealworld.
630
631
632
633
634
635
636
637
One approach to circumvent the shortcomings of traditional GCM parameterizations involves
embeddingacloud-resolvingmodelineachGCMgridboxoverpartofthehorizontaldomain166-168.
Such“superparameterized”GCMscanthusexplicitlysimulatesomeoftheconvectivemotionsand
subgrid variability that traditional parameterizations fail to represent accurately, while remaining
computationallyaffordablerelativetoglobalcloud-resolvingmodels.However,superparameterized
GCMsremainunabletoresolvetheboundary-layerprocessescontrollingradiatively-importantlow
clouds–andsimilarlytoglobalcloudresolvingmodels,theyreportdisappointinglylargespreadin
theircloudfeedbackestimates15.
638
639
640
641
642
643
644
645
646
647
648
Arecentfurtherdevelopment,madepossiblebysteadyincreasesincomputingpower,involvesthe
useofLESratherthancloud-resolvingmodelsasasubstituteforGCMparameterizations16, 169.First
results suggest encouraging improvements in the representation of boundary-layer clouds (C.
Bretherton,pers.comm.).SuperparameterizationwithLEScombinesaspectsofthemodelhierarchy
intoasinglemodel,makingitpossibletorepresentboththesmall-scaleprocessesandtheirimpact
onthelargescales.Analysesofsuperparameterizedmodelexperimentscouldalsobeusedtodesign
more realistic parameterizations to improve boundary-layer characteristics, cloud variability, and
thus cloud feedback in traditional GCMs. An important caveat, however, is that current LES
superparameterizationsarerelativelycoarseandmaynotrepresentprocessessuchasentrainment
well,sothatfurtherincreasesincomputingpowermaybenecessarytofullyexploitthepossibilities
ofLESsuperparameterization.
649
650
651
652
653
654
655
656
Irrespectiveoffutureincreasesinspatialresolution,GCMswillcontinuerequiringparameterization
oftheimportantmicrophysicalprocessesofliquiddropletandicecrystalformation.Asdiscussedin
this review, microphysical processes constitute a major source of uncertainty in future cloud
responses, particularly with regard to mixed-phase cloud radiative properties19 and precipitation
efficiencyinconvectiveclouds107.Thetreatmentofcloud-aerosolinteractionsalsoremainsdeficient
in current parameterizations170. Improving the parameterization of microphysical processes must
therefore remain a priority for future work; this will involve a combined use of laboratory
experiments171,andsatelliteandin-situobservationsofcloudphase119,138.
657
658
659
660
661
Although the main focus of this paper has been on the representation of clouds in GCMs,
observational analyses will remain crucial to advance our understanding of cloud feedback, in
conjunction with process-resolving modeling and global modeling. On the one hand, reliable
observations of clouds and their environment at both local and global scales are indispensable to
testandimproveprocess-resolvingmodelsandGCMparameterizations.Ontheotherhand,models
662
663
can provide process-based understanding of the relationship between clouds and the large-scale
environment,whichcanbeexploitedtoidentifyobservationalconstraintsoncloudfeedback.
664
Currentlimitsofunderstanding
665
666
667
668
669
670
671
672
673
674
675
676
677
We conclude this review by highlighting two problems which we regard as key limitations in our
understandingofhowcloudfeedbackimpactstheclimatesystem’sresponsetoexternalforcing.The
firstproblemrelatestotherelevanceofcloudfeedbacktofutureatmosphericcirculationchanges,
which control climate change impacts at regional scales142. The circulation response is driven by
changesindiabaticheating,towhichtheradiativeeffectsofcloudsareanimportantcontribution.
Hence cloud feedbacks must affect the dynamical response to warming, but the dynamical
implicationsofcloudfeedbackarejustbeginningtobequantifiedandunderstood.Recentworkhas
shownthatcloudfeedbackshavelargeimpactsontheforceddynamicalresponsetowarmingand
particularly the shift of the jets and storm tracks22, 161, 172, 173. Thus the cloud response to warming
appearsasoneofthekeyuncertaintiesforfuturecirculationchanges.Substantialresearchefforts
are currently underway to improve our understanding of cloud-circulation interactions at various
scalesandtheirimplicationsforclimatesensitivity,aproblemidentifiedasoneofthecurrent“grand
challenges”ofclimatescience173-175.
678
679
680
681
682
683
684
685
686
687
688
689
Our second point concerns the problem of time dependence of cloud feedback. The traditional
feedbackanalysisframeworkisbasedonthesimplifyingassumptionthatfeedbackprocessesscale
with global-mean surface temperature, independent of the spatial pattern of warming. However,
recentresearchshowsthattheglobalfeedbackparameterdoesdependuponthepatternofsurface
warming,whichitselfchangesovertimeinCO2-forcedexperiments7,176-178.Inparticular,mostCMIP5
models subjected to an abrupt quadrupling of CO2 concentrations indicate that the SW cloud
feedbackparameterincreasesafterabouttwodecades,andthisisadirectconsequenceofchanges
intheSSTwarmingpattern179.SincefuturepatternsofSSTincreaseareuncertaininGCMs,andmay
differfromthoseobservedinthehistoricalrecord,thisintroducesanadditionaluncertaintyinthe
magnitude of global-mean cloud feedback and our ability to constrain it using observations180, 181.
Therefore, further work is necessary to understand what determines the spatial patterns of SST
increase,andhowthesepatternsinfluencecloudpropertiesatregionalandglobalscales.
690
691
ACKNOWLEDGMENTS
692
693
694
695
696
697
698
699
700
701
702
The authors thank two anonymous reviewers for their very insightful and constructive comments.
We are also grateful to Chris Bretherton, Jonathan Gregory, Tapio Schneider, Bjorn Stevens, and
Mark Webb for helpful discussions. PC acknowledges support from the ERC Advanced Grant
“ACRCC”.DLHwassupportedbytheRegionalandGlobalClimateModelingProgramoftheOfficeof
ScienceoftheU.S.DepartmentofEnergy (DE-SC0012580).TheeffortofMDZwassupportedbythe
Regional and Global Climate Modeling Program of the Office of Science of the U.S. Department of
Energy(DOE)andbytheNASANewInvestigatorProgram(NNH14AX83I)andwasperformedunder
the auspices of the DOE by Lawrence Livermore National Laboratory under contract DE-AC5207NA27344. IM ReleaseLLNL-JRNL-707398. We also acknowledge the World Climate Research
Program's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the
climatemodelinggroups(listedintheSupportingInformation)forproducingandmakingavailable
703
704
705
theirmodeloutput.ForCMIPtheU.S.DepartmentofEnergy'sProgramforClimateModelDiagnosis
andIntercomparisonprovidescoordinatingsupportandleddevelopmentofsoftwareinfrastructure
inpartnershipwiththeGlobalOrganizationforEarthSystemSciencePortals.
706
707
FURTHERREADING
708
709
710
Averyusefulreviewofcloudfeedbacksinhigh-resolutionmodels:BrethertonCS.Insightsintolowlatitude cloud feedbacks from high-resolution models. Philosophical transactions. Series A,
Mathematical,physical,andengineeringsciences2015,373:3354-3360
711
712
713
A discussion of cloud phase changes in high-latitude clouds: Storelvmo T, Tan I, Korolev AV. Cloud
Phase Changes Induced by CO2 Warming – a Powerful yet Poorly Constrained Cloud-Climate
Feedback.CurrentClimateChangeReports2015,1:288-296
714
715
716
717
Areviewoninteractionsbetweendynamicsandcloudsintheextratropics,includingadiscussionof
the roles of storm-track shifts in future cloud feedbacks: Ceppi P, Hartmann DL. Connections
Between Clouds, Radiation, and Midlatitude Dynamics: a Review. Current Climate Change Reports
2015,1:94-102
718
719
REFERENCES
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
ManabeS,WetheraldRT.ThermalEquilibriumoftheAtmospherewithaGivenDistribution
ofRelativeHumidity.JournaloftheAtmosphericSciences1967,24:241-259.
Schneider SH. Cloudiness as a Global Climatic Feedback Mechanism: The Effects on the
Radiation Balance and Surface Temperature of Variations in Cloudiness. Journal of the
AtmosphericSciences1972,29:1413-1422.
BoucherO,RandallD,ArtaxoP,BrethertonC,FeingoldG,ForsterP,KerminenV-M,KondoY,
LiaoH,LohmannU,etal.CloudsandAerosols.In:StockerTF,QinD,G.-KP,TignorM,Allen
SK,BoschungJ,NauelsA,XiaY,BexV,MidgleyPM,eds.ClimateChange2013:ThePhysical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
IntergovernmentalPanelonClimateChange.Cambridge,UnitedKingdomandNewYork,NY,
USA:CambridgeUniversityPress;2013,571-657.
TaylorKE,StoufferRJ,MeehlGA.AnOverviewofCMIP5andtheExperimentDesign.Bulletin
oftheAmericanMeteorologicalSociety2012,93:485-498.
CaldwellPM,ZelinkaMD,TaylorKE,MarvelK.QuantifyingtheSourcesofIntermodelSpread
inEquilibriumClimateSensitivity.JournalofClimate2016,29:513-524.
Vial J, Dufresne J-L, Bony S. On the interpretation of inter-model spread in CMIP5 climate
sensitivityestimates.ClimateDynamics2013,41:3339-3362.
Stevens B, Sherwood SC, Bony S, Webb MJ. Prospects for narrowing bounds on Earth's
equilibriumclimatesensitivity.Earth'sFuture2016,4:512-522.
Arakawa A. Modelling clouds and cloud processes for use in climate models. In: GARP
PublicationSeriesNo.16:WMO;1975,183–197.
CharneyJG,ArakawaA,BakerDJ,BolinB,DickinsonRE,GoodyRM,LeithCE,StommelHM,
WunschCI.CarbonDioxideandClimate:AScientificAssessment.ReportofanAdHocStudy
GrouponCarbonDioxideandClimate1979.
Mitchell JFB. The “Greenhouse” effect and climate change. Reviews of Geophysics 1989,
27:115-115.
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Déqué M, Dymnikov V, Galin V,
GatesWL,GhanSJ,etal.Intercomparisonandinterpretationofclimatefeedbackprocesses
in 19 atmospheric general circulation models. Journal of Geophysical Research 1990,
95:16601.
KleinSA,ZhangY,ZelinkaMD,PincusR,BoyleJ,GlecklerPJ.Areclimatemodelsimulations
of clouds improving? An evaluation using the ISCCP simulator. Journal of Geophysical
Research-Atmospheres2013,118:1329-1342.
Rieck M, Nuijens L, Stevens B. Marine Boundary Layer Cloud Feedbacks in a Constant
RelativeHumidityAtmosphere.JournaloftheAtmosphericSciences2012,69:2538-2550.
Bretherton CS, Blossey PN, Jones CR. Mechanisms of marine low cloud sensitivity to
idealizedclimateperturbations:Asingle-LESexplorationextendingtheCGILScases.Journal
ofAdvancesinModelingEarthSystems2013,5:316-337.
Bretherton CS. Insights into low-latitude cloud feedbacks from high-resolution models.
Philosophicaltransactions.SeriesA,Mathematical,physical,andengineeringsciences2015,
373:3354-3360.
Schneider T, Teixeira J, Bretherton CS, Brient F, Pressel KG, Schär C, Siebesma AP. Climate
goalsandcomputingthefutureofclouds.NatureClimateChange2017,7:3-5.
BonyS,DufresneJ-L.Marineboundarylayercloudsattheheartoftropicalcloudfeedback
uncertaintiesinclimatemodels.GeophysicalResearchLetters2005,32:L20806.
Gordon ND, Klein SA. Low-cloud optical depth feedback in climate models. Journal of
GeophysicalResearch:Atmospheres2014,119:6052-6065.
CeppiP,HartmannDL,WebbMJ.Mechanismsofthenegativeshortwavecloudfeedbackin
highlatitudes.JournalofClimate2016,29:139-157.
Ceppi P, McCoy DT, Hartmann DL. Observational evidence for a negative shortwave cloud
feedbackinmiddletohighlatitudes.GeophysicalResearchLetters2016,43:1331-1339.
Bony S, Stevens B, Coppin D, Becker T, Reed KA, Voigt A, Medeiros B. Thermodynamic
controlofanvilcloudamount.ProceedingsoftheNationalAcademyofSciences2016.
Grise KM, Polvani LM. Southern Hemisphere Cloud-Dynamics Biases in CMIP5 Models and
TheirImplicationsforClimateProjections.JournalofClimate2014,27:6074-6092.
CeppiP,HartmannDL.ConnectionsBetweenClouds,Radiation,andMidlatitudeDynamics:a
Review.CurrentClimateChangeReports2015,1:94-102.
Grise KM, Medeiros B. Understanding the varied influence of mid-latitude jet position on
clouds and cloud-radiative effects in observations and global climate models. Journal of
Climate2016:JCLI-D-16-0295.0291.
KleinSA,HallA.EmergentConstraintsforCloudFeedbacks.CurrentClimateChangeReports
2015,1:276-287.
Zelinka MD, Zhou C, Klein SA. Insights from a Refined Decomposition of Cloud Feedbacks.
GeophysicalResearchLetters2016,43:9259–9269.
Andrews T, Gregory JM, Webb MJ, Taylor KE. Forcing, feedbacks and climate sensitivity in
CMIP5 coupled atmosphere-ocean climate models. Geophysical Research Letters 2012,
39:n/a-n/a.
Forster PM, Andrews T, Good P, Gregory JM, Jackson LS, Zelinka M. Evaluating adjusted
forcing and model spread for historical and future scenarios in the CMIP5 generation of
climatemodels.JournalofGeophysicalResearch:Atmospheres2013,118:1139-1150.
FlatoG,MarotzkeJ,AbiodunB,BraconnotP,ChouSC,CollinsW,CoxP,DriouechF,EmoriS,
Eyring V, et al. Evaluation of Climate Models. Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
IntergovernmentalPanelonClimateChange2013,Pages741-866.
SodenBJ,HeldIM,ColmanR,ShellKM,KiehlJT,ShieldsCA.QuantifyingClimateFeedbacks
UsingRadiativeKernels.JournalofClimate2008,21:3504-3520.
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
Zelinka MD, Klein SA, Hartmann DL. Computing and Partitioning Cloud Feedbacks Using
Cloud Property Histograms. Part I: Cloud Radiative Kernels. Journal of Climate 2012,
25:3715-3735.
TomassiniL,GeoffroyO,DufresneJ-L,IdelkadiA,CagnazzoC,BlockK,MauritsenT,Giorgetta
M,QuaasJ.Therespectiverolesofsurfacetemperaturedrivenfeedbacksandtropospheric
adjustmenttoCO2inCMIP5transientclimatesimulations.ClimateDynamics2013,41:31033126.
HendersonDS,L’EcuyerT,StephensG,PartainP,SekiguchiM.AMultisensorPerspectiveon
the Radiative Impacts of Clouds and Aerosols. Journal of Applied Meteorology and
Climatology2013,52:853-871.
SodenBJ,BroccoliAJ,HemlerRS.OntheUseofCloudForcingtoEstimateCloudFeedback.
JournalofClimate2004,17:3661-3665.
HeldIM,SodenBJ.RobustResponsesoftheHydrologicalCycletoGlobalWarming.Journal
ofClimate2006,19:5686-5699.
Colman R. A comparison of climate feedbacks in general circulation models. Climate
Dynamics2003,20:865-873.
Colman RA, McAvaney BJ. A study of general circulation model climate feedbacks
determined from perturbed sea surface temperature experiments. Journal of Geophysical
Research1997,102:19383.
Andrews T, Forster PM. CO2 forcing induces semi-direct effects with consequences for
climatefeedbackinterpretations.GeophysicalResearchLetters2008,35:L04802.
GregoryJ,WebbM.TroposphericAdjustmentInducesaCloudComponentinCO2Forcing.
JournalofClimate2008,21:58-71.
Sherwood SC, Bony S, Boucher O, Bretherton C, Forster PM, Gregory JM, Stevens B.
AdjustmentsintheForcing-FeedbackFrameworkforUnderstandingClimateChange.Bulletin
oftheAmericanMeteorologicalSociety2015,96:217-228.
ChungE-S,SodenBJ.AnAssessmentofDirectRadiativeForcing,RadiativeAdjustments,and
Radiative Feedbacks in Coupled Ocean–Atmosphere Models. Journal of Climate 2015,
28:4152-4170.
Zelinka MD, Klein SA, Taylor KE, Andrews T, Webb MJ, Gregory JM, Forster PM.
Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5.
JournalofClimate2013,26:5007-5027.
Andrews T, Gregory JM, Forster PM, Webb MJ. Cloud Adjustment and its Role in CO2
RadiativeForcingandClimateSensitivity:AReview.SurveysinGeophysics2012,33:619-635.
KamaeY,WatanabeM,OguraT,YoshimoriM,ShiogamaH.RapidAdjustmentsofCloudand
HydrologicalCycletoIncreasingCO2:aReview.CurrentClimateChangeReports2015,1:103113.
Zelinka MD, Klein SA, Hartmann DL. Computing and Partitioning Cloud Feedbacks Using
Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and
OpticalDepth.JournalofClimate2012,25:3736-3754.
Brient F, Schneider T, Tan Z, Bony S, Qu X, Hall A. Shallowness of tropical low clouds as a
predictorofclimatemodels’responsetowarming.ClimateDynamics2016,47:433-449.
Manabe S, Strickler RF. Thermal Equilibrium of the Atmosphere with a Convective
Adjustment.JournaloftheAtmosphericSciences1964,21:361-385.
CloughSA,IaconoMJ,MoncetJL.Line-by-linecalculationsofatmosphericfluxesandcooling
rates: Application to water vapor. Journal of Geophysical Research-Atmospheres 1992,
97:15761-15785.
Hartmann DL, Larson K. An important constraint on tropical cloud--climate feedback.
GeophysicalResearchLetters2002,29:1951.
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
Cess RD. Radiative transfer due to atmospheric water vapor: Global considerations of the
earth's energy balance. Journal of Quantitative Spectroscopy and Radiative Transfer 1974,
14:861-871.
RamanathanV,CoakleyJA.Climatemodelingthroughradiative-convectivemodels.Reviews
ofGeophysics1978,16:465-489.
ZelinkaMD,HartmannDL.Whyislongwavecloudfeedbackpositive?JournalofGeophysical
Research2010,115:D16117.
Harrop BE, Hartmann DL. Testing the Role of Radiation in Determining Tropical Cloud-Top
Temperature.JournalofClimate2012,25:5731-5747.
TompkinsAM,CraigGC.Sensitivityoftropicalconvectiontoseasurfacetemperatureinthe
absenceoflarge-scaleflow.J.Climate1999,12:462-476.
KuangZ,HartmannDL.TestingtheFixedAnvilTemperatureHypothesisinaCloud-Resolving
Model.JournalofClimate2007,20:2051-2057.
Khairoutdinov M, Emanuel K. Rotating radiative-convective equilibrium simulated by a
cloud-resolvingmodel.JournalofAdvancesinModelingEarthSystems2013,5:816-825.
Satoh M, Iga S-i, Tomita H, Tsushima Y, Noda AT. Response of Upper Clouds in Global
Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud
Processes.JournalofClimate2012,25:2178-2191.
Tsushima Y, Iga S-i, Tomita H, Satoh M, Noda AT, Webb MJ. High cloud increase in a
perturbedSSTexperimentwithaglobalnonhydrostaticmodelincludingexplicitconvective
processes.JournalofAdvancesinModelingEarthSystems2014,6:571-585.
Bretherton CS, Blossey PN, Stan C. Cloud feedbacks on greenhouse warming in the
superparameterized climate model SP-CCSM4. Journal of Advances in Modeling Earth
Systems2014,6:1185-1204.
LiY,YangP,NorthGR,DesslerA.TestoftheFixedAnvilTemperatureHypothesis.Journalof
theAtmosphericSciences2012,69:2317-2328.
Zelinka MD, Hartmann DL. The observed sensitivity of high clouds to mean surface
temperature anomalies in the tropics. Journal of Geophysical Research-Atmospheres 2011,
116.
EitzenZA,XuKM,WongT.CloudandRadiativeCharacteristicsofTropicalDeepConvective
Systems in Extended Cloud Objects from CERES Observations. J. Climate 2009, 22:59836000.
XuKM,WongT,WielickiBA,ParkerL,EitzenZA.StatisticalAnalysesofSatelliteCloudObject
DatafromCERES.PartI:MethodologyandPreliminaryResultsofthe1998ElNi\~no/2000La
Ni\~na.J.Climate2005,18:2497-2514.
Xu KM, Wong T, Wielicki BA, Parker L, Lin B, Eitzen ZA, Branson M. Statistical Analyses of
Satellite Cloud Object Data from CERES. Part II: Tropical Convective Cloud Objects during
1998ElNinoandEvidenceforSupportingtheFixedAnvilTemperatureHypothesis.J.Climate
2007,20:819-842.
KubarTL,HartmannDL,WoodR.RadiativeandConvectiveDrivingofTropicalHighClouds.J.
Climate2007,20:5510-5526.
NorrisJR,AllenRJ,EvanAT,ZelinkaMD,O'DellCW,KleinSA.Evidenceforclimatechangein
thesatellitecloudrecord.Nature2016,536:72-75.
Marvel K, Zelinka M, Klein SA, Bonfils C, Caldwell P, Doutriaux C, Santer BD, Taylor KE.
External Influences on Modeled and Observed Cloud Trends. Journal of Climate 2015,
28:4820-4840.
WetheraldRT,ManabeS.CloudFeedbackProcessesinaGeneralCirculationModel.Journal
oftheAtmosphericSciences1988,45:1397-1416.
SanterBD,SausenR,WigleyTML,BoyleJS,AchutaRaoK,DoutriauxC,HansenJE,MeehlGA,
RoecknerE,RuedyR,etal.Behavioroftropopauseheightandatmospherictemperaturein
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
models, reanalyses, and observations: Decadal changes. Journal of Geophysical ResearchAtmospheres2003,108.
SanterBD,WehnerMF,WigleyTML,SausenR,MeehlGA,TaylorKE,AmmannC,ArblasterJ,
Washington WM, Boyle JS, et al. Contributions of anthropogenic and natural forcing to
recenttropopauseheightchanges.Science2003,301:479-483.
FuQ,ManabeS,JohansonCM.Onthewarminginthetropicaluppertroposphere:Models
versusobservations.GeophysicalResearchLetters2011,38.
Mitchell DM, Thorne PW, Stott PA, Gray LJ. Revisiting the controversial issue of tropical
tropospherictemperaturetrends.GeophysicalResearchLetters2013,40:2801-2806.
Zhang MH, Lin WY, Klein SA, Bacmeister JT, Bony S, Cederwall RT, Del Genio AD, Hack JJ,
Loeb NG, Lohmann U, et al. Comparing clouds and their seasonal variations in 10
atmosphericgeneralcirculationmodelswithsatellitemeasurements.JournalofGeophysical
Research-Atmospheres2005,110.
Williams K, Webb M. A quantitative performance assessment of cloud regimes in climate
models.ClimateDyn.2009,33:141-157.
Tsushima Y, Ringer MA, Webb MJ, Williams KD. Quantitative evaluation of the seasonal
variationsinclimatemodelcloudregimes.ClimateDynamics2013,41:2679-2696.
BlosseyPN,BrethertonCS,ZhangM,ChengA,EndoS,HeusT,LiuY,LockAP,deRoodeSR,
Xu K-M. Marine low cloud sensitivity to an idealized climate change: The CGILS LES
intercomparison.JournalofAdvancesinModelingEarthSystems2013,5:234-258.
Bretherton CS, Wyant MC. Moisture Transport, Lower-Tropospheric Stability, and
Decoupling of Cloud-Topped Boundary Layers. Journal of the Atmospheric Sciences 1997,
54:148-167.
Klein SA, Hartmann DL. The Seasonal Cycle of Low Stratiform Clouds. Journal of Climate
1993,6:1587-1606.
Wood R, Bretherton CS. On the Relationship between Stratiform Low Cloud Cover and
Lower-TroposphericStability.JournalofClimate2006,19:6425-6432.
QuX,HallA,KleinSA,CaldwellPM.Thestrengthofthetropicalinversionanditsresponseto
climatechangein18CMIP5models.ClimateDynamics2015,45:375-396.
MillerRL.TropicalThermostatsandLowCloudCover.JournalofClimate1997,10:409-440.
Brient F, Bony S. Interpretation of the positive low-cloud feedback predicted by a climate
modelunderglobalwarming.ClimateDynamics2013,40:2415-2431.
ZhangM,BrethertonCS,BlosseyPN,AustinPH,BacmeisterJT,BonyS,BrientF,CheedelaSK,
ChengA,DelGenioAD,etal.CGILS:Resultsfromthefirstphaseofaninternationalproject
to understand the physical mechanisms of low cloud feedbacks in single column models.
JournalofAdvancesinModelingEarthSystems2013,5:826-842.
MyersTA,NorrisJR.OntheRelationshipsbetweenSubtropicalCloudsandMeteorologyin
ObservationsandCMIP3andCMIP5Models.JournalofClimate2015,28:2945-2967.
Albrecht BA, Jensen MP, Syrett WJ. Marine boundary layer structure and fractional
cloudiness.JournalofGeophysicalResearch1995,100:14209-14209.
MyersTA,NorrisJR.ObservationalEvidenceThatEnhancedSubsidenceReducesSubtropical
MarineBoundaryLayerCloudiness.JournalofClimate2013,26:7507-7524.
Qu X, Hall A, Klein SA, DeAngelis AM. Positive tropical marine low-cloud cover feedback
inferredfromcloud-controllingfactors.GeophysicalResearchLetters2015,42:7767-7775.
Vogel R, Nuijens L, Stevens B. The role of precipitation and spatial organization in the
responseoftrade-windcloudstowarming.JournalofAdvancesinModelingEarthSystems
2016,8:843-862.
TanZ,SchneiderT,TeixeiraJ,PresselKG.Large-eddysimulationofsubtropicalcloud-topped
boundary layers: 1. A forcing framework with closed surface energy balance. Journal of
AdvancesinModelingEarthSystems2016,8:1565-1585.
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
TanZ,SchneiderT,TeixeiraJ,PresselKG.Large-eddysimulationofsubtropicalcloud-topped
boundarylayers:2.Cloudresponsetoclimatechange.JournalofAdvancesinModelingEarth
Systems2017.
WyantMC,BrethertonCS,BlosseyPN.SubtropicalLowCloudResponsetoaWarmerClimate
in a Superparameterized Climate Model. Part I: Regime Sorting and Physical Mechanisms.
JournalofAdvancesinModelingEarthSystems2009,1:n/a-n/a.
QuX,HallA,KleinSA,CaldwellPM.Onthespreadofchangesinmarinelowcloudcoverin
climatemodelsimulationsofthe21stcentury.ClimateDynamics2014,42:2603-2626.
BrientF,SchneiderT.Constraintsonclimatesensitivityfromspace-basedmeasurementsof
low-cloudreflection.JournalofClimate2016.
Myers TA, Norris JR. Reducing the uncertainty in subtropical cloud feedback. Geophysical
ResearchLetters2016,43:2144-2148.
McCoyDT,EastmanR,HartmannDL,WoodR.Thechangeinlowcloudcoverinawarmed
climate inferred from AIRS, MODIS and ECMWF-Interim reanalysis. Journal of Climate
2017:JCLI-D-15-0734.0731.
NuijensL,MedeirosB,SanduI,AhlgrimmM.Observedandmodeledpatternsofcovariability
betweenlow-levelcloudinessandthestructureofthetrade-windlayer.JournalofAdvances
inModelingEarthSystems2015,7:1741-1764.
Nuijens L, Medeiros B, Sandu I, Ahlgrimm M. The behavior of trade-wind cloudiness in
observations and models: The major cloud components and their variability. Journal of
AdvancesinModelingEarthSystems2015,7:600-616.
SiebesmaAP,SoaresPMM,TeixeiraJ.ACombinedEddy-DiffusivityMass-FluxApproachfor
theConvectiveBoundaryLayer.JournaloftheAtmosphericSciences2007,64:1230-1248.
LarsonVE,SchanenDP,WangM,OvchinnikovM,GhanS.PDFParameterizationofBoundary
Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km. Monthly Weather
Review2012,140:285-306.
Medeiros B, Stevens B, Bony S. Using aquaplanets to understand the robust responses of
comprehensiveclimatemodelstoforcing.ClimateDynamics2015.
Neggers RAJ. Attributing the behavior of low-level clouds in large-scale models to sub-grid
scaleparameterizations.JournalofAdvancesinModelingEarthSystems2015,7:2029-2043.
Geoffroy O, Sherwood S, Fuchs D. On the role of the stratiform cloud scheme in the
intermodelspreadofcloudfeedback.JournalofAdvancesinModelingEarthSystems2017.
Watanabe M, Shiogama H, Yokohata T, Kamae Y, Yoshimori M, Ogura T, Annan JD,
HargreavesJC,EmoriS,KimotoM.UsingaMultiphysicsEnsembleforExploringDiversityin
Cloud–ShortwaveFeedbackinGCMs.JournalofClimate2012,25:5416-5431.
Kamae Y, Shiogama H, Watanabe M, Ogura T, Yokohata T, Kimoto M. Lower-Tropospheric
Mixing as a Constraint on Cloud Feedback in a Multiparameter Multiphysics Ensemble.
JournalofClimate2016,29:6259-6275.
GettelmanA,KayJE,ShellKM.TheEvolutionofClimateSensitivityandClimateFeedbacksin
theCommunityAtmosphereModel.JournalofClimate2012,25:1453-1469.
Zhao M. An Investigation of the Connections among Convection, Clouds, and Climate
SensitivityinaGlobalClimateModel.JournalofClimate2014,27:1845-1862.
Zhao M, Golaz JC, Held IM, Ramaswamy V, Lin SJ, Ming Y, Ginoux P, Wyman B, Donner LJ,
Paynter D, et al. Uncertainty in Model Climate Sensitivity Traced to Representations of
CumulusPrecipitationMicrophysics.JournalofClimate2016,29:543-560.
TomassiniL,VoigtA,StevensB.Ontheconnectionbetweentropicalcirculation,convective
mixing,andclimatesensitivity.QuarterlyJournaloftheRoyalMeteorologicalSociety2015,
141:1404-1416.
Sherwood SC, Bony S, Dufresne J-L. Spread in model climate sensitivity traced to
atmosphericconvectivemixing.Nature2014,505:37-42.
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
Vial J, Bony S, Dufresne J-L, Roehrig R. Coupling between lower-tropospheric convective
mixingandlow-levelclouds:Physicalmechanismsanddependenceonconvectionscheme.
JournalofAdvancesinModelingEarthSystems2016.
WebbMJ,LockAP,BrethertonCS,BonyS,ColeJNS,IdelkadiA,KangSM,KoshiroT,KawaiH,
Ogura T, et al. The impact of parametrized convection on cloud feedback. Philosophical
transactions.SeriesA,Mathematical,physical,andengineeringsciences2015,373.
Kawai H. Examples of Mechanisms for Negative Cloud Feedback of Stratocumulus and
StratusinCloudParameterizations.SOLA2012,8:150-154.
Zhang M, Bretherton C. Mechanisms of Low Cloud–Climate Feedback in Idealized SingleColumnSimulationswiththeCommunityAtmosphericModel,Version3(CAM3).Journalof
Climate2008,21:4859-4878.
Stephens GL. Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes.
JournaloftheAtmosphericSciences1978,35:2123-2132.
PruppacherHR,KlettJD.MicrophysicsofCloudsandPrecipitation.2010,18:954.
McCoy DT, Hartmann DL, Zelinka MD, Ceppi P, Grosvenor DP. Mixed-phase cloud physics
and Southern Ocean cloud feedback in climate models. Journal of Geophysical Research:
Atmospheres2015,120:9539-9554.
TsushimaY,EmoriS,OguraT,KimotoM,WebbMJ,WilliamsKD,RingerMA,SodenBJ,LiB,
Andronova N. Importance of the mixed-phase cloud distribution in the control climate for
assessing the response of clouds to carbon dioxide increase: a multi-model study. Climate
Dynamics2006,27:113-126.
Betts AK, Harshvardhan. Thermodynamic constraint on the cloud liquid water feedback in
climatemodels.JournalofGeophysicalResearch1987,92:8483.
KleinSA,McCoyRB,MorrisonH,AckermanAS,AvramovA,BoerGd,ChenM,ColeJNS,Del
Genio AD, Falk M, et al. Intercomparison of model simulations of mixed-phase clouds
observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: single-layer cloud.
QuarterlyJournaloftheRoyalMeteorologicalSociety2009,135:979-1002.
TselioudisG,RossowWB,RindD.GlobalPatternsofCloudOpticalThicknessVariationwith
Temperature.JournalofClimate1992,5:1484-1495.
StorelvmoT,TanI,KorolevAV.CloudPhaseChangesInducedbyCO2Warming–aPowerful
yet Poorly Constrained Cloud-Climate Feedback. Current Climate Change Reports 2015,
1:288-296.
DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, Richardson MS,
Eidhammer T, Rogers DC. Predicting global atmospheric ice nuclei distributions and their
impacts on climate. Proceedings of the National Academy of Sciences 2010, 107:1121711222.
TeraiCR,KleinSA,ZelinkaMD.Constrainingthelow-cloudopticaldepthfeedbackatmiddle
and high latitudes using satellite observations. Journal of Geophysical Research:
Atmospheres2016,121:9696-9716.
Somerville RCJ, Remer LA. Cloud optical thickness feedbacks in the CO2 climate problem.
JournalofGeophysicalResearch1984,89:9668.
Paltridge GW. Cloud-radiation feedback to climate. Quarterly Journal of the Royal
MeteorologicalSociety1980,106:895-899.
Mitchell JFB, Senior CA, Ingram WJ. CO2 and climate: a missing feedback? Nature 1989,
341:132-134.
Findeisen W. Die kolloidmeteorologischen Vorgänge bei Niederschlagsbildung.
MeteorologischeZeitschrift1938,55:121-133.
Storelvmo T, Tan I. The Wegener-Bergeron-Findeisen process– Its discovery and vital
importanceforweatherandclimate.MeteorologischeZeitschrift2015.
SeniorCA,MitchellJFB.CarbonDioxideandClimate.TheImpactofCloudParameterization.
JournalofClimate1993,6:393-418.
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
Choi Y-S, Ho C-H, Park C-E, Storelvmo T, Tan I. Influence of cloud phase composition on
climatefeedbacks.JournalofGeophysicalResearch:Atmospheres2014,119:3687-3700.
Li Z-X, Le Treut H. Cloud-radiation feedbacks in a general circulation model and their
dependenceoncloudmodellingassumptions.ClimateDynamics1992,7:133-139.
Kay JE, Bourdages L, Miller NB, Morrison A, Yettella V, Chepfer H, Eaton B. Evaluating and
improving cloud phase in the Community Atmosphere Model version 5 using spaceborne
lidarobservations.JournalofGeophysicalResearch:Atmospheres2016,121:4162-4176.
Tan I, Storelvmo T, Zelinka MD. Observational constraints on mixed-phase clouds imply
higherclimatesensitivity.Science2016,352:224-227.
DeMottPJ,MöhlerO,StetzerO,ValiG,LevinZ,PettersMD,MurakamiM,LeisnerT,Bundke
U,KleinH,etal.ResurgenceinIceNucleiMeasurementResearch.BulletinoftheAmerican
MeteorologicalSociety2011,92:1623-1635.
Gettelman A, Liu X, Barahona D, Lohmann U, Chen C. Climate impacts of ice nucleation.
JournalofGeophysicalResearch:Atmospheres2012,117:n/a-n/a.
Hu Y, Rodier S, Xu K-m, Sun W, Huang J, Lin B, Zhai P, Josset D. Occurrence, liquid water
content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS
measurements.JournalofGeophysicalResearch2010,115:D00H34.
KomurcuM,StorelvmoT,TanI,LohmannU,YunY,PennerJE,WangY,LiuX,TakemuraT.
Intercomparison of the cloud water phase among global climate models. Journal of
GeophysicalResearch:Atmospheres2014,119:3372-3400.
CesanaG,WaliserDE,JiangX,LiJ-LF.Multi-modelevaluationofcloudphasetransitionusing
satelliteandreanalysisdata.JournalofGeophysicalResearch:Atmospheres2015,120.
McCoyDT,TanI,HartmannDL,ZelinkaMD,StorelvmoT.Ontherelationshipsamongcloud
cover, mixed-phase partitioning, and planetary albedo in GCMs. Journal of Advances in
ModelingEarthSystems2016,8:1-19.
Bodas-Salcedo A, Andrews T, Karmalkar AV, Ringer MA. Cloud liquid water path and
radiativefeedbacksovertheSouthernOcean.GeophysicalResearchLetters2016.
Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C. On dynamic and thermodynamic
componentsofcloudchanges.ClimateDynamics2004,22:71-86.
Shepherd TG. Atmospheric circulation as a source of uncertainty in climate change
projections.NatureGeoscience2014,7:703-708.
HartmannDL,ShortDA.OntheUseofEarthRadiationBudgetStatisticsforStudiesofClouds
andClimate.JournaloftheAtmosphericSciences1980,37:1233-1250.
RamanathanV,CessRD,HarrisonEF,MinnisP,BarkstromBR,AhmadE,HartmannD.CloudRadiativeForcingandClimate:ResultsfromtheEarthRadiationBudgetExperiment.Science
1989,243.
HarrisonEF,MinnisP,BarkstromBR,RamanathanV,CessRD,GibsonGG.Seasonalvariation
of cloud radiative forcing derived from the Earth Radiation Budget Experiment. Journal of
GeophysicalResearch1990,95:18687-18687.
HartmannDL,MoyLA,FuQ.TropicalConvectionandtheEnergyBalanceattheTopofthe
Atmosphere.JournalofClimate2001,14:4495-4511.
LindzenRS,ChouM-D,HouAY.DoestheEarthHaveanAdaptiveInfraredIris?Bulletinofthe
AmericanMeteorologicalSociety2001,82:417-432.
Hartmann DL, Michelsen ML. No Evidence for Iris. Bulletin of the American Meteorological
Society2002,83:249-254.
FuQ,BakerM,HartmannDL.Tropicalcirrusandwatervapor:aneffectiveEarthinfrarediris
feedback?AtmosphericChemistryandPhysics2002,2:31-37.
ChambersLH,LinB,YoungDF.ExaminationofNewCERESDataforEvidenceofTropicalIris
Feedback.JournalofClimate2002,15:3719-3726.
Lin B, Wielicki BA, Chambers LH, Hu Y, Xu K-M. The Iris Hypothesis: A Negative or Positive
CloudFeedback?JournalofClimate2002,15:3-7.
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
MauritsenT,StevensB.Missingiriseffectasapossiblecauseofmutedhydrologicalchange
andhighclimatesensitivityinmodels.NatureGeoscience2015,8:346-351.
MitchellJFB,WilsonCA,CunningtonWM.OnCO2climatesensitivityandmodeldependence
ofresults.QuarterlyJournaloftheRoyalMeteorologicalSociety1987,113:293-322.
Su H, Bretherton CS, Chen SS. Self-Aggregation and Large-Scale Control of Tropical Deep
Convection:AModelingStudy.JournaloftheAtmosphericSciences2000,57:1797-1816.
BrethertonCS,BlosseyPN,KhairoutdinovM.AnEnergy-BalanceAnalysisofDeepConvective
Self-Aggregation above Uniform SST. Journal of the Atmospheric Sciences 2005, 62:42734292.
Wing AA, Emanuel KA. Physical mechanisms controlling self-aggregation of convection in
idealized numerical modeling simulations. Journal of Advances in Modeling Earth Systems
2014,6:59-74.
Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne J-L, Hall A, Hallegatte S,
Holland MM, Ingram W, et al. How Well Do We Understand and Evaluate Climate Change
FeedbackProcesses?JournalofClimate2006,19:3445-3482.
Barnes EA, Polvani L. Response of the midlatitude jets and of their variability to increased
greenhousegasesintheCMIP5models.JournalofClimate2013,26:7117-7135.
BenderFA-M,RamanathanV,TselioudisG.Changesinextratropicalstormtrackcloudiness
1983–2008: observational support for a poleward shift. Climate Dynamics 2012, 38:20372053.
GriseKM,PolvaniLM,TselioudisG,WuY,ZelinkaMD.Theozoneholeindirecteffect:Cloudradiativeanomaliesaccompanyingthepolewardshiftoftheeddy-drivenjetintheSouthern
Hemisphere.GeophysicalResearchLetters2013,40:3688-3692.
CeppiP,ZelinkaMD,HartmannDL.TheresponseoftheSouthernHemisphericeddy-driven
jet to future changes in shortwave radiation in CMIP5. Geophysical Research Letters 2014,
41:3244-3250.
Kay JE, Medeiros B, Hwang YT, Gettelman A, Perket J, Flanner MG. Processes controlling
SouthernOceanShortwaveClimateFeedbacksinCESM.GeophysicalResearchLetters2014,
41:616-622.
WallCJ,HartmannDL.Ontheinfluenceofpolewardjetshiftonshortwavecloudfeedbackin
globalclimatemodels.JournalofAdvancesinModelingEarthSystems2015,7:2044-2059.
Li Y, Thompson DWJ, Huang Y, Zhang M. Observed linkages between the northern annular
mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophysical
ResearchLetters2014,41:1681-1688.
Tselioudis G, Lipat BR, Konsta D, Grise KM, Polvani LM. Midlatitude cloud shifts, their
primary link to the Hadley cell, and their diverse radiative effects. Geophysical Research
Letters2016,43:4594-4601.
RandallD,KhairoutdinovM,ArakawaA,GrabowskiW.BreakingtheCloudParameterization
Deadlock.BulletinoftheAmericanMeteorologicalSociety2003,84:1547-1564.
GrabowskiWW,SmolarkiewiczPK.CRCP:aCloudResolvingConvectionParameterizationfor
modeling the tropical convecting atmosphere. Physica D: Nonlinear Phenomena 1999,
133:171-178.
Khairoutdinov MF, Randall DA. A cloud resolving model as a cloud parameterization in the
NCARCommunityClimateSystemModel:Preliminaryresults.GeophysicalResearchLetters
2001,28:3617-3620.
Grabowski WW. Towards Global Large Eddy Simulation: Super-Parameterization Revisited.
JournaloftheMeteorologicalSocietyofJapan2016,94:327-344.
Gettelman A, Sherwood SC. Processes Responsible for Cloud Feedback. Current Climate
ChangeReports2016:1-11.
HerbertRJ,MurrayBJ,DobbieSJ,KoopT.Sensitivityofliquidcloudstohomogenousfreezing
parameterizations.GeophysicalResearchLetters2015,42:1599-1605.
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
172.
1173
173.
174.
175.
176.
177.
178.
179.
180.
181.
CeppiP,HartmannDL.Cloudsandtheatmosphericcirculationresponsetowarming.Journal
ofClimate2016,29:783-799.
Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI, Hwang YT, Li C, O'Gorman PA,
Rivière G, Simpson IR, et al. Storm track processes and the opposing influences of climate
change.NatureGeoscience2016,9:656-664.
BonyS,StevensB,FriersonDMW,JakobC,KageyamaM,PincusR,ShepherdTG,Sherwood
SC, Siebesma AP, Sobel AH, et al. Clouds, circulation and climate sensitivity. Nature
Geoscience2015,8:261-268.
Webb MJ, Andrews T, Bodas-Salcedo A, Bony S, Bretherton CS, Chadwick R, Chepfer H,
Douville H, Good P, Kay JE, et al. The Cloud Feedback Model Intercomparison Project
(CFMIP)contributiontoCMIP6.GeoscientificModelDevelopment2017,10:359-384.
Winton M, Takahashi K, Held IM. Importance of Ocean Heat Uptake Efficacy to Transient
ClimateChange.JournalofClimate2010,23:2333-2344.
Armour KC, Bitz CM, Roe GH. Time-Varying Climate Sensitivity from Regional Feedbacks.
JournalofClimate2013,26:4518-4534.
Rose BEJ, Armour KC, Battisti DS, Feldl N, Koll DDB. The dependence of transient climate
sensitivityandradiativefeedbacksonthespatialpatternofoceanheatuptake.Geophysical
ResearchLetters2014,41:1071-1078.
Andrews T, Gregory JM, Webb MJ. The Dependence of Radiative Forcing and Feedback on
Evolving Patterns of Surface Temperature Change in Climate Models. Journal of Climate
2015,28:1630-1648.
GregoryJM,AndrewsT.Variationinclimatesensitivityandfeedbackparametersduringthe
historicalperiod.GeophysicalResearchLetters2016,43:3911-3920.
Zhou C, Zelinka MD, Klein SA. Impact of decadal cloud variations on the Earth’s energy
budget.NatureGeoscience2016,9:871-874.